
Convex?

Problem 99-002, by Jonathan Borwein (CECM, Simon Fraser University, Burnaby, BC,

Canada), Ian Affleck (CECM, Simon Fraser University), and Roland Girgensohn

(GSF-Forshungszentrum, Institut für Biomathematik und Biometrie, Neuherberg, Germany).

For each N ∈ N define the function fN : RN+ → R+ by

fN(x1, . . . , xN) :=
∫ 1
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(a) Show that fN is positive and decreasing for every N ∈ N.

(b) Show that fN is convex for every N ∈ N or find a counterexample.

(c) Show that fN is logarithmically convex1 for every N ∈ N or find a counterexample.

(d) Show that 1/fN is concave for every N ∈ N or find a counterexample.

Remarks by the proposers.

1. A complete answer is known only for (a). Moreover, it is easy to note that a positive

answer to (d) implies a positive answer to (c), which in turn implies a positive answer

to (b).

2. It is worth noting that

lim
xN→∞

fN(x1, ..., xN−1, xN) = fN−1(x1, ..., xN−1).

Thus, convexity properties of fN are inherited by fM for M < N .

1That is, log fN is convex.



3. An explicit computation of the Hessian shows that 1/fN is concave for N < 5. Indeed,

each principal minor transpires to be a rational function with positive numerator and

denominator. For N = 4 this requires a very large symbolic computation. Hence any

counterexample lives in five or more dimensions.

4. For general N , it can be shown via the Hessian that every fN is convex in a neigh-

bourhood of (1, 1, . . . , 1). Moreover, differentiating the integral twice shows that fN is

decreasing and is convex with respect to each variable separately.

5. The function fN arose—in highly disguised and more cumbersome form—as the objec-

tive function in a probabilistic network optimization problem. We consider a network

objective function pN given by

pN(~q) =
∑
σ∈SN

(
N∏
i=1

qσ(i)∑N
j=i qσ(j)

)(
N∑
i=1

1∑N
j=i qσ(j)

)

summed over all N ! permutations; so a typical term is(
N∏
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j=i qj
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1∑N
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)
.

For N = 3 this explicitly is
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Then it transpires that pN = fN , as was originally discovered within Maple via com-

putation of the partial fraction decomposition.

6. A generalization of these functions is given by the following procedure: For a given

function g : I → R (here I = R+ or I = R), define functions fN : IN → R recursively

by

f1(x1) := g(x1),

fN+1(x1, . . . , xN−1, xN , xN+1) := fN(x1, . . . , xN−1, xN) + fN(x1, . . . , xN−1, xN+1)

− fN(x1, . . . , xN−1, xN + xN+1).

For g(x) = 1/x on R+, we get the functions discussed above, but for any given g, the

same questions can be asked.

Status. As the proposers note above, only part (a) is completely solved.


