
A Subtle Integral?

Problem 06-002, by Jonathan Borwein
1 (Dalhousie University, Halifax, NS, Canada) and Marc

Chamberland
2 (Grinnell College, Grinnell, IA).

The following evaluation is given in [1] and used in several interesting applications. Below we

present a self-contained version of the proof in [1] and we request a geometric proof .

Theorem 1.

−
∫ 1

0

log f(x)

x
dx =

π2

3ab

for 0 < a < b if f(x)a − f(x)b = xa − xb and decreases.

Note that, as Figure 1 illustrates, f is uniquely determined by this prescription.

Figure 1: The graph of xa − xb.

Proof. One first observes that it suffices to consider the case b := a+1. The key step is the following

identity asserting that for all a > 0
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Ga(1 − x) :=
∞∑
n=1

Γ((a + 1)n)

Γ(an)

(x(1 − x)a)n

(na)n!
= − log(1 − x)

for 0 < x < 1/(a + 1).

This is provided in Proposition 2 below.

First note that for all x

Ga(x) = Ga(f(x))(1)

and that xa − xb has its maximum at μ := a/b = a/(a + 1). Thus, we have the following:

1. Ga(x) = − log f(x) for 0 < x < μ.

2. Ga(x) = − log x for μ < x < 1.

3. Using the β-function:

∫ 1

0

Ga(x)

x
dx =

∞∑
n=1

1

an2

∫ 1
0 (1 − x)nxna−1

β(an, n)
dx

=
∞∑
n=1

1

an2

β(an, n + 1)

β(an, n)
dx =

1

a(a + 1)

∞∑
n=1

1

n2
=

π2

6ab
.

4. Clearly ∫ 1

μ

Ga(x)

x
dx = −

∫ 1

μ

log(x)

x
dx =

1

2
log2(μ).

5. Moreover, integration by parts and (1) provide

−
∫ μ

0

log f(x)

x
dx =

∫ μ

0

Ga(x)

x
dx

= −
∫ 1

μ
Ga(x)

f ′(x)

f(x)
dx =

∫ 1

μ
log x

f ′(x)

f(x)
dx

= (log x log f(x))|1μ −
∫ 1

μ

log f(x)

x
dx

= log2(μ) −
∫ 1

μ

log f(x)

x
dx.

6. Hence, ∫ μ

0

− log f(x)

x
dx =

∫ μ

0

Ga(x)

x
dx =

π2

6ab
− 1

2
log2(μ),

and ∫ 1

μ

− log f(x)

x
dx =

π2

6ab
+

1

2
log2(μ).
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It remains to prove the following proposition.

Proposition 2.

Ga(1 − x) :=
∞∑
n=1

Γ(an + n)

Γ(an + 1)

(x(1 − x)a)n

n!
= − log(1 − x)(2)

for 0 < x < 1/(1 + a), a ≥ 0.

Proof. First we show that the series converges uniformly in x over the desired interval. The ratio
test yields convergence if ax(1 − x)a < 1. It is easily shown that this function is maximized at
x = 1/(a + 1) with a corresponding value less than one. The binomial series implies

∞∑
n=1

Γ(an + n)

Γ(an + 1)

(x(1 − x)a)n

n!
=

∞∑
n=1

Γ(an + n)

Γ(an + 1)

xn

n!

∞∑
m=0

(−1)mxm

m!
(an)(an− 1) · · · (an−m + 1)

=

∞∑
n=1

∞∑
m=0

(−1)m(an + n− 1)(an + n− 2) · · · (an + 1 −m)

n!m!
xm+n.

Since

− log(1 − x) =
∞∑
n=1

xn

n
,

our result is equivalent to proving

σk :=
k∑

n=1

(−1)k−n(an + n− 1)(an + n− 2) · · · (an + n− k + 1)

n!(k − n)!
=

1

k

for k = 1, 2, . . . . This is readily shown since

σk =
(−1)k

k!

k∑
n=1

(−1)n(kn)

(
dk−1

xk−1
xan+n−1

)∣∣∣∣∣
x=1

=
(−1)k

k!

dk−1

xk−1

(
(1 − xan+n−1)k − 1

x

)∣∣∣∣∣
x=1

=
(−1)k

k!
(−1)k(k − 1)! =

1

k
.

Maple suggests the following in terms of hypergeometric functions.

Conjecture 3. Let a be a positive integer. Then

Ga(1 − x) = x(1 − x)aa+2Fa+1

⎡
⎣ 1, 1, a+2

a+1 ,
a+3
a+1 , . . . ,

2a+1
a+1

a+1
a , a+2

a , . . . , 2a−1
a , 2, 2

;
(a + 1)a+1

aa
x(1 − x)a

⎤
⎦ .
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Example 4. The function f can be determined explicitly in some cases:

1. for b = 2a : f(x) = (1 − xa)1/a;

2. for b = 3a : f(x) = (−xa/2 +
√

4 − 3x2a)1/a;

3. for 2b = 3a : f(x) = (1/2 − xa/2 +
√−3x2a + 2xa + 1/2)1/a.

�

Example 5. An interesting identity is produced if we let b approach a from above. First, let fa,b

denote the unique decreasing function f which satisfies f(x)a − f(x)b = xa − xb. Then

f(x)a − f(x)b = xa − xb

⇔
∫ b

a

d

dc
f c
a,b(x)dc =

∫ b

a

d

dc
xc(x)dc

⇔ log fa,b(x)

log x
=

∫ b
a xc(x)dc∫ b
a f c

a,b(x)dc
.

For simplicity, let a = 1. Letting b → 1 gives

f1,1(x)f1,1(x) = xx.

Since the function f(x) = xx is decreasing on (0, 1/e) and increasing on (1/e, 1) and it satisfies

f(0) = f(1) = 1, this shows the function f1,1(x) is well-defined and decreasing. It is straightforward

to show that

f1,1(x) =
x log x

W (x log x)
, 0 ≤ x ≤ 1/e,

where W is the Lambert W function defined implicitly through W (x)eW (x) = x. Using point 5 in

the proof of Theorem 1 yields

−
∫ 1/e

0

log f1,1(x)

x
dx = −

∫ 1/e

0

W (x log x)

x
dx =

π2

6
− 1

2
.

�

Example 6. The authors of [1] noted that the case (a, b) = (1, 2) is simple since f1,2(x) = 1 − x,

leading to the well-known integral

−
∫ 1

0

− log(1 − x)

x
dx =

π2

6
.

This example attempts to derive Theorem 1 as a special case of other integrals.
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Let g(x) be a smooth, increasing function satisfying g(0) = 0, and let x = x̄ be the first positive

value for which g(x) = 1. Define the function f such that

f(x) := (1 − g(x))xg
′(x)/g(x).(3)

Then

−
∫ x̄

0

log f(x)

x
dx = −

∫ x̄

0

g′(x)

g(x)
log(1 − g(x))dx

= −
∫ x̄

0
log(1 − g(x))d(log g(x))

= −
∫ 1

0
log(1 − u)d(log u)

=
π2

6
.

This means that to prove Theorem 1 it is sufficient to prove that there exists a function g, as

described above, with x̄ = 1 for each function f = fa,b(x)ab/2. The case f1,2 works with g(x) = x.

The case fa,2a works with g(x) = xa.

Note that the differential equation (3) can be solved in general to yield

g(x) = 1 − dilog−1
(∫ x

0

− log f(y)

y
dy

)
.

�

Example 7. Finally, we note that this will all work if we take a unimodal (analytic) function H

with H(0) = H(1) = 0 and solve H(x) = H(f(x)). If we can find coefficients such that

∞∑
n=1

An
H(x)n∫ 1
0 H(x)n

dx = − log(x),

then we should be able to evaluate the corresponding integrals in terms of
∑

n>0 An.

Status. This problem is open.
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