How the Discovery was Made

Solution of Problem 01-001 by Jonathan Borwein (CECM, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada (jborwein@cecm.sfu.ca).

It is an easy matter, for any given small N, to pick off the closed form of the nonconstant coefficients in P_{N}. Indeed, one can be led to discover from $N<9$, say, that

$$
\begin{equation*}
Q_{N}:=\sum_{n=0}^{\infty} \frac{n^{n} e^{-n}}{(n+N)!}-\sum_{k=1}^{N} \frac{(-1)^{k-1} e^{k}}{(N-k)!k^{k}} \tag{1}
\end{equation*}
$$

is a rational number for each integer $N>0$. The first four constant coefficients are $-1,-1 / 4,-7 / 108,-97 / 6912$. More delicately, one can ultimately discover that

$$
\begin{equation*}
Q_{N}=\sum_{k=1}^{N} \frac{(-1)^{k}}{(N-k)!k^{k}} \sum_{n=0}^{k-1} \frac{k^{n}}{n!} . \tag{2}
\end{equation*}
$$

This relies on replacing $\exp (-n)$ by its series, exchanging the order of summation, and then discovering and deriving the identity

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k} k^{n}\binom{N+n}{N+k}=(-1)^{n} \sum_{k=1}^{N} k^{n}(-1)^{k-1}\binom{N+n}{N-k} \tag{3}
\end{equation*}
$$

or, equivalently,

$$
\sum_{k=0}^{M+N}(-1)^{k}(M-k)^{M}\binom{M+N}{k}=0
$$

for all $M, N>0$. This in turn follows, on using the binomial theorem, from

$$
\begin{equation*}
\sum_{k=0}^{P}(-1)^{k} k^{n}\binom{P}{k}=0 \tag{4}
\end{equation*}
$$

for all $0 \leq n<P$. The final identity (4) is established by setting $D f(x):=x f^{\prime}(x)$ and observing that $D^{k}(1-x)^{P}$ has a zero at 1 for $k<P$.

Actually, in the derivation of (3) I was assisted by Salvy and Zimmermann's "gfun" lovely Maple package which hunts for generating functions and recursions for sequences of integers. Using their program, I found the closed form for $N<4$ in a somewhat obscure form. I then used linear algebra to interpolate the pattern for a few more cases and discovered (3).

Editorial note. There are several quick proofs of (4). For a combinatorial proof, use the method of inclusion-exclusion to count surjections from $\{1,2, \ldots, n\}$ to $\{1,2, \ldots, P\}$.

