Convex?

Problem 99-002, by Jonathan Borwein (CECM, Simon Fraser University, Burnaby, BC, Canada), Ian Affleck (CECM, Simon Fraser University), and Roland Girgensohn (GSF-Forshungszentrum, Institut für Biomathematik und Biometrie, Neuherberg, Germany).

For each $N \in \mathbb{N}$ define the function $f_{N}: \mathbb{R}_{+}^{N} \rightarrow \mathbb{R}_{+}$by

$$
f_{N}\left(x_{1}, \ldots, x_{N}\right):=\int_{0}^{1}\left(1-\prod_{i=1}^{N}\left(1-t^{x_{i}}\right)\right) \frac{d t}{t}
$$

For example,

$$
\begin{aligned}
f_{1}(x) & =\frac{1}{x} \\
f_{2}\left(x_{1}, x_{2}\right) & =\frac{1}{x_{1}}+\frac{1}{x_{2}}-\frac{1}{x_{1}+x_{2}}, \\
f_{3}\left(x_{1}, x_{2}, x_{3}\right) & =\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}-\frac{1}{x_{1}+x_{2}}-\frac{1}{x_{2}+x_{3}}-\frac{1}{x_{1}+x_{3}}+\frac{1}{x_{1}+x_{2}+x_{3}} .
\end{aligned}
$$

(a) Show that f_{N} is positive and decreasing for every $N \in \mathbb{N}$.
(b) Show that f_{N} is convex for every $N \in \mathbb{N}$ or find a counterexample.
(c) Show that f_{N} is logarithmically convex ${ }^{1}$ for every $N \in \mathbb{N}$ or find a counterexample.
(d) Show that $1 / f_{N}$ is concave for every $N \in \mathbb{N}$ or find a counterexample.

Remarks by the proposers.

1. A complete answer is known only for (a). Moreover, it is easy to note that a positive answer to (d) implies a positive answer to (c), which in turn implies a positive answer to (b).
2. It is worth noting that

$$
\lim _{x_{N} \rightarrow \infty} f_{N}\left(x_{1}, \ldots, x_{N-1}, x_{N}\right)=f_{N-1}\left(x_{1}, \ldots, x_{N-1}\right)
$$

Thus, convexity properties of f_{N} are inherited by f_{M} for $M<N$.

[^0]3. An explicit computation of the Hessian shows that $1 / f_{N}$ is concave for $N<5$. Indeed, each principal minor transpires to be a rational function with positive numerator and denominator. For $N=4$ this requires a very large symbolic computation. Hence any counterexample lives in five or more dimensions.
4. For general N, it can be shown via the Hessian that every f_{N} is convex in a neighbourhood of $(1,1, \ldots, 1)$. Moreover, differentiating the integral twice shows that f_{N} is decreasing and is convex with respect to each variable separately.
5. The function f_{N} arose - in highly disguised and more cumbersome form - as the objective function in a probabilistic network optimization problem. We consider a network objective function p_{N} given by
$$
p_{N}(\vec{q})=\sum_{\sigma \in S_{N}}\left(\prod_{i=1}^{N} \frac{q_{\sigma(i)}}{\sum_{j=i}^{N} q_{\sigma(j)}}\right)\left(\sum_{i=1}^{N} \frac{1}{\sum_{j=i}^{N} q_{\sigma(j)}}\right)
$$
summed over all N ! permutations; so a typical term is
$$
\left(\prod_{i=1}^{N} \frac{q_{i}}{\sum_{j=i}^{N} q_{j}}\right)\left(\sum_{i=1}^{N} \frac{1}{\sum_{j=i}^{N} q_{j}}\right) .
$$

For $N=3$ this explicitly is

$$
q_{1} q_{2} q_{3}\left(\frac{1}{q_{1}+q_{2}+q_{3}}\right)\left(\frac{1}{q_{2}+q_{3}}\right)\left(\frac{1}{q_{3}}\right)\left(\frac{1}{q_{1}+q_{2}+q_{3}}+\frac{1}{q_{2}+q_{3}}+\frac{1}{q_{3}}\right) .
$$

Then it transpires that $p_{N}=f_{N}$, as was originally discovered within Maple via computation of the partial fraction decomposition.
6. A generalization of these functions is given by the following procedure: For a given function $g: I \rightarrow \mathbb{R}$ (here $I=\mathbb{R}_{+}$or $I=\mathbb{R}$), define functions $f_{N}: I^{N} \rightarrow \mathbb{R}$ recursively by

$$
\begin{aligned}
f_{1}\left(x_{1}\right): & =g\left(x_{1}\right) \\
f_{N+1}\left(x_{1}, \ldots, x_{N-1}, x_{N}, x_{N+1}\right) & :=f_{N}\left(x_{1}, \ldots, x_{N-1}, x_{N}\right)+f_{N}\left(x_{1}, \ldots, x_{N-1}, x_{N+1}\right) \\
& -f_{N}\left(x_{1}, \ldots, x_{N-1}, x_{N}+x_{N+1}\right) .
\end{aligned}
$$

For $g(x)=1 / x$ on \mathbb{R}_{+}, we get the functions discussed above, but for any given g, the same questions can be asked.

Status. As the proposers note above, only part (a) is completely solved.

[^0]: ${ }^{1}$ That is, $\log f_{N}$ is convex.

