## Another Figure Eight Volume Formula

Problem 06-001, by Jonathan Borwein ${ }^{1}$ (Dalhousie University, Halifax, NS, Canada) and Marc Chamberland ${ }^{2}$ (Grinnell College, Grinnell, IA).

There are various delightful and reasonably well-known formulas for $V_{8}$, the figure-eight knot complement volume in hyperbolic space - see [1]. A natural starting point is to take the volume as defined by the Clausen function:

$$
V_{8}:=\sum_{n=1}^{\infty} \frac{2 \sin (n \pi / 3)}{n^{2}}=2.0298832128193072500 \ldots
$$

We obtain the following Euler sum representation for which we request a self-contained proof.

$$
V_{8}=\frac{4}{\sqrt{3}} \sum_{k=0}^{\infty}\left(-\frac{1}{3}\right)^{k} \frac{1+\frac{1}{3}+\cdots+\frac{1}{2 k+1}}{2 k+1} .
$$

Status. The authors have a solution. Additional solutions are welcome.

## REFERENCE

[1] J. M. Borwein and D. Bailey, Mathematics by Experiment, A K Peters, Ltd., Natick, MA, 2004.

[^0]
[^0]:    ${ }^{1}$ Email: jborwein@cs.dal.ca. This author's research was supported by NSERC and by the Canada Research Chair Programme.
    ${ }^{2}$ Email: chamberl@math.grinnell.edu.

