A Cosine Integral Series

Problem 08-001, by OVIDIU FURDUI¹ (The University of Toledo).

The **cosine integral** is defined by

$$\operatorname{Ci}(x) = -\int_{x}^{\infty} \frac{\cos t}{t} \, dt$$

Prove that if $0 < a \leq 2\pi$, then

$$\sum_{n=1}^{\infty} \frac{\operatorname{Ci}(an)}{n^2} = -\frac{\pi^2}{6} \ln \frac{2\pi}{a} + 2\pi^2 \ln A - \frac{\pi a}{2} + \frac{a^2}{8}$$
$$= \frac{\pi^2}{6} \ln a - \zeta'(2) + \frac{\pi^2 \gamma}{6} - \frac{\pi a}{2} + \frac{a^2}{8},$$

where

$$A = \exp\left[-\frac{\zeta'(2)}{2\pi^2} + \frac{\log(2\pi)}{12} + \frac{\gamma}{12}\right] = 1.28242712\dots$$

is the Glaisher–Kinkelin constant.

Remark. The problem is motivated by the following well-known series:

$$\sum_{n=1}^{\infty} \frac{\cos \beta n}{n^2} = \frac{\pi^2}{6} - \frac{\pi \beta}{2} + \frac{\beta^2}{4}, \qquad 0 \le \beta < 2\pi.$$

It is natural to ask whether a similar formula holds for the cosine integral function.

Editorial note. Some numerical errors in the initial posting of this problem have been corrected.

Status. The proposer and the editors have solutions. Additional solutions are welcome.

 $^{^{1}}E\text{-mail: Ovidiu.Furdui@utoledo.edu, ofurdui@yahoo.com}$