A Theorem on Entire Functions of Finite Order with Positive Taylor Coefficients

Solution of Problem 04-004 by the proposer.

We shall prove that for $f \in A_{\rho}$, where $0 \leq \rho < \infty$,

$$\lim_{r \to \infty} T(r) = 1,$$

independently of the order ρ . Hence $c_{\rho}^{-} = c_{\rho}^{+} = 1$. The proof is in two parts.

1. $\liminf_{r\to\infty} T(r) \ge 1$.

Proof. Suppose that f is a transcendental entire function with positive Taylor coefficients and of finite or infinite order. Thus $f(z) := \sum a_n z^n$, where $a_n > 0$ for all n. Define

$$f_0(z) := f(z);$$
 $f_1(z) := zf'(z) = \sum na_n z^n;$ $f_2(z) := zf'_1(z) = \sum n^2 a_n z^n.$

Then

(1)
$$T(r) = \frac{f_0(z)f_2(z)}{(f_1(z))^2} - \frac{f_0(z)}{f_1(z)},$$

and, by Cauchy's inequality,

$$\frac{f_0(r)f_2(r)}{(f_1(r))^2}>1, \qquad r>0$$

Also, since

$$r\left(\frac{f_0(r)}{f_1(r)}\right)' = 1 - \frac{f_0(r)f_2(r)}{(f_1(r))^2} < 0, \qquad r > 0,$$

we conclude that f_0/f_1 is monotone decreasing and approaches the limit zero. Otherwise, there exists a > 0 such that $f_0(r)/f_1(r) > a$ for all r > 0. Hence $f'(r)/f(r) < \frac{1}{ar}$, and integration yields $f(r) = O(r^{1/a})$. In this case f is a polynomial, not a transcendental function. Hence $\liminf_{r\to\infty} T(r) \ge 1$.

2. $\limsup_{r \to \infty} T(r) \leq 1$.

Proof. We shall use Karamata's concept of *regularly varying* functions.

DEFINITION 1. A positive measurable function k belongs to the class K_{ρ} of regularly varying functions with index $\rho \in \mathbb{R}$ if the relation

(0.1)
$$\lim_{x \to \infty} \frac{k(\lambda x)}{k(x)} = \lambda^{\rho}$$

holds for each $\lambda > 0$.

REMARK 1. Moreover, if $k \in K_{\rho}$ then (0.1) holds uniformly on each compact λ -set in $(0, \infty)$ [1, p. 6].

The theory of regular variation is well developed and has many applications in analysis, number theory, probability, etc. For general theory and applications, see [1] and [2]. Setting

$$t_0(r) := f_1(r)/f_0(r);$$
 $t_1(r) = f_2(r)/f_1(r),$

(1) gives

$$T(r) = \frac{t_1(r)}{t_0(r)} - \frac{1}{t_0(r)}.$$

As we have already proved, $t_0(r)$ and $t_1(r)$ are monotone increasing to infinity; hence the second term in (2) does not affect further estimations of T(r).

The proof of our second assertion depends entirely on the following two results.

LEMMA 1. Let g be a positive function with the property

$$\limsup_{r \to \infty} \frac{\log g(x)}{\log x} = \rho, \qquad 0 \le \rho < \infty.$$

Then there exists a regularly varying function $k \in K_{\rho}$ such that $g(x) \leq k(x)$ and

$$\limsup_{x \to \infty} \frac{k(x)}{g(x)} = 1.$$

This is a known theorem on approximation by a regularly varying function [1, p. 81]. LEMMA 2. If $f \in A_{\rho}$, then

$$\limsup_{r \to \infty} \frac{\log t_0(r)}{\log r} = \rho.$$

See [3, section IV, chapter 1, problem 53].

Combining the two lemmas we find that for $f \in A_{\rho}$ there exists a regularly varying function $k \in K_{\rho}$ such that

(2)
$$t_0(r) \le k(r); \qquad \limsup_{r \to \infty} \frac{k(r)}{t_0(r)} = 1$$

Hence for arbitrary C > 1 we find

(3)
$$\frac{k(r)}{C} < t_0(r) \le k(r), \qquad r > r_0(C),$$

and, consequently, for each $\lambda > 1$,

(4)
$$\frac{k(\lambda r)}{C} < t_0(\lambda r) \le k(\lambda r), \qquad r > r_0(C).$$

From (3) and (4) it follows that

(5)
$$\frac{t_0(\lambda r)}{t_0(r)} < C \frac{k(\lambda r)}{k(r)}, \qquad r > r_0(C).$$

Hence by Definition 1 and Remark 1 we find that

(6)
$$\frac{t_0(\lambda r)}{t_0(r)} < C^2 \lambda^{\rho}, \qquad r > r_1(C),$$

holds for each $\lambda > 1$.

Another assertion is of importance.

LEMMA 3. For each $\lambda > 1$ and r > 0, we have

$$t_i(r)\log\lambda < \log\frac{f_i(\lambda r)}{f_i(r)} < t_i(\lambda r)\log\lambda, \qquad i = 0, 1.$$

Proof. Indeed, since $t_i(r)$ is monotone increasing for r > 0, we get

$$t_i(r)\log\lambda = t_i(r)\int_r^{\lambda r} \frac{du}{u} < \int_r^{\lambda r} \frac{t_i(u)\,du}{u} = \log\frac{f_i(\lambda r)}{f_i(r)} < t_i(\lambda r)\log\lambda.$$

Since $t_0 = f_1/f_0$, combining Lemma 3 with the inequality in (6), it follows that

(7)
$$t_{1}(r)\log\lambda < \log\frac{f_{1}(\lambda r)}{f_{1}(r)} < \log(C^{2}\lambda^{\rho}) + \log\frac{f_{0}(\lambda r)}{f_{0}(r)}$$
$$< \log(C^{2}\lambda^{\rho}) + t_{0}(\lambda r)\log\lambda$$
$$< \log(C^{2}\lambda^{\rho}) + (C^{2}\lambda^{\rho}\log\lambda)t_{0}(r), \qquad r > r_{1}(C).$$

Since $t_0(r) \uparrow \infty$, choosing $\lambda = C$ if $\rho = 0$ and $\lambda = C^{1/\rho}$ for $\rho > 0$ in (7), we get

$$\frac{t_1(r)}{t_0(r)} < o(1) + C^3, \qquad r \to \infty.$$

Because C > 1 is arbitrary, by (2) we finally conclude that

$$\limsup_{r \to \infty} T(r) \le 1,$$

and the proof is complete.

REMARK 2. The above theorem is also valid for transcendental entire functions of finite order and with nonnegative Taylor coefficients.

REFERENCES

- N. H. BINGHAM, C. M. GOLDIE, AND J. L. TEUGELS, *Regular Variation*, Cambridge University Press, Cambridge, UK, 1989.
- [2] E. SENETA, Regularly Varying Functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, New York, 1976.
- [3] G. PÓLYA AND G. SZEGÖ, Problems and Theorems in Analysis, Vol. II, Springer-Verlag, Berlin, 1976.