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Solution of part (b) of Problem 99-002 by Ian Affleck (CECM, Simon Fraser University,

Burnaby, BC, V5A 1S6 Canada (iaffleck@cs.sfu.ca)).

Claim. fN is strictly convex for every N ∈ N.

Proof. We show that for all x, y ∈ R
N
+ ,

fN(x) + fN(y)

2
> fN

(
x+ y

2

)
.(1)

First note that since fN(z) = cfN(cz) for any c ∈ R+ and z ∈ R
N
+ , it suffices to show (1) for

x, y ∈ DN , where DN is defined as

DN :=

{
z ∈ R

N
+ :

N∑
i=1

zi ≤ 1

}
.

Our approach is to express fN(z) for z ∈ DN as the expected time of a particular random

variable concerning a coupon collecting problem.

One common form of the classic coupon collector problem sees an individual obtaining at

most one of N types of coupons with each purchase made. Coupon types C1, C2, . . . , CN are

distributed among the purchased items with respective proportions z1, z2, . . . , zN (so that

the likelihood of obtaining no coupon with any given purchase is 1− z1 − z2 − · · · − zN). Of

interest to us is the random variable t(z) representing the minimum number of purchases

required to obtain at least one coupon of each type, given z = (z1, z2, . . . , zN) ∈ DN . For

ease of notation, we denote by [n] the set {1, 2, . . . , n}.
Lemma 1. Let z ∈ DN and let k ∈ [N − 1]. The probability that Ck+1 has been collected

before the time that the last of C1, . . . , Ck is collected is

∑
∅�=S⊆[k]

(−1)|S|+1 zk+1

zk+1 +
∑

i∈S zi
.

Proof of Lemma 1. For S ⊆ [k], let XS be the the event that Ck+1 is collected before the

first of Ci, i ∈ S, has been collected. Then

P (XS) =
zk+1

zk+1 +
∑

i∈S zi
.(2)

Note Ck+1 is collected before the last of C1, . . . , Ck if and only if X{i} occurs, for some i ∈ [k].

The probability of this union of events is

∑
1≤i≤k

P (X{i}) − ∑
1≤i<j≤k

P (X{i} ∩X{j}) + · · · + (−1)k+1P (X{1} ∩X{2} ∩ · · · ∩X{k}) ,



by the principle of inclusion and exclusion. Since P (XS ∩XT ) = P (XS∪T ), we may rewrite

this as ∑
∅�=S⊆[k]

(−1)|S|+1P (XS) .

By substituting (2), we establish Lemma 1.

The following lemma can be derived from a result in [2], but we include it for complete-

ness.

Lemma 2. Let z ∈ DN . Then

E[t(z)] =
∑

∅�=S⊆[N ]

(−1)|S|+1 1∑
i∈S zi

= fN(z1, . . . , zN) .

Proof of Lemma 2. The equality on the right (implicit in the statement of the problem) can

be seen by expanding the product in fN and integrating term by term. To prove the left

equality, we proceed as follows. Let τk be the random variable representing the time at which

the last of C1, . . . , Ck is collected (with τ0 = 0), and define δk = τk − τk−1 for k ∈ [N ], so

that

E[t(z)] = E[τN ] =
N∑
i=1

E[δi] .

We show by induction on m that

m∑
i=1

E[δi] =
∑

∅�=S⊆[m]

(−1)|S|+1 1∑
i∈S zi

,(3)

for m ∈ [N ]. When m = 1, (3) reduces to the fact that the expectation of the geometric

random variable δ1 (time before C1 is collected) is 1
z1
. Assume (3) holds for m = k ∈ [N−1].

Under this induction hypothesis, it suffices to show that

E[δk+1] =
∑

S ⊆ [k + 1]
k + 1 ∈ S

(−1)|S|+1 1∑
i∈S zi

.

Let φk be the event that Ck+1 has been collected at time τk. Note E[δk+1|φk] = 0 and

E[δk+1|φ̄k] =
1

zk+1
, while P (φk) was found in Lemma 1. Then

E[δk+1] = E[δk+1 | φk] P (φk) + E[δk+1 | φ̄k] P (φ̄k)

= 0 +
1

zk+1


1− ∑

∅�=S∈[k]

(−1)|S|+1 zk+1

zk+1 +
∑

i∈S zi






=
1

zk+1

+
∑

∅�=S∈[k]

(−1)|S|
1

zk+1 +
∑

i∈S zi

=
∑

k+1∈S⊆[k+1]

(−1)|S|+1 1∑
i∈S zi

,

completing the induction step, and Lemma 2 is established.

Proof of Claim (continued). To prove (1), it suffices by Lemma 2 to show that for any two

distinct vectors x, y ∈ DN , we have

E[t(x)] + E[t(y)]

2
> E

[
t
(
x+ y

2

)]
.(4)

To this end, we define a sequence {z(n)}∞n=1 of coupon distribution schemes, derived from x

and y as follows: according to z(n), the coupon distribution during all of the first n purchases

is constant, being either x or y with equal likelihood, while the coupon distribution on

all subsequent purchases is x+y
2
. As each z(n) describes a manner by which coupons are

distributed, it induces a random variable t(z(n)) similar to that of a vector in DN . We note

that

lim
n→∞E[t(z(n))] =

E[t(x)] + E[t(y)]

2
and

E[t(z(1))] = E
[
t
(
x+ y

2

)]
.

We aim to show that E[t(z(n))] < E[t(z(n+1))] for all n ≥ 1.

Fix n ≥ 1, and for ease of notation, let z = z(n) and z′ = z(n+1). For positive integer k

and i ∈ [N ], let mi(k) be the probability that coupon type Ci has not been obtained after k

purchases using z, and define m′
i(k) similarly for z′. Then

mi(n) = m′
i(n) =

(1− xi)
n + (1− yi)

n

2
.

Meanwhile,

m′
i(n+ 1) =

1

2
((1− xi)

n+1 + (1− yi)
n+1) and

mi(n+ 1) =
1

4
((1− xi)

n+1 + (1− xi)
n(1− yi) + (1− yi)

n(1− xi) + (1− yi)
n+1).

Thus,

4(m′
i(n+ 1)−mi(n+ 1))

= (1− xi)
n+1 − (1− xi)

n(1− yi)− (1− yi)
n(1− xi) + (1− yi)

n+1

= ((1− xi)
n − (1− yi)

n)((1− xi)− (1− yi)) ≥ 0,(5)



with strict inequality if and only if xi �= yi.

Let ρi be the probability that coupon type Ci is collected for the first time on the (n+1)th

purchase using z, and define ρ′i similarly for z′. Then by (5),

ρi = mi(n)−mi(n+ 1) ≥ m′
i(n)−m′

i(n+ 1) = ρ′i .(6)

That is, for i ∈ [N ], coupon type Ci is at least as likely to be collected on the (n + 1)th

purchase using z as opposed to using z′. We claim that this fact implies E[t(z)] < E[t(z′)].
Let C = {C1, . . . , CN}. For each W ⊆ C and k ≥ 1, define PW (k) (resp., P ′

W (k)) to

be the probability that W is the set of all coupon types which have been collected after

k purchases using z (resp., z′), and define EW to be the expected number of purchases

required to collect all coupons in C − W when coupons are distributed according to x+y
2
.

In the following expansion, we have interpreted W to be the set of coupon types that have

been collected by the end of the nth purchase:

E[t(z)] =
n∑

j=1

j(PC(j)− PC(j − 1))

+ (1− PC(n))


(n+ 1) +

∑
W⊆C

PW (n)


 ∑

Ci �∈W
ρiEW∪{Ci} +


1− ∑

Ci �∈W
ρi


EW




 .

Similarly,

E[t(z′)] =
n∑

j=1

j(P ′
C(j)− P ′

C(j − 1))

+ (1− P ′
C(n))


n+ 1 +

∑
W⊆C

P ′
W (n)


 ∑

Ci �∈W
ρ′iEW∪{Ci} +


1− ∑

Ci �∈W
ρ′i


EW




 .

Because z and z′ are identical for the first n purchases, we have PC(j) = P ′
C(j), for all

j ∈ [n], and PW (n) = P ′
W (n) for every W ⊆ C. Thus

E[t(z)]− E[t(z′)] = (1− PC(n))


 ∑

W⊆C

PW (n)


 ∑

Ci �∈W
(ρi − ρ′i)(EW∪{Ci} − EW )




 .

From (6), we have that ρi − ρ′i ≥ 0, for all i. Since x and y are distinct, this inequality is

strict for some i. Furthermore, whenever Ci �∈ W we have EW > EW∪{Ci}. Thus

E[t(z)]− E[t(z′)] < 0.

As this inequality holds for all n ≥ 1, we have

E
[
t
(
x+ y

2

)]
= E[t(z(1))] < lim

n→∞E[t(z(n))] =
E[t(x)] + E[t(y)]

2
,

for all distinct x, y ∈ DN , as desired.



Remarks on the Solution. Our study of the coupon collector problem originated

as an investigation of expected time to broadcast in unreliable arborescence networks using

randomized strategies. (An unreliable network is one in which each edge fails to transmit

the broadcast message with fixed probability on each attempt, and the success or failure of

each attempt is unknown to the caller.) A randomized broadcast strategy (RBS) assigns

to each parent vertex a probability distribution on its out-neighbor set, by which it chooses

a neighbor to call at each time step after receiving the message. Verification of the above

claim implies that each unreliable star network has a unique optimal RBS, when optimality

is measured with respect to expected time to broadcast from the center. In [1], we extend

the above proof to show that the optimal RBS is unique for every unreliable arborescence.

A more direct analytic proof of the strict convexity of fN(x) has recently been proposed

by Borwein and Hijab (see [2]). They observe that fN(x) can be expressed as an expectation

E
[
max

(
X1

x1

,
X2

x2

, ... ,
XN

xN

)]
,

where the Xi are independent positive-valued random variables satisfying

P[Xi > t] = e−t ,

for i ∈ [N ], and obtain the desired result using a Laplace transform. This method of proof

in fact shows concavity of 1/fN , part (d) of the submitted problem.

The author wishes to thank Luis Goddyn and Jonathan Borwein for their helpful com-

ments, suggestions and discussions.
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