
A Natural Slow Series for e

Problem 08-002, by Jonathan Borwein1 (Dalhousie University, Halifax, NS, Canada).

1. Background. Typically numerical analysts are presented with slowly convergent

series and the challenge is to find a good acceleration [2]. However, the discovery of (BBP)

formulas for constants such as π makes it significant to ask: Are there natural slow series

for a given constant κ? The formula
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allows for individual hexadecimal bits to be computed [1, §3.4].

“Natural” and “slow” in this case require that the constant κ be expressible in the form
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where p, q are integer polynomials of some fixed degree and b ≥ 1 is an integer base. Many

other constants with such natural and slow formulas (for b ≥ 2) are listed in [1, §3.6].

A perusal of the literature uncovers very few series for e beyond Euler’s
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and variations on this theme. Clearly the terms grow exponentially, not polynomially. The

very efficacy of (3) has apparently limited the motivation to look for other series represen-

tations.

An unnatural but slow series for e [1, p. 328] is
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∞∑
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which comes by rewriting e = limn→∞(1 + 1/n)n as a series.

2. Questions. I pose the following questions.

1. Is there a slow natural series for e (even with b = 1)? I would conjecture not. Hence:

2. How much more natural a slow series for e can one find than the objectionable (4)?
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Status. This problem is open.


