A Theorem on Entire Functions of Finite Order

with Positive Taylor Coefficients

Solution of Problem 04-004 by the proposer.
We shall prove that for f € A,, where 0 < p < o0,

lim T'(r) =1,

rT—00

independently of the order p. Hence ¢, = c;f = 1. The proof is in two parts.

1. liminf, ,, T'(r) > 1.

Proof. Suppose that f is a transcendental entire function with positive Taylor coefficients
and of finite or infinite order. Thus f(z) := Y a, 2", where a,, > 0 for all n. Define

fo(2) == f(2); fi(z) = 2f'(2) = Znan 2" fa(2) == 2f1(z Zn ap 2

Then

and, by Cauchy’s inequality,

Also, since

<0, r >0,

(56) =

we conclude that fy/f; is monotone decreasing and approaches the limit zero. Otherwise,
1

there exists a > 0 such that fo(r)/fi(r) > a for all » > 0. Hence f'(r)/f(r) < —, and
ar

integration yields f(r) = O(r'/%). In this case f is a polynomial, not a transcendental
function. Hence liminf, . T'(r) > 1. O

2. limsup, _,T(r) < 1.

Proof. We shall use Karamata’s concept of regularly varying functions.



DEFINITION 1. A positive measurable function k belongs to the class K, of reqularly varying
functions with index p € R if the relation

p

. k(A\x)
(0.1) am Ty

holds for each A > 0.

REMARK 1. Moreover, if k € K, then (0.1) holds uniformly on each compact A-set in (0, 00)
[1, p. 6].

The theory of regular variation is well developed and has many applications in analysis,

number theory, probability, etc. For general theory and applications, see [1] and [2]. Setting

to(r) := fi(r)/fo(r);  (r) = fa(r)/ fu(r),

(1) gives

As we have already proved, to(r) and ¢;(r) are monotone increasing to infinity; hence the
second term in (2) does not affect further estimations of T'(r).

The proof of our second assertion depends entirely on the following two results.

LEMMA 1. Let g be a positive function with the property

1
lim sup 089()

= p, 0<p<oo.
r—oo  lOgx

Then there exists a reqularly varying function k € K, such that g(x) < k(x) and

k(x)

limsup —= = 1.
r—oo 9(T)

This is a known theorem on approximation by a regularly varying function [1, p. 81].

LEMMA 2. If f € A,, then

logt
lim sup Olg_oﬁ") _
7—00 Og T



See [3, section IV, chapter 1, problem 53].
Combining the two lemmas we find that for f € A, there exists a regularly varying
function k € K, such that

: k(r)

2 t < k(r); 1 =1.
) o) < k(r): limsup 2
Hence for arbitrary C' > 1 we find

k
(3) % < to(r) < k(r), r > ro(C),
and, consequently, for each A > 1,
k(A
(4) ( C” <to(Ar) S k(Wr), 1> 1(C).
From (3) and (4) it follows that
to(Ar) k(Ar)

5 C ).
) o) ~Camy TN
Hence by Definition 1 and Remark 1 we find that

to(A
(6) o(Ar) < O\, r>r(C),

to(r)
holds for each A > 1.

Another assertion is of importance.

LEMMA 3. For each A > 1 and r > 0, we have
fi(r)
Proof. Indeed, since t;(r) is monotone increasing for r > 0, we get

£(r) log A = £:(r) /M %” < /TM M _ 1og% < t;(\r) log A.

ti(r)log A < log

< ti(Ar)log A, i=0,1.

T

Since tg = f1/fo, combining Lemma 3 with the inequality in (6), it follows that

Ji(Ar) Jo(Ar)
fi(r) Jo(r)

< 1log(C*N) + to(Ar) log A

t1(r)log A < log < log(C?\?) + log

(7) < log(C?N\°) + (C* X log Mto(r), r > (C).



Since to(r) T oo, choosing A = C'if p = 0 and A = CV/* for p > 0 in (7), we get

tl(T)
to(T)

Because C' > 1 is arbitrary, by (2) we finally conclude that

<o(1) +C?, T — 0.

limsup7T'(r) <1,

r—00

and the proof is complete. O]

REMARK 2. The above theorem is also wvalid for transcendental entire functions of finite

order and with nonnegative Taylor coefficients.
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