A Theorem on Entire Functions of Finite Order with Positive Taylor Coefficients

Solution of Problem 04-004 by the proposer.
We shall prove that for $f \in A_{\rho}$, where $0 \leq \rho<\infty$,

$$
\lim _{r \rightarrow \infty} T(r)=1
$$

independently of the order ρ. Hence $c_{\rho}^{-}=c_{\rho}^{+}=1$. The proof is in two parts.

1. $\lim \inf _{r \rightarrow \infty} T(r) \geq 1$.

Proof. Suppose that f is a transcendental entire function with positive Taylor coefficients and of finite or infinite order. Thus $f(z):=\sum a_{n} z^{n}$, where $a_{n}>0$ for all n. Define

$$
f_{0}(z):=f(z) ; \quad f_{1}(z):=z f^{\prime}(z)=\sum n a_{n} z^{n} ; \quad f_{2}(z):=z f_{1}^{\prime}(z)=\sum n^{2} a_{n} z^{n} .
$$

Then

$$
\begin{equation*}
T(r)=\frac{f_{0}(z) f_{2}(z)}{\left(f_{1}(z)\right)^{2}}-\frac{f_{0}(z)}{f_{1}(z)} \tag{1}
\end{equation*}
$$

and, by Cauchy's inequality,

$$
\frac{f_{0}(r) f_{2}(r)}{\left(f_{1}(r)\right)^{2}}>1, \quad r>0
$$

Also, since

$$
r\left(\frac{f_{0}(r)}{f_{1}(r)}\right)^{\prime}=1-\frac{f_{0}(r) f_{2}(r)}{\left(f_{1}(r)\right)^{2}}<0, \quad r>0
$$

we conclude that f_{0} / f_{1} is monotone decreasing and approaches the limit zero. Otherwise, there exists $a>0$ such that $f_{0}(r) / f_{1}(r)>a$ for all $r>0$. Hence $f^{\prime}(r) / f(r)<\frac{1}{a r}$, and integration yields $f(r)=O\left(r^{1 / a}\right)$. In this case f is a polynomial, not a transcendental function. Hence $\liminf _{r \rightarrow \infty} T(r) \geq 1$.
2. $\lim \sup _{r \rightarrow \infty} T(r) \leq 1$.

Proof. We shall use Karamata's concept of regularly varying functions.

Definition 1. A positive measurable function k belongs to the class K_{ρ} of regularly varying functions with index $\rho \in \mathbb{R}$ if the relation

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{k(\lambda x)}{k(x)}=\lambda^{\rho} \tag{0.1}
\end{equation*}
$$

holds for each $\lambda>0$.
Remark 1. Moreover, if $k \in K_{\rho}$ then (0.1) holds uniformly on each compact λ-set in $(0, \infty)$ [1, p. 6].

The theory of regular variation is well developed and has many applications in analysis, number theory, probability, etc. For general theory and applications, see [1] and [2]. Setting

$$
t_{0}(r):=f_{1}(r) / f_{0}(r) ; \quad t_{1}(r)=f_{2}(r) / f_{1}(r),
$$

(1) gives

$$
T(r)=\frac{t_{1}(r)}{t_{0}(r)}-\frac{1}{t_{0}(r)} .
$$

As we have already proved, $t_{0}(r)$ and $t_{1}(r)$ are monotone increasing to infinity; hence the second term in (2) does not affect further estimations of $T(r)$.

The proof of our second assertion depends entirely on the following two results.
Lemma 1. Let g be a positive function with the property

$$
\limsup _{r \rightarrow \infty} \frac{\log g(x)}{\log x}=\rho, \quad 0 \leq \rho<\infty .
$$

Then there exists a regularly varying function $k \in K_{\rho}$ such that $g(x) \leq k(x)$ and

$$
\limsup _{x \rightarrow \infty} \frac{k(x)}{g(x)}=1
$$

This is a known theorem on approximation by a regularly varying function [1, p. 81].
Lemma 2. If $f \in A_{\rho}$, then

$$
\limsup _{r \rightarrow \infty} \frac{\log t_{0}(r)}{\log r}=\rho .
$$

See [3, section IV, chapter 1, problem 53].
Combining the two lemmas we find that for $f \in A_{\rho}$ there exists a regularly varying function $k \in K_{\rho}$ such that

$$
\begin{equation*}
t_{0}(r) \leq k(r) ; \quad \limsup _{r \rightarrow \infty} \frac{k(r)}{t_{0}(r)}=1 \tag{2}
\end{equation*}
$$

Hence for arbitrary $C>1$ we find

$$
\begin{equation*}
\frac{k(r)}{C}<t_{0}(r) \leq k(r), \quad r>r_{0}(C) \tag{3}
\end{equation*}
$$

and, consequently, for each $\lambda>1$,

$$
\begin{equation*}
\frac{k(\lambda r)}{C}<t_{0}(\lambda r) \leq k(\lambda r), \quad r>r_{0}(C) \tag{4}
\end{equation*}
$$

From (3) and (4) it follows that

$$
\begin{equation*}
\frac{t_{0}(\lambda r)}{t_{0}(r)}<C \frac{k(\lambda r)}{k(r)}, \quad r>r_{0}(C) \tag{5}
\end{equation*}
$$

Hence by Definition 1 and Remark 1 we find that

$$
\begin{equation*}
\frac{t_{0}(\lambda r)}{t_{0}(r)}<C^{2} \lambda^{\rho}, \quad r>r_{1}(C) \tag{6}
\end{equation*}
$$

holds for each $\lambda>1$.
Another assertion is of importance.
Lemma 3. For each $\lambda>1$ and $r>0$, we have

$$
t_{i}(r) \log \lambda<\log \frac{f_{i}(\lambda r)}{f_{i}(r)}<t_{i}(\lambda r) \log \lambda, \quad i=0,1
$$

Proof. Indeed, since $t_{i}(r)$ is monotone increasing for $r>0$, we get

$$
t_{i}(r) \log \lambda=t_{i}(r) \int_{r}^{\lambda r} \frac{d u}{u}<\int_{r}^{\lambda r} \frac{t_{i}(u) d u}{u}=\log \frac{f_{i}(\lambda r)}{f_{i}(r)}<t_{i}(\lambda r) \log \lambda .
$$

Since $t_{0}=f_{1} / f_{0}$, combining Lemma 3 with the inequality in (6), it follows that

$$
\begin{align*}
t_{1}(r) \log \lambda & <\log \frac{f_{1}(\lambda r)}{f_{1}(r)}<\log \left(C^{2} \lambda^{\rho}\right)+\log \frac{f_{0}(\lambda r)}{f_{0}(r)} \\
& <\log \left(C^{2} \lambda^{\rho}\right)+t_{0}(\lambda r) \log \lambda \\
& <\log \left(C^{2} \lambda^{\rho}\right)+\left(C^{2} \lambda^{\rho} \log \lambda\right) t_{0}(r), \quad r>r_{1}(C) . \tag{7}
\end{align*}
$$

Since $t_{0}(r) \uparrow \infty$, choosing $\lambda=C$ if $\rho=0$ and $\lambda=C^{1 / \rho}$ for $\rho>0$ in (7), we get

$$
\frac{t_{1}(r)}{t_{0}(r)}<o(1)+C^{3}, \quad r \rightarrow \infty
$$

Because $C>1$ is arbitrary, by (2) we finally conclude that

$$
\limsup _{r \rightarrow \infty} T(r) \leq 1
$$

and the proof is complete.
REmark 2. The above theorem is also valid for transcendental entire functions of finite order and with nonnegative Taylor coefficients.

REFERENCES

[1] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, UK, 1989.
[2] E. Seneta, Regularly Varying Functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, New York, 1976.
[3] G. Pólya and G. Szegö, Problems and Theorems in Analysis, Vol. II, Springer-Verlag, Berlin, 1976.

