
Minimal Energy of 100 Point Charges on the Unit Sphere

In Problem 04-003, Folkmar Bornemann, Dirk Laurie, Stan Wagon, and Jörg

Waldvogel proposed a set of five numerical problems taken from their book The SIAM

100-Digit Challenge: A Study in High-Accuracy Numerical Computing. These problems

included the following one, contributed by Lloyd N. Trefethen of Oxford University. (See

problem 4, p. 282.)

(a) If N point charges are distributed on the unit sphere, the potential energy is

E =
N−1∑
j=1

N∑
k=j+1

|xj − xk|−1,

where |xj − xk| is the Euclidean distance between xj and xk. Let EN denote the minimal

value of E over all possible configurations of N charges. What is E100?

Solution by Wouter Tierens
1 (Engineering Student, University of Ghent, Belgium).

1 History

Before 1909, atoms were thought to consist of a diffuse positive charge surrounded by elec-

trons (the “plum pudding” model). In order to predict the properties of the elements on the

periodic table with this model, the distribution of electrons on a sphere had to be studied.

This problem was named after Thomson, the originator of the plum pudding model and the

first to study it.

In 1909, Rutherford showed the existence of nuclei with his famous gold foil experiment.

His results falsified the plum pudding model, yet the problem turned out to be important

for many other fields, from biology to telecommunications.

1Email: Wouter.Tierens@gmail.com



2 Theoretical Considerations

2.1 An upper bound

Figure 1: Left: Integrating over the unit sphere. Right : a spherical cap.

For large N , a continuous approximation can be used:
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2
4π

∫ 2π

0

∫ π

0

ρ2 sin(θ)√
sin2(θ) + (1 − cos(θ))2

dθdφ =
N2

2
,
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.

Replacing a point charge by a charge density in some finite area increases the potential

energy, because this area also has some potential energy due to itself. Each point becomes

distributed over an area of 4π
N

. Approximating this area as a spherical cap (see Figure 1),
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The excess energy is
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Here the second integral over the spherical cap was approximated as the area of the cap

times the excess energy of a point at the center of the cap.

The energy becomes
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For the reasons mentioned above, N2

2
is an upper bound for EN . Formula (6) will be a

reasonably good approximation.



2.2 A lower bound

Figure 2: Hexagonal pattern, lower bound model.

Due to the repulsive nature of the interactions, it is reasonable to expect empty areas of

at least 4π
N

(actually larger) around every charge. These empty areas are actually more-or-

less regular polygons (usually hexagons for large N). They can be approximated as being

spherical caps.

Assuming that the charges are arranged in a hexagonal pattern, the actual empty area

is given by 4π
N

+ 6( 4π
3N

) = 4π
N/3

. This follows from Figure 2 (a and b) : the circles are the
4π
N

-areas, and the red parts of these circles are the parts of the 4π
N

-areas that contribute to the

empty area. In other words, formulae (2) through (4) can be used for the complete empty

area by simply substituting N → N
3
.

Now a lower bound for EN can be found using the following model:

• There are N charges, all of which are equivalent. Thus EN = EcN , with Ec the energy

of one charge.

• Each charge is surrounded by an empty spherical cap with area 4π
N/3

= 12π
N

.

In order to calculate Ec, an additional approximation is necessary: to find the effect of

the N − 1 charges on one charge, the N − 1 charges are replaced by a uniform charge

density that covers the whole unit sphere, except for the empty area around the charge

under consideration (see Figure 2 c). This charge density is ρ = (N − 1)/(4π − 12π
N

).

We can now calculate EN :

EN ≈ Nρ
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The result is (for N > 6)

(9) EN, lower =
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(
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.

For large N , this formula has to reduce to N2

2
, and indeed it does.

Formula (9) is an underestimation because the charge density on the remaining part of

the unit sphere is not really uniform : the nearest neighbor charges are just outside the

empty area, causing a higher than average local charge density near the empty area.

3 Computing E100

3.1 Description of the method

Figure 3: The program for N = 100.

Most approaches to finding minima of functions are more-or-less sophisticated variations

on “walk downhill.” In this particular problem, “downhill” is equivalent to moving each point

charge in the direction of the Coulomb force.

Given the physical nature of this problem, I opted for a physical approach. The charges

are given a unit mass and a velocity. The velocity is constantly updated using Newton’s

laws. In order to ensure convergence, a friction force �Ffriction = −γ�v is used. The system

is considered to be converged when the kinetic is smaller than 10−8 and the changes in the

potential energy are smaller than 10−7, hopefully ensuring 10-digit accuracy.

In order to avoid getting stuck in a local minimum, the system is “annealed” once

it has converged: the charges are given new velocities selected from a Maxwell–Boltzmann

distribution. This process is repeated a few times in order to search for nearby, more optimal

solutions.



3.2 Results

Figure 4: The minimum-energy configuration for 100 point charges on the unit sphere. Notice
the hexagonal pattern, with a few pentagons.

The result for E100 is

(10) E100 = 4448.350634.

3.3 Remarks

The method used here is by no means the fastest or most efficient. There are plenty of

reasonably good heuristics to find a more-or-less uniform distribution of points on a sphere,

and there are lots of quick algorithms to find a minimum without simulating the physics of

the system. The advantage of this method is that it performs a thorough search for better

minima, hopefully finding the global minimum.

4 Theory vs. Computation

The obtained result is smaller than the upper bound N2

2
= 5000 and greater than the lower

bound E100,lower = 4219.211186.

As expected, formula (6) gives a reasonable approximation for E : E100,approximated =

4500.

Recall that, in section 2.2, the empty area was expected to be 12π
N

. This was derived

under the assumption that the configuration consists of a nearly hexagonal pattern. To check

the accuracy of this prediction, the average empty area is calculated for N = 100. In order

to do this, an extremely elegant result from spherical trigonometry is used:

(11) A = α + β + γ − π.



Figure 5: Left: a spherical triangle. Right: the empty area as a sum of areas of spherical
triangles.

Here A is the surface of a spherical triangle, and α, β, and γ are its angles (in radians). The

average empty area turns out to be 0.378166807. The predicted value was 12π
100

= 0.376991116,

which is close to the computed value.

In Figure 6, EN is shown for values of N between 10 and 100, together with the upper

bound, the lower bound, and the approximation (formula (6)). The results are in line with

the expectations.

Figure 6: Results for N = 10, 20, . . . , 100.


