No Finite Order Smoothness of f Implies $1 / f$ Is Convex

In Problem 07-004, Slavko Simic raises the question of whether or not there is a finite integer n such that if f has smoothness order n, then $1 / f$ is convex for sufficiently large x.

Solution by Peter Vandendriessche ${ }^{1}$, Student, Ghent University, Belgium. We will show that the answer is negative: there is no finite n such that any function f of order n has $1 / f(x)$ convex for sufficiently large x. To prove this, we will construct for arbitrary n a function $\phi(x)$ of order n and a sequence of points tending to infinity such that $1 / \phi$ is not convex at these points.

It is a standard exercise to build a C^{∞} function $r: \mathbb{R} \rightarrow \mathbb{R}$ such that r is nonnegative, r is identically zero outside the interval $[1 / 3,2 / 3]$, and $\int_{0}^{1} r(t) d t=1$. Let $s_{0}(x)=\int_{-\infty}^{x} r(t) d t$ (equivalently the lower endpoint of the integral could be taken to be 0). Then s_{0} is increasing, $s_{0}(x)=0$ for $x \leq 1 / 3$, and $s_{0}(x)=1$ for $x \geq 2 / 3$. Define s_{n} inductively by $s_{n}(x)=$ $n \int_{-\infty}^{x} s_{n-1}(t) d t$. Then s_{n} is C^{∞}, nonnegative, with its first n derivatives all nonnegative, and it satisfies

$$
s_{n}(x)=0 \quad \text { for } \quad x<1 / 3 \quad \text { and } \quad(x-1)^{n}<s_{n}(x)<x^{n} \quad \text { for } \quad x \geq 1
$$

Note that $s_{n}(x)>(x-1)^{n}$ and $s_{n}^{\prime}(x)=n s_{n-1}(x)<n x^{n-1}$. Hence we can choose $k>1$ such that $s_{n}(k)>4 s_{n}^{\prime}(k)$. Choose a constant $C>1$ such that $2\left(C^{2}+k-1\right)>(C+k-1)^{2}$ (for example $C=k^{2}$) and define

$$
g(x)=e^{C x}+(k-1) e^{x}
$$

Note that $g(0)=k$ and our assumption on C guarantees that $2 g^{\prime \prime}(0)>\left(g^{\prime}(0)\right)^{2}$. Let $h(x)=s_{n}(g(x))$.

Clearly h is C^{∞} since g and s_{n} are. Also, since s_{n} and g have their first n derivatives nonnegative, so does h. Moreover, for $x \geq 0$ we have $g(x) \geq k>1$, so the derivatives of s_{n} at $g(x)$ are positive. Hence the first n derivatives of h are positive on $[0, \infty)$. Since $\lim _{x \rightarrow-\infty} g(x)=0$ and $s_{n}(x)=0$ for $x \leq 1 / 3$, there is a constant $R>0$ such that $h(x)=0$ for $x \leq-R$ (in fact $R=\log (3 k)$ suffices). Finally, we compute

$$
\begin{aligned}
h(0) h^{\prime \prime}(0) & =s_{n}(k)\left[s_{n}^{\prime}(k) g^{\prime \prime}(0)+s_{n}^{\prime \prime}(k)\left(g^{\prime}(0)\right)^{2}\right] \\
& >4 s_{n}^{\prime}(k)\left[s_{n}^{\prime}(k) g^{\prime \prime}(0)\right] \\
& >2\left(s_{n}^{\prime}(k) g^{\prime}(0)\right)^{2}=2\left(h^{\prime}(0)\right)^{2} .
\end{aligned}
$$

[^0]For our final function we take $\phi(x)=\sum_{j=0}^{\infty} c_{j} h(x-j R)$, where $c_{0}=1$ and the remaining constants c_{j} will be determined below. Note that for any fixed $x \geq 0$, only finitely many terms in this are nonzero. Hence ϕ represents a C^{∞} function regardless of how rapidly the c_{j} grow. Since $h(x)$ has its first n derivatives nonnegative and positive for $x \geq 0$, we see that ϕ has its first n derivatives positive on $[0, \infty)$; that is, it is of order n. Finally, consider $\phi(m R) \phi^{\prime \prime}(m R)-2\left(\phi^{\prime}(m R)\right)^{2}$ for some positive integer m. Terms in the sum for ϕ with $j>m$ contribute 0 to ϕ for all $x \leq m R$; hence this quantity depends only on c_{0}, \ldots, c_{m}. Further for c_{0}, \ldots, c_{m-1} fixed it is a quadratic polynomial in c_{m} with leading coefficient $h(0) h^{\prime \prime}(0)-2\left(h^{\prime}(0)\right)^{2}>0$. Hence, subsequently choosing c_{m} large enough (for $m=1,2, \ldots$) yields that

$$
\phi(m R) \phi^{\prime \prime}(m R)-2\left(\phi^{\prime}(m R)\right)^{2}>0
$$

for all positive integers m. This inequality implies that $1 / \phi(x)$ is concave at $x=m R$ for every positive integer m. Hence ϕ is our desired example.

[^0]: ${ }^{1}$ E-mail: peter.vandendriessche@gmail.com

