A Subtle Integral?

Problem 06-002, by Jonathan Borwein ${ }^{1}$ (Dalhousie University, Halifax, NS, Canada) and Marc Chamberland ${ }^{2}$ (Grinnell College, Grinnell, IA).

The following evaluation is given in [1] and used in several interesting applications. Below we present a self-contained version of the proof in [1] and we request a geometric proof.

Theorem 1.

$$
-\int_{0}^{1} \frac{\log f(x)}{x} d x=\frac{\pi^{2}}{3 a b}
$$

for $0<a<b$ if $f(x)^{a}-f(x)^{b}=x^{a}-x^{b}$ and decreases.
Note that, as Figure 1 illustrates, f is uniquely determined by this prescription.

Figure 1: The graph of $x^{a}-x^{b}$.

Proof. One first observes that it suffices to consider the case $b:=a+1$. The key step is the following identity asserting that for all $a>0$

[^0]$$
G_{a}(1-x):=\sum_{n=1}^{\infty} \frac{\Gamma((a+1) n)}{\Gamma(a n)} \frac{\left(x(1-x)^{a}\right)^{n}}{(n a) n!}=-\log (1-x)
$$
for $0<x<1 /(a+1)$.
This is provided in Proposition 2 below.
First note that for all x
\[

$$
\begin{equation*}
G_{a}(x)=G_{a}(f(x)) \tag{1}
\end{equation*}
$$

\]

and that $x^{a}-x^{b}$ has its maximum at $\mu:=a / b=a /(a+1)$. Thus, we have the following:

1. $G_{a}(x)=-\log f(x)$ for $0<x<\mu$.
2. $G_{a}(x)=-\log x$ for $\mu<x<1$.
3. Using the β-function:

$$
\begin{aligned}
\int_{0}^{1} \frac{G_{a}(x)}{x} d x & =\sum_{n=1}^{\infty} \frac{1}{a n^{2}} \frac{\int_{0}^{1}(1-x)^{n} x^{n a-1}}{\beta(a n, n)} d x \\
& =\sum_{n=1}^{\infty} \frac{1}{a n^{2}} \frac{\beta(a n, n+1)}{\beta(a n, n)} d x=\frac{1}{a(a+1)} \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6 a b}
\end{aligned}
$$

4. Clearly

$$
\int_{\mu}^{1} \frac{G_{a}(x)}{x} d x=-\int_{\mu}^{1} \frac{\log (x)}{x} d x=\frac{1}{2} \log ^{2}(\mu)
$$

5. Moreover, integration by parts and (1) provide

$$
\begin{aligned}
-\int_{0}^{\mu} \frac{\log f(x)}{x} d x & =\int_{0}^{\mu} \frac{G_{a}(x)}{x} d x \\
& =-\int_{\mu}^{1} G_{a}(x) \frac{f^{\prime}(x)}{f(x)} d x=\int_{\mu}^{1} \log x \frac{f^{\prime}(x)}{f(x)} d x \\
& =\left.(\log x \log f(x))\right|_{\mu} ^{1}-\int_{\mu}^{1} \frac{\log f(x)}{x} d x \\
& =\log ^{2}(\mu)-\int_{\mu}^{1} \frac{\log f(x)}{x} d x
\end{aligned}
$$

6. Hence,

$$
\int_{0}^{\mu} \frac{-\log f(x)}{x} d x=\int_{0}^{\mu} \frac{G_{a}(x)}{x} d x=\frac{\pi^{2}}{6 a b}-\frac{1}{2} \log ^{2}(\mu)
$$

and

$$
\int_{\mu}^{1} \frac{-\log f(x)}{x} d x=\frac{\pi^{2}}{6 a b}+\frac{1}{2} \log ^{2}(\mu)
$$

It remains to prove the following proposition.

Proposition 2.

$$
\begin{equation*}
G_{a}(1-x):=\sum_{n=1}^{\infty} \frac{\Gamma(a n+n)}{\Gamma(a n+1)} \frac{\left(x(1-x)^{a}\right)^{n}}{n!}=-\log (1-x) \tag{2}
\end{equation*}
$$

for $0<x<1 /(1+a), a \geq 0$.
Proof. First we show that the series converges uniformly in x over the desired interval. The ratio test yields convergence if $a x(1-x)^{a}<1$. It is easily shown that this function is maximized at $x=1 /(a+1)$ with a corresponding value less than one. The binomial series implies

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\Gamma(a n+n)}{\Gamma(a n+1)} \frac{\left(x(1-x)^{a}\right)^{n}}{n!} & =\sum_{n=1}^{\infty} \frac{\Gamma(a n+n)}{\Gamma(a n+1)} \frac{x^{n}}{n!} \sum_{m=0}^{\infty} \frac{(-1)^{m} x^{m}}{m!}(a n)(a n-1) \cdots(a n-m+1) \\
& =\sum_{n=1}^{\infty} \sum_{m=0}^{\infty} \frac{(-1)^{m}(a n+n-1)(a n+n-2) \cdots(a n+1-m)}{n!m!} x^{m+n} .
\end{aligned}
$$

Since

$$
-\log (1-x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n}
$$

our result is equivalent to proving

$$
\sigma_{k}:=\sum_{n=1}^{k} \frac{(-1)^{k-n}(a n+n-1)(a n+n-2) \cdots(a n+n-k+1)}{n!(k-n)!}=\frac{1}{k}
$$

for $k=1,2, \ldots$ This is readily shown since

$$
\begin{aligned}
\sigma_{k} & =\left.\frac{(-1)^{k}}{k!} \sum_{n=1}^{k}(-1)^{n}\binom{k}{n}\left(\frac{d^{k-1}}{x^{k-1}} x^{a n+n-1}\right)\right|_{x=1} \\
& =\left.\frac{(-1)^{k}}{k!} \frac{d^{k-1}}{x^{k-1}}\left(\left(1-x^{a n+n-1}\right)^{k}-\frac{1}{x}\right)\right|_{x=1} \\
& =\frac{(-1)^{k}}{k!}(-1)^{k}(k-1)!=\frac{1}{k}
\end{aligned}
$$

Maple suggests the following in terms of hypergeometric functions.
Conjecture 3. Let a be a positive integer. Then

$$
G_{a}(1-x)=x(1-x)^{a}{ }_{a+2} F_{a+1}\left[\begin{array}{l}
1,1, \frac{a+2}{a+1}, \frac{a+3}{a+1}, \ldots, \frac{2 a+1}{a+1} \\
\frac{a+1}{a}, \frac{a+2}{a}, \ldots, \frac{(a+1)^{a+1}}{a}, 2,2
\end{array} \frac{\frac{2 a}{a^{a}} x(1-x)^{a}}{}\right] .
$$

Example 4. The function f can be determined explicitly in some cases:

1. for $b=2 a: f(x)=\left(1-x^{a}\right)^{1 / a}$;
2. for $b=3 a: f(x)=\left(-x^{a} / 2+\sqrt{4-3 x^{2 a}}\right)^{1 / a}$;
3. for $2 b=3 a: f(x)=\left(1 / 2-x^{a} / 2+\sqrt{-3 x^{2 a}+2 x^{a}+1} / 2\right)^{1 / a}$.

Example 5. An interesting identity is produced if we let b approach a from above. First, let $f_{a, b}$ denote the unique decreasing function f which satisfies $f(x)^{a}-f(x)^{b}=x^{a}-x^{b}$. Then

$$
\begin{aligned}
& f(x)^{a}-f(x)^{b}=x^{a}-x^{b} \\
\Leftrightarrow & \int_{a}^{b} \frac{d}{d c} f_{a, b}^{c}(x) d c=\int_{a}^{b} \frac{d}{d c} x^{c}(x) d c \\
\Leftrightarrow & \frac{\log f_{a, b}(x)}{\log x}=\frac{\int_{a}^{b} x^{c}(x) d c}{\int_{a}^{b} f_{a, b}^{c}(x) d c} .
\end{aligned}
$$

For simplicity, let $a=1$. Letting $b \rightarrow 1$ gives

$$
f_{1,1}(x)^{f_{1,1}(x)}=x^{x} .
$$

Since the function $f(x)=x^{x}$ is decreasing on $(0,1 / e)$ and increasing on $(1 / e, 1)$ and it satisfies $f(0)=f(1)=1$, this shows the function $f_{1,1}(x)$ is well-defined and decreasing. It is straightforward to show that

$$
f_{1,1}(x)=\frac{x \log x}{W(x \log x)}, \quad 0 \leq x \leq 1 / e
$$

where W is the Lambert W function defined implicitly through $W(x) e^{W(x)}=x$. Using point 5 in the proof of Theorem 1 yields

$$
-\int_{0}^{1 / e} \frac{\log f_{1,1}(x)}{x} d x=-\int_{0}^{1 / e} \frac{W(x \log x)}{x} d x=\frac{\pi^{2}}{6}-\frac{1}{2} .
$$

Example 6. The authors of [1] noted that the case $(a, b)=(1,2)$ is simple since $f_{1,2}(x)=1-x$, leading to the well-known integral

$$
-\int_{0}^{1} \frac{-\log (1-x)}{x} d x=\frac{\pi^{2}}{6} .
$$

This example attempts to derive Theorem 1 as a special case of other integrals.

Let $g(x)$ be a smooth, increasing function satisfying $g(0)=0$, and let $x=\bar{x}$ be the first positive value for which $g(x)=1$. Define the function f such that

$$
\begin{equation*}
f(x):=(1-g(x))^{x g^{\prime}(x) / g(x)} . \tag{3}
\end{equation*}
$$

Then

$$
\begin{aligned}
-\int_{0}^{\bar{x}} \frac{\log f(x)}{x} d x & =-\int_{0}^{\bar{x}} \frac{g^{\prime}(x)}{g(x)} \log (1-g(x)) d x \\
& =-\int_{0}^{\bar{x}} \log (1-g(x)) d(\log g(x)) \\
& =-\int_{0}^{1} \log (1-u) d(\log u) \\
& =\frac{\pi^{2}}{6} .
\end{aligned}
$$

This means that to prove Theorem 1 it is sufficient to prove that there exists a function g, as described above, with $\bar{x}=1$ for each function $f=f_{a, b}(x)^{a b / 2}$. The case $f_{1,2}$ works with $g(x)=x$. The case $f_{a, 2 a}$ works with $g(x)=x^{a}$.

Note that the differential equation (3) can be solved in general to yield

$$
g(x)=1-\operatorname{dilog}^{-1}\left(\int_{0}^{x} \frac{-\log f(y)}{y} d y\right) .
$$

Example 7. Finally, we note that this will all work if we take a unimodal (analytic) function H with $H(0)=H(1)=0$ and solve $H(x)=H(f(x))$. If we can find coefficients such that

$$
\sum_{n=1}^{\infty} A_{n} \frac{H(x)^{n}}{\int_{0}^{1} H(x)^{n}} d x=-\log (x),
$$

then we should be able to evaluate the corresponding integrals in terms of $\sum_{n>0} A_{n}$.

Status. This problem is open.

REFERENCE

[1] Alexander E. Holroyd, Thomas M. Liggett, and Dan Romik, Integrals, Partitions and Cellular Automata, Trans. Amer. Math. Soc. 356 (2004), 3349-3368. MSC (2000): Primary 26A06; Secondary 05A17, 60C05.

[^0]: ${ }^{1}$ Email: jborwein@cs.dal.ca. This author's research was supported by NSERC and by the Canada Research Chair Programme.
 ${ }^{2}$ Email: chamberl@math.grinnell.edu. This author's research supported by a grant from the Mellon Foundation.

