A Liouville-Type Property for Differential Inequalities

Problem 06-005, by Vicentुiu RăDulescu ${ }^{1}$ (Center of Nonlinear Analysis and Applications, University of Craiova, Craiova, Romania).

Consider real numbers p, q, r such that $q \geq 0$ and $r \geq 0$. Let f be a twice differentiable function in $(0, \infty)$ satisfying the differential inequality

$$
\left[x^{2} f^{\prime \prime}(x)+p x f^{\prime}(x)-q|f(x)|^{r-1} f(x)\right] \operatorname{sgn} f(x) \geq 0 \quad \text { for all } x>0
$$

(a) Prove that if $q>0$, then the following alternative holds: either f vanishes identically or there exists $A>0$ such that both f and f^{\prime} do not vanish in $[A,+\infty)$. Establish a corresponding result for $q=0$.
(b) Consider $q>0$ and let f be a nontrivial solution of the above differential inequality, such that f is positive and increasing in $[A, \infty)$. Prove that f is unbounded.
(c) Consider $q=0$ and let f be a nontrivial solution of the above differential inequality, such that f is positive and increasing in $[A, \infty)$. Prove that if $p \leq 1$, then f is unbounded. Is the condition $p \leq 1$ necessary?

Remark. The Liouville theorem asserts that if f is a bounded twice differentiable function defined on the whole Euclidean space and such that $\Delta f=0$, then f is constant. The result stated above establishes a Liouville-type property for differential inequalities. Indeed, if $q=0$, then the associated differential equation is

$$
f^{\prime \prime}(x)+p \frac{f^{\prime}(x)}{x}=0 \quad \text { for all } x \in(0, \infty)
$$

If $p=N-1$, the above expression is that of the Laplace operator for functions with radial symmetry in \mathbb{R}^{N}. In contrast, our result asserts that the differential inequality

$$
f^{\prime \prime}(x)+p \frac{f^{\prime}(x)}{x} \geq 0 \quad \text { for all } x \in(0, \infty)
$$

admits nonconstant bounded solutions for all $p>1$, but no bounded, positive and increasing (in a neighborhood of $+\infty$) solutions exist, provided $p \leq 1$. These extend some classical Liouville-type properties for subharmonic positive functions if $N=1$ or $N=2$.

Status. The proposer has a solution. Other solutions are welcome.

[^0]
[^0]: ${ }^{1}$ E-mail: vicentiu.radulescu@math.cnrs.fr. Web: http://www.inf.ucv.ro/~radulescu.

