A Problem Concerning Negative Squares

Problem 02-007, by Torben MaAck Bisgaard.
The number of negative squares of a hermitian matrix is its number of negative eigenvalues counted with multiplicity. For every positive integer k let $M(k)$ be the statement (which may be true or false) that if A is a symmetric real matrix of order $k m$ of the block form

$$
A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \\
A_{21} & A_{22} & \cdots & A_{2 k} \\
\vdots & \vdots & \ddots & \vdots \\
A_{k 1} & A_{k 2} & \cdots & A_{k k}
\end{array}\right)
$$

where the $A_{i j}$ are symmetric matrices of order m and if A has exactly κ negative squares, then the "trace matrix" $A_{11}+A_{22}+\cdots+A_{k k}$ has at most κ negative squares. Prove $M(8)$.

Status. The proposer has a solution.

