
Solution of Problem 05-003 by Tsz Ho Chan
1 (University of Memphis).

The correct asymptotic behavior is given as follows.

Theorem 1. For x ≥ 3 (making sure that log log x is positive),

G(x) = Θ
(

log x√
log log x

)
.

1. Preliminaries. First, we remind the reader that f(x) = O(g(x)) means that |f(x)| ≤
Cg(x) for some constant C > 0 and f(x) = OR(g(x)) means that |f(x)| ≤ CRg(x) for some

constant CR > 0 which may depend on R. Also f(x) = Θ(g(x)) means that f(x) = O(g(x))

and g(x) = O(f(x)). We shall use Vinogradov’s notation f(x) � g(x), which is the same as

f(x) = O(g(x)).

We also need some notation from number theory. First, a|b means that a divides b, and

2t||n means that n is divisible by 2t but not 2t+1. The arithmetic function ω(n) stands for the

number of distinct prime factors of n. Also Ω(n) stands for the total number of prime factors

of n (counting multiplicity), and Ω(n) stands for the total number of odd prime factors of

n (counting multiplicity). For example, ω(12) = 2, Ω(12) = 3, and Ω(12) = 1. Also, we use

the convention ω(1) = Ω(1) = Ω(1) = 0.

Let us recall the discussion given by Marko Riedel. The divisor poset Dn of n is a product

of chains. Suppose the prime factorization of n is

n =
m∏
j=1

p
vj
j .

Then

Dn
∼=

m∏
j=1

[vj], where [v] is the chain {0, 1, . . . , v}.

This is an example of a PECK poset that has the Sperner property; i.e., its largest antichain

is its largest rank level. The rank generating function for the above factorization is

m∏
j=1

(1 + x + x2 + · · · + xvj).(1)

In particular, g(n) is the largest coefficient (or the middle coefficient) of this polynomial.

Lemma 1. For any positive integer n such that 2t||n for some integer t ≥ 0,(
ω(n)

�ω(n)/2�
)
≤ g(n) ≤ (t + 1)

(
Ω(n)

�Ω(n)/2�
)
,

where �x� stands for the greatest integer ≤ x.

1e-mail: tszchan@memphis.edu



Proof. The case when n = 1 is clear. So we assume that n ≥ 2. For the lower bound, we

notice that if k|l, then g(k) ≤ g(l) as the divisor poset of l contains the divisor poset of k.

In particular, g(
∏

p|n p) ≤ g(n) where the product is over all the distinct prime factors p of

n. However, for a squarefree integer like
∏

p|n p, the rank generating function is
∏ω(n)

j=1 (1+x).

So (
ω(n)

�ω(n)/2�
)

= g(
∏

p|n p) ≤ g(n).

As for the upper bound, we need to introduce the following notation. Let f(x) =
∑k

i=0 aix
i

and g(x) =
∑l

i=0 bix
i be two polynomials in C[x]. We say f(x) ≺ g(x) if |ai| ≤ bi for all i.

In particular, we must have that k ≤ l and g(x) has nonnegative real coefficients. It is an

easy exercise for the reader to check that if f1(x) ≺ g1(x) and f2(x) ≺ g2(x), then

f1(x) + f2(x) ≺ g1(x) + g2(x) and f1(x)f2(x) ≺ g1(x)g2(x).

Thus, if p1 = 2 and v1 = t in the prime factorization of n, the rank generating function in

(1) is

(1 + x + x2 + · · · + xt)
m∏
j=2

(1 + x + x2 + · · · + xvj)(2)

≺ (1 + x + x2 + · · · + xt)
m∏
j=2

(1 + x)vj = (1 + x + x2 + · · · + xt)(1 + x)Ω(n).

The largest coefficient of (1 + x)Ω(n) is
(

Ω(n)

�Ω(n)/2�
)
. Hence the largest coefficient in the right-

hand side of (2) is ≤ (t + 1)
(

Ω(n)

�Ω(n)/2�
)
, and this gives the upper bound for g(n).

Lemma 2. For any integer k ≥ 1, the “middle” binomial coefficient(
k

�k/2�
)

= Θ

(
2k√
k

)
.

Proof. We use Stirling’s formula and leave it as an exercise for the reader.

Our strategy is to use Lemmas 1 and 2 to obtain lower and upper bounds for
∑

n≤x g(n).

An extra ingredient is the observation (Hardy–Ramanujan theorem [3]) that

ω(n) ≈ Ω(n) ≈ Ω(n) ≈ log log x

for almost all integers n ≤ x. Note that the upper bounds in Lemmas 4 and 6 below are

much smaller than the main terms in Lemmas 5 and 7 with z = 2.

2. Proof of the lower bound. First, we need the following lemmas.



Lemma 3. For x ≥ 3 and any integer k ≥ 1,

∑
n≤x

ω(n)=k

1 ≤ C1
x(log log x + C2)

k−1

(k − 1)! log x

for some absolute constants C1, C2 > 0.

Proof. This is Hardy–Ramanujan inequality [3].2

Lemma 4. For x ≥ 3, ∑
n≤x

ω(n)>6 log log x

2ω(n) � x

log x
.

Proof. By Lemma 3 and Stirling’s formula,

∑
n≤x

ω(n)>6 log log x

2ω(n) =
∑

6 log log x<k≤ log x
log 2

∑
n≤x

ω(n)=k

2k

� ∑
k>6 log log x

2k
x(log log x + C2)

k−1

(k − 1)! log x
� x

log x

∑
k>6 log log x

(2(log log x + C2))
k

k!

� x

log x

∑
k>6 log log x

(2(log log x + C2))
k

(k/e)k
� x

log x

∑
k>6 log log x

(
2e

6

)k

� x

log x
,

as the geometric series converges.

Lemma 5. Let R > 0 be fixed. Then uniformly for any complex number z with |z| ≤ R,

∑
n≤x

zω(n) = F (z)x(log x)z−1 + OR(x(log x)Re z−2),

where

F (z) =
1

Γ(z)

∏
p

(
1 +

z

p− 1

)(
1 − 1

p

)z

(the product is over all primes) and Γ(z) is the gamma function.

Proof. See [4].

2Reference [3] can be found in Collected Papers of Srinivasa Ramanujan, G. H. Hardy, P. V. Sheshu
Aiyar, and B. W. Wilson, eds., Cambridge University Press, 1927, pp. 262–275.



We are now ready to prove the lower bound. By Lemmas 1 and 2,

∑
n≤x

g(n) ≥ ∑
n≤x

(
ω(n)

�ω(n)/2�
)
� ∑

n≤x

2ω(n)√
ω(n)

≥ 1√
6 log log x

∑
n≤x

ω(n)≤6 log log x

2ω(n).(3)

By Lemmas 4 and 5 with z = 2,

∑
n≤x

ω(n)≤6 log log x

2ω(n) =
∑
n≤x

2ω(n) − ∑
n≤x

ω(n)>6 log log x

2ω(n) = Cx log x + O(x)

for some constant C > 0. Putting this into (3), we have

∑
n≤x

g(n) � x log x√
log log x

,

which gives the lower bound in Theorem 1 after dividing both sides by x.

3. Proof of the upper bound. Again, we need some lemmas first.

Lemma 6. For x ≥ 3, ∑
n≤x

Ω(n)<log log x

g(n) � x(log x)log 2.

Proof. Suppose n = 2tn′, where 2t||n and n′ is odd. Note that Ω(n) = Ω(n′). Then by

Lemma 1,

∑
n≤x

Ω(n)<log log x

g(n) ≤ ∑
t≤ log x

log 2

∑
n′≤ x

2t

Ω(n′)<log log x

g(2tn′) ≤ ∑
t≤ log x

log 2

(t + 1)
∑

n′≤ x
2t

Ω(n′)<log log x

(
Ω(n′)

�Ω(n′)/2�
)

≤
∞∑
t=1

(t + 1)
x

2t
2log log x � x(log x)log 2.

Lemma 7. Let η > 0 be fixed. Then uniformly for |z| ≤ 3 − η,

∑
n≤x

zΩ(n) = G(z)x(log x)z−1 + Oη(x(log x)Re z−2),

where

G(z) =
21−z

Γ(z)

∏
p≥3

(
1 − z

p

)−1(
1 − 1

p

)z

.



Proof. This is Lemma 7.4 in [2]. Its proof is similar to that of Lemma 5.

Now we can embark on the proof of the upper bound. By Lemma 6 and a similar

argument,

∑
n≤x

g(n) =
∑
n≤x

Ω(n)<log log x

g(n) +
∑
n≤x

Ω(n)≥log log x

g(n)(4)

� x(log x)log 2 +
∑

t≤ log x
log 2

∑
n′≤ x

2t

n′odd,Ω(n′)≥log log x

g(2tn′).

By Lemmas 1 and 2, the sum in the right-hand side of (4) does not exceed

∑
t≤ log x

log 2

(t + 1)
∑

n′≤ x
2t

Ω(n′)≥log log x

(
Ω(n′)

�Ω(n′)/2�
)
� ∑

t≤ log x
log 2

(t + 1)
∑

n′≤ x
2t

2Ω(n′)
√

log log x
(5)

� x log x√
log log x

∞∑
t=1

t + 1

2t
� x log x√

log log x

by Lemma 7 with z = 2. Combining (4) and (5), we have

∑
n≤x

g(n) � x log x√
log log x

,

which gives the upper bound of Theorem 1 after dividing both sides by x.
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Editorial note. While the above solution was being edited, the author found reference

[1], in which it is asserted (p. 144) that

G(x) ∼ log x√
π log log x

, x → ∞.
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