A Subtle Integral?

Problem 06-002, by JONATHAN BORWEIN! (Dalhousie University, Halifax, NS, Canada) and MARC

CHAMBERLAND? (Grinnell College, Grinnell, TA).
The following evaluation is given in [1] and used in several interesting applications. Below we

present a self-contained version of the proof in [1] and we request a geometric proof.

THEOREM 1. )
~ / Hog f(z) , _ ™
0 T 3ab

for 0 < a <bif f(z)* — f(x)® = 2% — 2° and decreases.

Note that, as Figure 1 illustrates, f is uniquely determined by this prescription.

Figure 1: The graph of % — .

Proof. One first observes that it suffices to consider the case b := a+1. The key step is the following
identity asserting that for all @ > 0
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= —log(1l —x)

for0 <z <1/(a+1).
This is provided in Proposition 2 below.
First note that for all

(1) Gal(z) = Ga(f(2))

and that x% — 2° has its maximum at p := a/b = a/(a + 1). Thus, we have the following:
1. Go(z) = —log f(z) for 0 < = < p.
2. Go(x) = —logz for p <z < 1.

3. Using the p-function:
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4. Clearly

LGuw) ,  fllosla), 1
L d /ﬂ o = S log? ().

5. Moreover, integration by parts and (1) provide
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It remains to prove the following proposition.

PROPOSITION 2.

(2) Go(l—2):=3" ?EZZHL)) (x(1 ;!x)a)n — log(1 — )

n=1
for0<z<1/(14a),a>0.

Proof. First we show that the series converges uniformly in z over the desired interval. The ratio
test yields convergence if ax(1 — x)* < 1. It is easily shown that this function is maximized at
x =1/(a+ 1) with a corresponding value less than one. The binomial series implies
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our result is equivalent to proving
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for k =1,2,.... This is readily shown since
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Maple suggests the following in terms of hypergeometric functions.

CONJECTURE 3. Let a be a positive integer. Then
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EXAMPLE 4. The function f can be determined explicitly in some cases:
1. forb=2a: f(x) = (1 — 2%
2. forb=3a: f(z)=(—2%/2+ m)l/a;

3. for2b=3a: f(x) = (1/2 — 2%/2 + /=322 + 220 4 1/2)1/,

EXAMPLE 5. An interesting identity is produced if we let b approach a from above. First, let fq

b b

denote the unique decreasing function f which satisfies f(x)® — f(x)? = x® — a°. Then

)~ f(@) =20 — a?
d b d

fl@)* =
b
& /a—c ap(T)de = ; %xc(x)dc

log fap(z) ff x¢(x)de
logz ff fc‘j’b(m)dc'

For simplicity, let a = 1. Letting b — 1 gives
fra(@) ) = 2,

Since the function f(z) = z% is decreasing on (0,1/e) and increasing on (1/e,1) and it satisfies
f£(0) = f(1) = 1, this shows the function f ;(x) is well-defined and decreasing. It is straightforward

to show that
xlogx

W(xzlogz)’

where W is the Lambert W function defined implicitly through W(x)ew(x) = x. Using point 5 in
the proof of Theorem 1 yields

fia(z) = 0<z<1le,
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EXAMPLE 6. The authors of [1] noted that the case (a,b) = (1,2) is simple since fi2(x) =1—z,

leading to the well-known integral

_/1—log(1—x)dx_7r2
0 x 6

This example attempts to derive Theorem 1 as a special case of other integrals.



Let g(x) be a smooth, increasing function satisfying ¢(0) = 0, and let = = Z be the first positive
value for which g(x) = 1. Define the function f such that

(3) f(@) = (1= g(z))™9'@/9(=),
Then
— /Om IOgi(m)dx = ’ gg/((f)) log(1 — g(z))dx

This means that to prove Theorem 1 it is sufficient to prove that there exists a function g, as
described above, with # = 1 for each function f = f,;(x)?/2. The case f12 works with g(z) = z.
The case fq,2q works with g(z) = .

Note that the differential equation (3) can be solved in general to yield

g(x) =1 — dilog™* (/Ox _loiﬂy)dy) .

O
EXAMPLE 7. Finally, we note that this will all work if we take a unimodal (analytic) function H
with H(0) = H(1) =0 and solve H(z) = H(f(x)). If we can find coefficients such that

3 7H(m)" = —log(x
;An TH dz = —log(x),

then we should be able to evaluate the corresponding integrals in terms of 3~ An.

Status. This problem is open.
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