
Sums of Reciprocals of Polygonal Numbers and a Theorem of Gauss

In Problem 07-003, Hongwei Chen requests a general formula in terms of the digamma

function for the sum of the series
∞∑
n=1

1

pr(n)
, r ≥ 5,

where pr(n) = n[(r − 2)n− (r − 4)]/2 is the nth r-sided polygonal number.

Solution by G. C. Greubel1, Newport News, VA. Substitution yields

Sr = b

∞∑
n=1

1

n(n− a)
,

where b = 2/(r− 2) and a = (r− 4)/(r− 2). This sum can be evaluated using the following

relation satisfied by the digamma function ψ(z) := Γ′(z)/Γ(z):

ψ(z + 1) + γ =
∞∑
n=1

z

n(n+ z)
, z �= −1,−2,−3, . . . .

Note that r ≥ 5 implies that a = (r − 4)/(r − 2) is not an integer. Hence setting z = −a
leads to

ψ(1 − a) + γ = −a
∞∑
n=1

1

n(n− a)
= (−a)Sr

b
;

thus ∞∑
n=1

1

pr(n)
= Sr = − 2

r − 4

[
γ + ψ

(
2

r − 2

)]

is the desired formula. Exact values of Sr for 3 ≤ r ≤ 8 are given in the table below.

Some Exact Values of Sr

r Sr

3 2
4 π2/6

5 3 log 3 − π
√

3/3
6 2 log 2

7 π
√

5
√

5 − 2
√

5/15 + (2/3) log 5

+(
√

5 + 1) log(
√

2
√

5 −√
5/2)/3

−(
√

5 − 1) log(
√

2
√

5 +
√

5/2)/3

8 π
√

3/12 + (3/4) log 3
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Editorial note. Gauss proved that ψ(x) can be expressed in terms of elementary functions

when x is rational [1, p. 13]. Specifically, for 0 < p < q,

ψ(p/q) = −γ − π

2
cot

πp

q
− log q + 2

�q/2�∑′

n=1

cos

(
2πnp

q

)
log

(
2 sin

πn

q

)
,

where
∑′ signifies that when q is even, the term q/2 is divided by 2. This gives rise to the

following explicit formula for Sr in terms of q = r − 2 ≥ 3:

Sr =
1

q − 2

⎛
⎝π cot

(
2π

q

)
+ 2 log q − 4

�q/2�∑′

n=1

cos

(
4πn

q

)
log

(
2 sin

(
πn

q

))⎞⎠ .
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