An Integral Involving the Product of Five Bessel Functions

Solution of Problem 04-003 by Michael Renardy (Virginia Polytech Institute and State University).

We take advantage of the asymptotic expansion

$$
J_{0}(x)=\sqrt{\frac{2}{\pi x}}\left\{\cos (x-\pi / 4)\left(1-\frac{9}{128 x^{2}}+O\left(x^{-4}\right)\right)+\sin (x-\pi / 4)\left(\frac{1}{8 x}+O\left(x^{-3}\right)\right)\right\}
$$

and the fact that the resulting approximation to the integrand can be integrated in closed form in terms of Fresnel integrals. The result is

$$
\int_{0}^{\infty} x J_{0}(x \sqrt{2}) J_{0}(x \sqrt{3}) J_{0}(x \sqrt{5}) J_{0}(x \sqrt{7}) J_{0}(x \sqrt{11}) d x \approx 0.061064349909
$$

and a listing of the Mathematica code is given below. Also, a Mathematica notebook is available as a download option. Evidence of convergence is provided by the fact that when the transition point is changed from 100 to 200 , the value of $\mathrm{p} 1+\mathrm{p} 2$ is unchanged in the number of digits shown.

```
ja[x_] = Sqrt[2/Pi/x](Cos[x-Pi/4](1-9/128/x^2)+Sin[x-Pi/4]/8/x)
f[x_] = x*BesselJ[0,x*Sqrt[2]]*BesselJ[0,x*Sqrt[3]]*
    BesselJ[0,x*Sqrt[5]]*BesselJ[0,x*Sqrt[7]]*BesselJ[0,x*Sqrt[11]]
fa[x_] =
    x*ja[x*Sqrt[2]]*ja[x*Sqrt[3]]*ja[x*Sqrt[5]]*ja[x*Sqrt[7]]*ja[x*Sqrt[11]];
fa[x_] = TrigReduce[fa[x]];
fa[x_]=N[fa[x],20];
fa[x_] = TrigExpand[fa[x]];
fb1[x_] = Coefficient[PowerExpand[fa[x^2]], 1/x^3]/x^3 +
    Coefficient[PowerExpand[fa[x^2]], 1/x^5]/x^5 +
    Coefficient[PowerExpand[fa[x^2]], 1/x^7]/x^7;
fb2[x_] = PowerExpand[fb1[Sqrt[x]]];
p1 = Sum[NIntegrate[f[x], {x,n-1,n}, WorkingPrecision -> 20],
    {n, 1, 100}]
p2 = N[Integrate[fb2[x], {x,100,Infinity}], 20]
p1+p2
```

