
Train Routing Algorithms: Concepts, Design Choices, and Practical

Considerations�

Luzi Andereggy Stephan Eidenbenzz { Martin Gantenbeiny Christoph Stammy

David Scot Taylorx { Birgitta Webery Peter Widmayery

Abstract

Routing cars of trains for a given schedule is a prob-
lem that has been studied for a long time. The min-
imum number of cars to run a schedule can be found
eÆciently by means of 
ow algorithms. Realistic ob-
jectives are more complex, with many cost components
such as shunting or coupling/decoupling of trains, and
also with a variety of constraints such as requirements
for regular maintenance. These versions of the prob-
lem tend to be NP-hard, and thus the standard pow-
erful tools (e.g. branch-and-bound, branch-and-cut, La-
grangian relaxation, gradient descent) have been used.
These methods may guarantee good solutions, but not
quick runtimes. In practice, two major railway com-
panies, German Railway and Swiss Federal Railway, do
not use either approach. Instead, their schedulers create
solutions manually, modifying solutions from the previ-
ous year.

In this paper, we advocate an intermediate, semi-
automatic approach. In reality, not all constraints or
objectives can be easily formulated mathematically. To
allow for interactive human modi�cation of solutions,
the system must work rapidly, allowing a user to save
desired subsolutions, and modify (or just start over
on) the rest. After careful examination to �nd which
constraints and costs we can easily integrate into a 
ow
model approach, we heuristically modify network 
ow
based solutions to account for remaining constraints.
We present experimental results from this approach on
real data from the German Railway and Swiss Federal
Railway.

�Work partially supported by the Swiss Federal OÆce for
Education and Science under the Human Potential Programme
of the European Union under contact no. HPRN-CT-1999-00104
(AMORE)

yInstitute of Theoretical Computer Science, ETH Zentrum,
Z�urich, Switzerland flastnameg@inf.ethz.ch

zLos Alamos National Laboratory, eidenben@lanl.gov
LA-UR:02-7640

xDepartment of Computer Science, San Jose State University,
taylor@cs.sjsu.edu

{Based on work performed while at ETH Zurich

1 Introduction

Train companies face many algorithmically challenging
questions. One of the most important problems in terms
of economic importance is to minimize the number of
trains needed to ful�ll a given schedule of train routes.
This problem, known as the 
eet size, rolling stock

rostering, or vehicle routing problem, was modeled as a
minimum cost circulation problem long ago by Dantzig
and Fulkerson [3], for a survey see Desrosiers et al [4].
In practice, the problem is still solved by hand, because
this 
ow model ignores many real-world constraints and
objectives such as shunting, coupling/decoupling, and
maintenance constraints.

In this paper, we report on realistic rolling stock ros-
tering, as it occurs for large train operators such as Ger-
man Railway (DB) and Swiss Federal Railway (SBB).
We consider the standard minimum cost 
ow model,
but we more carefully address what di�erent objectives
and constraints it can represent. We focus on �nding
eÆcient solutions, because in practical situations, all
constraints are not explicitly formulated, and all costs
are not well de�ned. Realistic problem instances are so
complex that it would be useful to have a system which
allows people to interact with proposed solutions, un-
til a satisfactory solution is obtained. For instance, the
train companies prefer \robust" solutions, which avoid
propagating delays. Unfortunately, they cannot charac-
terize the rules for robustness. With manual solutions,
this robustness comes from a combination of intuition
by the planners, and from the fact that tested, robust
portions of previous solutions are reused.

Following a brief introduction to the problem (Sec-
tions 1.1, 1.2) is a description of the standard and the
network 
ow approach (Sections 1.3, 1.4, 1.5). Next,
Section 2 contains more extensive discussion of real-life
problem variants. We consider additional requirements
which can be modeled by 
ow in Section 3: these in-
clude more complex costs, di�erent train types, and
various station constraints. In Section 4, we address
maintenance, which does not seem to easily �t into the
standard 
ow model, and thus requires additional e�ort.
We describe our heuristic modi�cations to the standard




ow model to satisfy maintenance constraints. In Sec-
tion 5, we describe our experiments and results using
data provided by the German Railway (DB) and the
Swiss Federal Railway (SBB).

1.1 Terminology We begin with some basic de�ni-
tions. For our purposes, the smallest interesting entity
of a train is a train unit: one or more railcars or lo-
comotives which are linked together. Train units are
routed and maintained as an entity, never to be broken
into smaller units in the problems considered here. De-
pending on di�erent kinds of railcars and locomotives
and on the formation of the single cars, there can be
di�erent train unit types. A train consists of a number
of train units coupled together. The length of a train is
the number of train units which form the train. (The
physical length of the train, a distance measurement, is
also implicitly used in some of the train scheduling con-
straints.) Some of the train units can move in only one
direction, whereas others can move in both directions.
These bidirectional units are called push-pull trains.

A route is a path between two given end stations.
Each route has a distance and a travel time associated
with it. For our purposes we do not need to consider
details such as intermediate stations, number of tracks
between the two stations etc. A ride is a train unit on a
certain route with distinct departure and arrival time.
We distinguish between two types of rides: scheduled
rides correspond to all the entries from a timetable,
unscheduled rides are additional rides needed to operate
the rail network. Unscheduled rides are further divided
into three types: empty, piggy-back and maintenance

rides. Empty and piggy-back rides are used to transfer
train units without passengers from one station to
another. Piggy-back rides refer to train units coupled
to scheduled rides, while empty rides (also known as
deadheading rides) refer to units riding alone to new
locations. Maintenance is performed at maintenance
stations, which may or may not be the end station
of a route. Maintenance rides are used to shuttle the
trains to and from maintenance stations, and can also
represent maintenance itself. Usually piggy-back rides
are cheaper than empty rides because of the costs saved
for the crew and track reservation. A rotation is the
order of rides performed by one train unit or a number of
train units coupled together. A rotation has a duration

and length. If a rotation takes one week, the train unit
serving this rotation repeats the same rides every week.
The length of a rotation is the total distance a train
unit travels during a single cycle through the rotation.
A circulation is the set of rotations for all train units.

1.2 Problem description The goal of rolling stock

rostering is to determine a circulation for given sched-
uled rides. The input to the simplest version of this
problem (rolling stock rostering with one train type and
without maintenance) includes the scheduled rides with
passenger demand, just one train unit type, and some
cost functions for using speci�c train units of that type.
The output assigns tasks to speci�c train units. This
also de�nes how many train units are used for each ride,
which empty and piggy-back rides are used to move
train units between stations, and which cars will per-
form each of these tasks.

A general goal is to minimize the cost of the
assignment. Of course, realistic costs are determined by
a long list of factors, including the total number of train
units needed, how much mileage they cover, crews used,
number of couplings and decouplings, etc. The number
of train units used is clearly one of the most important
costs, and has been the primary focus of much previous
work.

Besides these basic requirements, there are numer-
ous additional requirements and constraints that may
di�er for each train company. We present some of these
requirements for the speci�c cases of the German Rail-
way (DB) and Swiss Federal Railway (SBB). Depending
on the constraints considered, there are many versions
of the problem, and these have rarely been treated in the
literature. One of the most important constraints has to
do with train maintenance: trains need regular inspec-
tions, maintenance work, and cleaning, all of which must
be done at special facilities. Any solution that ignores
maintenance requirements is useless to train companies.

1.3 Flow model Even the simplest version of the
rolling stock rostering problem is usually broken into
two separate phases: �rst, one solves the train length

problem, in which the lengths of the trains on each route
(including empty and piggy-back rides) are determined.
The main goal here is to ensure that there are always
enough train units available at each station for all
scheduled rides departing from that station. In this
phase rides are only assigned to train unit types, but
not to speci�c train units.

In the second phase, the train assignment problem is
solved: speci�c train units are assigned to the scheduled
rides. For each train unit a rotation is determined.

A standard (and longtime) approach (see [2, 11]) for
modeling the train length problem phase is to use a 
ow
model: a periodic directed graph is used to model the
scheduled rides. Each vertex in the graph represents
one station at a speci�c time, that is, an hs; ti pair
with station s at time t. A ride is represented by an
edge, which leaves a vertex representing its departure



4 4 4

55

6 6 6

2

3

2

1

3
2

Time 7 9 11 13 15 17 19 21 23 1 3

Station A

Station B

Station C

Figure 1: Example periodic graph.

2

2

Departure event

Arrival event

Scheduled rides with

demand of train units

Potential empty rides; a weight

indicates a track limitation

Waiting edges with the maximal

number of cars in a station

Overnight waiting edge

Potential overnight empty ride

Departure Arrival Demand of
Station time Station time train units
A 7:00 B 10:00 2
C 8:00 B 10:00 3
B 12:00 C 14:00 2
B 15:00 A 18:00 2
C 17:00 B 19:00 3
A 22:00 C 3:00 1

Table 1: Example timetable.

(station and time), and enters a vertex representing
its arrival (station and time). Each edge has a lower
and upper bound for the required 
ow where the
number of 
ow units corresponds to the number of train
units. The lower bound corresponds to the passenger
demand for the associated ride, while the upper bound
corresponds to track/station limitations and thus a
maximum number of allowed train units. Moreover,
edges are added to the graph to represent trains waiting
in a station after their arrival and potential empty rides.

Example. A small one day schedule for a single train
unit type is given in Table 1. We have three stations A,
B, and C and seven scheduled rides. One row represents
one ride, with departure, arrival station and times,
and certain demands of train units. The corresponding
graph is given in Figure 1. The number of train units
that can wait within a station is �ve for station A, six
for station B, and four train units can wait in station
C. (To simplify the diagram, we have not put capacities
on the overnight edges.)

Generally, this graph model is used to solve the
train length problem, with the 
ow on each edge rep-

resenting the number of train units. The periodicity of
our graph model implies that some solutions can be re-
peated each period: for these solutions, each period will
begin with the same number of train units in a station
as the period before. Train assignment is done by break-
ing the train length solution into cycles, and assigning
physical train units to each cycle. A cycle corresponds
to a rotation for one speci�c train unit. These rotations
may overlap each other, or contain an edge more than
once when multiple train units are required for a route.
For these \long train" edges, it is convenient to think of
multiple edges, each of 
ow one, to distinguish among
them (i.e. the �rst and second units of a train can be
considered as separate rides, although they travel to-
gether).

As a result of this approach we get a one period

solution. A one period solution does not imply that
each of the rotations needs one period to complete, they
can take much longer (they do need at least one period).
Instead, it means that once any train unit consecutively
performs two rides, then in every period those two rides
will both be consecutively serviced by one train unit.
If a rotation needs x periods to complete, it will use x

di�erent train units to serve the rides of its cycle within
each period.

Example. Figure 2 shows a possible solution for the
small example from Figure 1. The circulation consist
of two rotations with three train units per rotation.
Another representation of this circulation is pictured in
Figure 3. Every rotation of one train unit is represented
by one horizontal line. This representation is often used
by train companies.



7 9 11 13 15 17 21 23 1 3

Station A

Station B

Station C

3

3 3

3
3

3

Time 19

�rst rotation

second rotation

empty rides / waiting edges

Figure 2: Two rotations.

���
���
���

���
���
���

�����
�����
�����
�����

7 9 11 13 15 17 21 23 1 3Time 19

A B B C C B A

A B B C C B A

A B B C C B A

C B B A A C

C B B A A C

C B B A A C

BA

A B

A B

AA
���
���
���
���

����������

�����
�����
�����
�����

����������������

��������
��������
��������
��������

����������

����
����
����
����

����
����
����
����

scheduled ride from Station A to Station B

empty ride from Station A to Station B

waiting in Station A

piggy-back ride from Station A to Station B

Figure 3: Interval representation of circulation.

1.4 Model limitations The 
ow model has several
strong limitations, even for solving simple instances
with no maintenance constraints. In theory it is pos-
sible for one period solutions to cost more than solu-
tions that are allowed to span more than one period
(see also [6, 7] for further description of these problems
and the ones below). DB and SBB prefer one period so-
lutions for their conceptual simplicity, so will only con-
sider one period solutions as feasible. This simpli�es
our approach considerably: it allows us to ignore unex-
pected (and often overlooked) complexities inherent in
other solutions.

In the past, purely theoretical approaches have over-
looked other model limitations as well. For instance,

depending on what types of empty ride edges have been
used in the graph, past work has sometimes overlooked
optimal solutions, while at other times it has allowed
for solutions which break station capacity constraints.
(Unless intermediate route stations are given, it is im-
possible to check station capacity constraints anyway.)
Here, we do not claim to �nd optimal solutions: with
realistic problems, such solutions seem well beyond our
current abilities.

Finally, the train length and assignment problems
should both be solved at the same time. Because
the train length problem does not assign tasks to spe-
ci�c train units, many speci�c constraints (e.g. coupling
times, maintenance) cannot be considered. Thus, a so-
lution to the train length problem may not have any
feasible train assignment solution, if all constraints are
followed. For some constraints (such as coupling), we
can the train length problem instances by adding cou-
pling times to the routes, to ensure that coupling will
not a�ect the feasibility of a train assignment. Unfor-
tunately, this padding time may sometimes eliminate
the optimal problem solution. Starting with Section 2,
we describe some of these real world constraints and our
approach which �nds feasible solutions on realistic data.

1.5 Previous work The 
ow approach to this prob-
lem is intuitive, and mentioned as early as 1954 [3]; it
is standard enough to be included in textbooks [1] and
surveys [4], yet it is also still being studied in more re-
cent articles [2, 11]. As for more recent work it is shown
in [6] that the rolling stock rostering problem is NP-
hard to approximate arbitrarily closely; this result even
holds for problems with highly simpli�ed maintenance
constraints, with all train lengths set to 1, and the costs
equal to the number of trains needed. In [7], a variant
of a proof from [9] shows that the train length problem
is also NP-hard, if arbitrary �xed costs are allowed. In
this case (the train length problem), maintenance is not
even a consideration, but instead more complex costs
are allowed. In general, every realistic problem vari-
ant is diÆcult, but here we concentrate more on getting
good solutions to real problem instances.

Periodicity of schedules has been studied for the
simple case of minimizing the number of trains needed
to implement the given schedule. Polynomial time
solutions for the periodic case are known that follow
very di�erent approaches. Orlin [10] uses a periodic
version of Dilworth's Theorem [5], whereas Gertsbakh
and Gurevich [8] use the concept of a \de�cit function".
Later, Sera�ni and Ukovich [12] propose a very general
framework for periodic scheduling problems which also
implies this result.



2 Real-life issues

This section further describes some of the real world
problems which arise in rostering. As in Section 1.2,
the primary data for all problems is a set of scheduled
train routes, and the output must specify a set of trains
and how they will be used to ful�ll the input schedule.
However, unless the basic model is extended to include
additional costs and constraints, the solutions produced
will be of little value to railway companies like DB and
SBB.

Clearly, some of these changes require additional in-
put: speci�c knowledge for each route (such as length,
traveling time, whether or not the track will accom-
modate electric locomotives) is important. For every
type of train unit, maintenance requirements and in-
frastructures, cost per kilometer to run the train unit,
cost to maintain a train unit, crew costs, and cou-
pling/decoupling costs must also be considered. In the
following subsections, we describe some of the most im-
portant problem variants, constraints, and costs which
arose in discussions with DB and SBB.

2.1 Requirements Here, we list two types of re-
quirements which the standard model currently ignores.
In Section 3 we show how to account for these addi-
tional requirements.

� Non-identical train unit types: Each scheduled ride
must be assigned to one train unit type out of a
prede�ned set of possibilities. Typically, each ride
can be performed by three or four alternative train
unit types, each of which may have a suitability
ranking. Any solution must assign a suitable train
unit type to each scheduled ride. It is, however,
possible to append train units as piggy-back units
to a scheduled ride, even if the piggy-back units are
of not suitable types for the scheduled ride, as long
as there are enough suitable units in the scheduled
ride.

Train unit types model the di�erent parts of a train:
if, for example, a certain train route goes from
station A to B starting at time t, and the train
consists of a locomotive, three �rst-class cars, six
second-class cars, and a dining car, we would model
this as four di�erent rides. Each has the same
station endpoints and times, but one ride must be
satis�ed by a locomotive train unit, while another
requires �rst class cars, etc. In our graph model,
this will result in a multi-edge with multiplicity
four.

� Minimum station turn around times: If a train
reaches its arrival station, it might have to be de-
composed into its train units by decoupling and

shunting; the train units are subsequently com-
bined into new trains to carry out their next rides.
The time needed to complete this procedure de-
pends on the train unit types involved, on whether
only coupling or decoupling or both are needed, and
on the station topology.

The time needed for this procedure is called sta-
tion turn around time. These times are given as
part of the input for each possible combination of
coupling mode, train unit type, and station. There-
fore, a solution of the train length problem may not
have any feasible train assignment solution, since
the turn around time at some station is violated.
Any feasible solution must ful�ll these timing re-
quirements.

2.2 Maintenance requirements A feasible roster-
ing solution must satisfy all maintenance requirements.
The input information concerning maintenance consists
of three parts:

� Maintenance types: Each train unit must have
certain types of maintenance. The most common
types are: refuel for diesel locomotives (T), interior
cleaning (I+E), exterior cleaning (ARA), scheduled
repairs (INST), and technical check-ups (V+A). If
a train has to wait at a station for a longer period
of time, in certain stations it is possible to park
the train on a separate track. This is called siding
(ABST), and will also be treated as maintenance.

� Maintenance interval: Each maintenance type
must be performed on a train unit at certain inter-
vals. These intervals can depend on elapsed time
(since last maintenance), distance driven (since last
maintenance), or on both. For example, interior
cleaning should be done every 24 hours, exterior
cleaning should be done before the train has run
for 1,000 kilometers, and a technical check-up needs
to be performed, whenever one week has passed or
10,000 kilometers have been driven (whichever oc-
curs �rst). This last requirement is both time- and
distance-dependent. Of course, it is always possi-
ble to perform maintenance before the interval is
reached, but this increases costs.

� Maintenance stations: Maintenance stations are
scattered rather scarcely all over the network. For
each maintenance station we are given information
of which types of maintenance can be performed
for each train unit type, and hours of operation for
the station. Moreover, capacity constraints are also
given as part of the input and it is speci�ed how
long each maintenance type takes.



2.3 Costs Typically, railway companies have many
\hazy" objectives concerning the rotations. For exam-
ple, the train unit movement per period (measured in
moving time and distance) should be more or less equal
for all train units. This objective ensures an almost
equal aging for all train units, but it does not imply
that all rotations should be of the same period length.
Another possible objective is the minimization of the
number of di�erent stations during one period or in one
rotation. This may increase the chance that a speci�c
train unit will move along the same line during one pe-
riod and thus increase the regularity of a rotation.

More precisely, the overall objective of our problem
is to minimize costs. Although many properties such
as the ones above are desired, their costs are not well
de�ned by the railway companies. Here, we consider
costs that are easier to de�ne and thus can be given as
part of the input. We distinguish between three cost
types (this list is not exhaustive):

1. Fixed costs: Fixed costs occur for each train unit
that is used at some stage in the rostering. Fixed
costs include all costs that are incurred by simply
owning the train unit without using it at all; these
costs include several items, but depreciation is the
most important one. Traditionally, �xed costs are
considered to be the most crucial. The quality of
a train rostering solution is very often measured
simply by the number of train units used. Train
units are very expensive: aside from the capital
investment to buy the equipment, even unused
trains require thousands of dollars per year to
maintain.

2. Costs for each ride: Each ride, whether scheduled,
empty or piggy-back, incurs a cost that is composed
of di�erent cost factors. The most important cost
factors are the following:

� Cost of energy: Each train unit type has a
certain cost associated to it for each kilometer
that it runs and for each ton that is trans-
ported on this kilometer. Cost examples in-
clude power, fuel usage, or wear and tear of
rails.

� Cost per time: Each train unit type has a
certain cost associated to it for each hour
that it runs. Cost examples include heating,
lighting.

These cost factors are di�erent for each type of
ride, i.e., di�erent for scheduled, empty, or piggy-
back rides, with the empty rides being cheaper
than scheduled, but more expensive than piggy-
back rides. Moreover, these costs can occur either

for each train unit in a train or for a train as a
whole. For example, cost per time must be paid
for a train as a whole to reserve rails for the train's
passage.

3. Maintenance costs: Whenever maintenance is car-
ried out on a train unit, costs are incurred. These
costs depend on the maintenance type and on the
maintenance station that performs the work.

3 Flow model modi�cations

Because of the numerous additional requirements that
a real-life problem poses as explained in the previous
section, our straightforward two-phase approach of �rst
solving the train length problem by building a graph
and �nding a minimum cost 
ow on it and then solving
the train assignment problem by extracting rotations
from the minimum cost 
ow may no longer be a viable
approach. In this section, we consider some of the
additional requirements which can be treated by this
approach by making modi�cations to the graph built
for the train length problem.

3.1 Multiple train unit types We integrate the
concept of having several train unit types by �rst deter-
mining an order in which the di�erent train unit types
will be processed. We schedule the non-locomotive train
unit types before mixed and locomotive train units;
within these categories, inexpensive train unit types are
scheduled �rst.

So, given the train unit ordering, we simply iterate
the standard 
ow model on the cheapest unit �rst, for
all routes where that car type can be used. Once we
have found a solution for a certain train unit we then
iterate on the remaining routes.

Many complications are hidden here: for instance,
if the available number of a certain type of train unit is
limited, perhaps there are not enough to cover all routes
for which that train unit is useful. This will leave more
routes for the next iteration, where a \better" unit may
be used to satisfy the demand. Also, the number of non-
locomotive train units on a route may determine the
type and number of locomotives needed to pull those
cars. Finally, in order to o�er inexpensive piggy-back
opportunities for a train unit type, edges from previous
iterations, with appropriate weights, will be included.

3.2 Minimum station turn around times Station
turn around times can be integrated into the 
ow model
as follows: after having obtained a valid rostering from
our approach, we check in the solution to see whenever
minimum station turn around times have been violated.
If they are violated, we arti�cially delay all incoming



edges by the amount of time needed to carry out a
coupling operation and thus create a new vertex; this
has the e�ect that the train unit on this incoming edge
then has a higher probability of linking to another ride
without violating minimum station turn around times.
This yields a new graph, and we iterate this procedure
until no violations occur.

The number of iterations is bounded in our in-
stances because the minimum station turn around time
is always less than four couplings. Thus, each vertex in
the underlying graph will be delayed at most four times.
In our experiments, to save calculation time, we added
the maximum needed delay to vertices with violations
after the �rst iteration.

We do not simply add the delay to all stations, as at
some stations, the delay is quite high (�1 hour), and to
do so would require extra train units in the rostering.
An other important point is that station turn around
times vary not only by station but also by type (coupling
or decoupling).

3.3 Additional costs We can model �xed costs of
owning each train unit by simply making one unit of 
ow
on the overnight-edges cost as much as the �xed costs
for one train unit. Similarly, we can compute the costs
for each each ride by computing and combining the costs
per distance, time and ton kilometer for each train unit
type. However, the costs that are incurred only for a
train as whole (e.g. coupling/decoupling costs) and not
for each train unit type are harder to model exactly.
As an approximation, we allocate these train costs to
a speci�c unit of the train, if possible the locomotive.
This can lead to extra costs in our calculations if two
or more locomotives pull a train, but these should be
small compared to others.

4 Maintenance

Compliance with maintenance requirements is crucial to
making routing solutions feasible: while ignoring certain
real-world costs may lead to suboptimal solutions, solu-
tions which ignore maintenance are invalid altogether.
Maintenance is ignored by the standard minimum cost

ow algorithm, yet it is of topmost concern to the rail-
way companies, greatly a�ecting the cost and practical-
ity of scheduling trains. Lack of maintenance in solu-
tions produced by automated systems may be the pri-
mary reason that railway companies still schedule trains
manually.

Maintenance is performed at special maintenance-
capable stations, with limited hours of operation and
bounded work capacity. Even in practice, maintenance
is not always scheduled in advance: it is not practical to
expect future plans to be followed precisely inde�nitely.

Unexpected changes such as extra trains scheduled for
special events, or train break-downs, happen frequently
enough that trains occasionally get shu�ed to cover for
each other. It is more pragmatic to only schedule more
frequent maintenance in advance.

Maintenance frequency may not match that of a
rotation very well: it may be that a natural schedule
for a train covers the same routes each week, for 5,000
total km, yet the train might need to be maintained
once every 10,000 km. Although it seems clear that the
train should just be maintained once every 2 weeks, this
may disrupt the scheduled 1 week rotation. This adds
to the complexity of scheduling maintenance.

When considering maintenance, the straight-
forward two-phase approach seems to break down.
While many of the additional requirements can be ac-
counted for by making modi�cations to the underlying
graph in the network 
ow phase (as discussed in Sec-
tion 3), the crucial maintenance requirements seem eva-
sive to integration into the two-phase approach. We
thus introduce a third phase into our approach that
we call maintenance insertion. There are several ap-
proaches possible as to how to integrate maintenance in
this third phase: some iterate over all three phases of
our solution approach, others simply add a single phase
after the two other phases have been completed. We
propose three di�erent approaches :

1. If the maintenance requirements are simple to per-
form (e.g. cleaning) | they are available in most
stations and do not take long | it is possible to
schedule them locally within a station. This ap-
proach and its weaknesses are presented in Sec-
tion 4.1.

2. Train companies do not normally consider main-
tenance to be part of the rotation itself. Instead,
they keep an over-stock of approximately 10% of
trains, and try to keep these units maintained, and
available within maintenance stations. They are
swapped into a rotation as an unmaintained train
is swapped out of it. This gives them 
exibility to
not fully schedule all maintenance far in advance.
This approach is described in Section 4.2.

3. The last approach combines the �rst two ap-
proaches and is described in Section 4.3.

Approaches 1 and 2 work iteratively. It is necessary
to recalculate the minimum cost 
ow circulation and
extract new cycles after �xing certain maintenance
constraints. The complexity of the problem instance
will determine which approach is most useful.



4.1 Locally added maintenance If the underlying
network structure is rather simple, i.e., if it has abun-
dant, well dispersed maintenance stations, we can hope
for the best: the rotations obtained from the standard
two-phase approach may already ful�ll all or most main-
tenance requirements as the train units sometimes re-
main at maintenance stations for long enough time pe-
riods to perform required maintenance. In this case,
a promising approach for integrating maintenance is to
add \maintenance edges" (described below) into our our
network 
ow graph. Using this approach, we repeat
the two-phase solution on the new modi�ed underlying
graph until all needed maintenance is performed.

This \local �x" approach iterates the following basic
steps:

1. Solve the train length problem using network 
ow.

2. Compute a train assignment to the train length
problem.

3. Test the solution for maintenance requirement vio-
lations.

4. Introduce new maintenance edges into the graph.

Once the solution no longer violates any mainte-
nance requirements, the algorithm stops. All steps ex-
cept for the introduction of maintenance edges work ex-
actly as in the basic approach described earlier. We
introduce new maintenance edges into the graph as fol-
lows. Each rotation R consists of events v1; : : : ; vjRj.
Each event vi is a pair hs; ti, where s is a station and
t is a time. Considering the rotation from v1, we de-
termine at each event whether or not any maintenance
requirements of a particular train unit have been vio-
lated. If there is a violation at event vi, we consider if
any of the following hold for vi�k and k:

1. Maintenance performed at the station of event vi�k

will prevent any maintenance violations at event vi.

2. The station of event vi�k is capable of performing
the maintenance required by event vi. Besides
being an appropriate maintenance station, it must
also have enough capacity at the given time.

3. The train spends enough at the station of event
vi�k to perform the required maintenance.

If all these points can be answered aÆrmatively, we
schedule maintenance at event vi�k. We can use the
�rst point above to decide whether it makes sense to
check back further (that is, check higher k values)
in the rotation. If it no longer makes sense to go
back in the rotation, we �nd the maintenance station
closest to event vi�1. This station has to have the

capacity to carry out the required maintenance and
should be reachable from event vi�1 without violating
the maintenance requirement. Given such a station,
we introduce a new event v0i�1

at this station and
connect vi�1 to it by an empty-ride edge (thus implicitly
determining its time); we then introduce a new event
v00i�1

at the maintenance station at a later point in time
such that an edge from v0i�1

to v00i�1
allows enough time

to carry out the necessary maintenance. Finally, we
connect event v00i�1

to the next possible event on the
original rotation by a third edge. If we cannot �nd a
legally reachable maintenance station from event vi�1,
we consider vi�2 (or vi�k as needed).

To encourage the minimum cost 
ow algorithm to
use this maintenance detour through events v0i�1

and
v00i�1

into the solution in the next iteration, all three
edges have cost zero, and the minimum 
ow requirement
for edge (v0i�1

; v00i�1
) is set to one.

Example. An example of this approach is illustrated in
Figure 4. In Station B at 12:00 the maintenance require-

Time

Station A

Station B

Station C

Maintenance

7 9 11 13 15 17 19 21 23 1 3

Maintenance parameters

beyond critical thresholdselected rotation

new edge with capacity = 1

empty ride to/from maintenance station

vi

v
0

i�1 v
00

i�1

vi�1

Figure 4: Locally added maintenance.

ments are not ful�lled. New edges to a maintenance
station are introduced to the graph and an additional
edge within a maintenance station has capacity one. Af-
ter the maintenance is done, edges to every station |
representing possible empty rides | are introduced as
well.

This local �x approach seems to work quite well
for problem instances in which maintenance really is
not the central issue, with simple to follow maintenance



constraints. In these cases, minor detours will allow
all needed maintenance. Unfortunately, maintenance
requirements are rarely so simple.

4.2 Extra trains for maintenance In this ap-
proach, we try to model a strategy of the railway com-
panies: always try to keep a fully serviced spare train
unit (of any type needed) available at each maintenance
station. These trains will be swapped into rotations as
needed to eliminate maintenance violations. The �rst
and foremost goal is to use as few spare trains as possi-
ble. This approach is non-iterative and consists of solv-
ing the train length and assignment problems without
maintenance, and then adding extra trains into the as-
signment to alleviate maintenance requirements.

To add these extra trains, we proceed as follows: For
a selected rotation R we order all vertices in the graph
according to their time, which results in an ordered
list R of vertices v1; : : : ; vjRj. We then process the
resulting list R vertex by vertex, where we check at
vertex vi, whether the maintenance requirements of
the train units going through vertex vi have reached
some critical threshold with respect to maintenance
types. If this is not the case, we proceed to the next
vertex; if it is the case, we replace the current train
unit by a replacement unit, which was swapped out
of a rotation when it needed service sometime in the
past. The train unit still requiring service is moved
to a maintenance station and serviced. After that, it
will be routed to some other station, where it becomes
the replacement for another unit requiring service. If
no replacement unit can be routed to a rotation when
needed, an additional \service train" is added to the
system, increasing the total number of extra units used.

After processing all vertices all vertices from list R,
we link each train at the end of the period to a vertex
vj at the beginning of the period such that the resulting
maintenance parameters will satisfy the maintenance
requirements of vertex vj . This will result in feasible
rotations that satisfy all maintenance requirements.

In this approach, we keep the original cycles intact,
which mimics a strategy of DB and SBB. It can be
thought of as solving the rostering problem with virtual
trains, needing no maintenance. The number of extra
trains needed to maintain this illusion increases with
the diÆculty of the maintenance constraints. While
conceptually simple, examination of implementation
details shows hidden complexities, especially concerning
how to best link the start and end of the rotations.
Simply linking the �rst and last stations in a cycle would
not allow to \start" the cycle with a maintained train,
and some care must be taken to keep feasible solutions
while not requiring an extra maintenance.

4.3 Iteratively �x rotations with maintenance

Our last approach to maintenance combines some as-
pects of both preceding strategies. As in Section 4.1,
we try to �x violations by adding maintenance into cy-
cles for free when possible, and by routing trains to
maintenance stations when it is not. Once maintenance
is completed on the train, we move this train back into
the same cycle, allowing the cycle to continue later on
with a freshly maintained train as in Section 4.2. This
altered cycle will not service every route on the origi-
nal cycle, but the routes it does cover will be serviced
with maintained trains. These routes are removed from
the schedule, and solutions for the remaining routes, ex-
cluded from the altered cycles, will be iteratively found
by starting over.

Example. An example of this is shown in Figure 5.
In Station B a maintenance edge is added after the

Time

Station A

Station B

Station C

7 9 11 13 15 17 19 21 23 1 3

remaining edges

new maintenance edge

rotation with maintencane

Maintenance parameters

beyond critical threshold

�rst rotation

Figure 5: Fixing maintenance constraints.

maintenance parameter got beyond a critical threshold.
The rotation with maintenance meets the old rotation
again in Station B at a later point in time. The
remaining edges will be covered in one of the next
iterations. In practice the number of iterations should
be small.

Of the three approaches, the �nal one worked best
overall for our test data. This approach evolved from the
�rst two: during implementation it became clear that
the �rst two approaches would not work well on complex
real-world data. Therefore, only the third approach was
implemented and used for all experiments.

5 Experiments

Here we discuss our test data and experiments. The
major goal of these experiments was to carefully revise



our model, test its practicality, and to ensure that
important details were not being glazed over as they
had been in previous, purely theoretical, treatments.

The overall goal in each experiment is the same:
the minimization of the total costs. However, some of
the test data given to us by the railway companies was
chosen to test the minimization of train units, while
other test sets were designed to test whether or not our
maintenance strategies give feasible solutions.

Although the overall goal is the minimization of the
total costs, our results summarized in Table 2 do not
show these cost values. The railway companies have not
disclosed their precise current solutions or their costs.
Without the real values a comparison is not possible.
We do compare the number of train units, which is the
most important cost factor.

5.1 Test sets We used �ve di�erent test sets in our
experiments, four of them were supplied to us by DB
and one by SBB. To simplify further discussions on these
test sets we enumerate them:

� BR112: This set contains only locomotives of the
same train unit type, called Baureihe 112. A train
unit in this test set is a single locomotive. The
given schedule is a subset of the DB timetable with
2098 routes (each speci�ed only by its end stations).
While this test set is quite large, the maintenance
requirements are not overwhelming, and the main
objective is to minimize the number of train units.

� BR612: This test set only contains diesel railcars
(self-locomotive cars) of the same train unit type
Baureihe 612. Thus, the train unit consists of
just one railcar. The given schedule is a subset
of the regional timetable Saarland-Westpfalz in
Germany with 332 routes. The diÆculty here
lies in the frequent refueling requirements of these
locomotives, as there are only a small number of
fueling stations, and they have limited capacity.

� BR411: This test set consists of two di�erent Inter-
city Express (ICE) train units. The train unit type
Baureihe 411 is a composition of seven cars includ-
ing a locomotive. The train unit type Baureihe 415
is a similar but shorter composition. Two train
units of the same type can be coupled together,
but a substitution of a train unit of one type by
the other is rarely possible. Both train types use
the same maintenance infrastructures with capac-
ity and time limitations. Testing maintenance fea-
sibility is a main goal. The schedule is a subset of
the international timetable between Germany and
its neighbor countries with 496 rides. 330 of these

rides must be conducted with train units of type
Baureihe 411.

� BR218: Our last DB test consists of all locomo-
tives of the train unit type Baureihe 218 and their
associated passenger cars in the region Schleswig-
Holstein. The given schedule contains 7666 routes
of up to 32 di�erent train unit types. Some of these
32 train unit types are only used as possible sub-
stitutions in case of car capacity problems. Here,
we must schedule both train cars and locomotives,
adding to the complexity of the problem. Addition-
ally, the number of some train unit types are lim-
ited, and we must �nd appropriate substitutions in
case of car capacity problems.

� BR1210: Our last test set consists of all self-
locomotive train compositions of the Zurich S-
Bahn. A train unit in this test is a composition
of several cars with locomotive. S-Bahn trains are
either one or two coupled push-pull train units.
The given subset of the SBB schedule contains 6151
routes. This test set is the only one which supplies
information about the type of turn within a station.
Because all train units are composed the same way,
the additional information allows the computation
of the �rst class car positions within each station.
Besides minimizing the number of train units used,
the position of the �rst class cars within the station
should be the same from day to day on any route.
Maintenance information was not supplied.

5.2 Results The most interesting results of these test
scenarios are the rolling stock rosters, but they are much
too large to present here. We show a cutout of one of
the rosters, and some values to summarize how eÆcient
our results were.

Our software is built of 20,000 lines of C++ code.
Besides standard libraries we only used LEDA (Library
of EÆcient Data types and Algorithms)1. We have run
our tests on a PC laptop with a 1.6 GHz Mobile Pentium
4 processor, 512 MByte of RAM under Windows XP.

In Figure 6 you see a typical cutout of a graphical
representation of a rolling stock roster. Several di�erent
depictions are meaningful; this format matches the one
used by SBB. On the x-axis we see the time between
4:00 of the third day in period until 3:00 of the next
day. Each line represents one train unit over one period
and the bars on that line show the planned rides of the
train unit. On the second line, for example, we see four

1LEDA has been developed at the Max-Planck-Insitut f�ur In-
formatik, Saarbr�ucken (http://www.mpi-sb.mpg.de/LEDA/) and
is available at http://www.algorithmic-solutions.com/.



Figure 6: Graphical representation of a rolling stock roster.

consecutive productive rides starting and ending in SSH
followed by an empty movement to SKL where the train
unit is maintained. Several maintenance operations (T,
ARA, I+E, V+A) are planned between 17:30 and 20:45.
Finally, the train unit makes an empty movement to
the next station where it is needed. Above the bars we
see train identi�cation numbers, labeling which train
units belong to the same train. For example, the train
3305 starts at 6:00 in SSH and ends at 8:30 in FF.
This train consists of four separate train units. The
dashed horizontal lines separate train units of the same
rotation. For example, the �rst three train units are in
the same rotation of length three.

In Table 2 we summarize our results of the �ve test
sets. As would be expected, ignoring maintenance con-
straints allows the automatic construction of a solution
at least as good as the ones in use. Unfortunately, our
results with maintenance are not as good. In the two
test sets with the most maintenance constraints, BR612
and BR411, our results with maintenance su�er the
most, 33% worse than the current solution of the rail-
way companies. Especially in the case of BR612, this is
not surprising: refueling is needed so frequently that it
must be incorporated very eÆciently into the schedule.
Pulling a train out of rotation and traveling 50 km extra
for each 10,000 km maintenance is very di�erent than
doing it for a 500 km tank of fuel.

These results indicate that our approach to mainte-
nance is still not sophisticated enough. The extra train
units for our system come from several sources. First,
the rides removed from a rotation very often contain
multi-edges. Each removed ride may then require an ad-
ditional train unit. Next, the current approach does not
check whether remaining routes can be combined with
existing rotations. The integration of these two points
into the existing Iteratively �x rotations with mainte-

nance approach is part of future work.
This approach to maintenance attempts to fully au-

tomate the rostering process. Our program would need
additional modi�cations to be used in an interactive,
semi-automated way. This would be a natural \�rst
step" to take before trying to use it in a fully automatic
way to plan all rostering decisions, and our approach
has been to make the program fast to make this inter-
action possible. Using the 
ow model, it is also simple
to \freeze" parts of the solution and change others.

6 Conclusion

We have presented an extended and therefore much
more practical version of the standard 
eet size problem.
We have shown that many extensions of the rolling
stock rostering problem can be well integrated into
the standard 
ow model approach. For a constraint
which we cannot easily integrate (maintenance), we



Number of train units
Test set Graph: jV j, jEj in real

solution
our solution
without
maintenance

our solution
with
maintenance

Runtime
in seconds
maintenance
version

BR112 12521, 90050 66 52 55 35

BR612 1025, 165266 9 9 11 14

BR411 411: 3602, 1066810 28 27 35 20
415: 1124, 214768 8 8 10 6
Total 36 35 45 26

BR218 C1: 3005, 11982 6 7 6
C2: 3655, 14075 9 10 29
C3: 6891, 40459 10 10 10
C4: 304, 623 1 1 0
C5: 6273, 22383 68 6 8 8
C6: 3013, 12703 5 6 6
C7: 7048, 30324 11 12 8
C8: 574, 1351 2 3 2
C9: 8508, 62435

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

16 19 27

218: 22628, 368991 72 57 84 81
Total 140 123 160 177

BR1210 36895, 319211 120 79 79

Table 2: Table of results.

have developed some heuristics to modify the standard

ow approach.

We have implemented our three phase approach and
tested it with real data from the German Railway and
Swiss Federal Railway. Although our solutions are worse
than the rostering solutions already used by those rail-
way companies, our experiments are encouraging. It
would be overly optimistic to assume that the �rst at-
tempt of a fully automated system would improve upon
long tested and used solutions. Each year, many person-
years of work are used to re�ne rostering solutions for
minor scheduling changes from the previous year. Over
the years, it may well be that minor scheduling changes
have also been made to accommodate the rostering so-
lutions. Although �nding improved fully automated so-
lutions is an ultimate goal, a more immediate goal was
to build a system which could be used interactively, by
scheduling personnel, to help in their jobs. Given an
automated solution, the scheduling personnel can ex-
tract partial solutions which they believe look promis-
ing, and then run the system iteratively on the parts
which looked worse. Given our quick runtime, on mod-
est equipment, this interactivity is quite feasible.

7 Acknowledgements

We would like to thank German Railway and Swiss
Federal Railway for sharing their rostering problems
and data. Special thanks go to Frank Wagner, Martin
Neuser, Jean-Claude Strueby, and Daniel H�urlimann for

their support.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network


ows - theory, algorithms, and applications. Prentice
Hall, 1993.

[2] P. Brucker, J.L. Hurink, and T. Rolfes. Routing of
railway carriages: A case study. In Memorandum

No. 1498, Fac. of Mathematical Sciences. University
of Twente, 1999.

[3] G. Dantzig and D. Fulkerson. Minimizing the number
of tankers to meet a �xed schedule. Naval Research

Logistics Quarterly, 1:217{222, 1954.
[4] J. Desrosiers, Y. Dumas, M.M. Solomon, and

F. Soumis. Time constrained routing and scheduling.
In Handbooks in OR & MS, volume 8, pages 35{139.
Elsevier, 1995.

[5] R. Dilworth. A decomposition theorem for partially
ordered sets. Annals of Mathematics, 51:161{166,
1950.

[6] T. Erlebach, M. Gantenbein, D. H�urlimann, G. Neyer,
A. Pagourtzis, P. Penna, K. Schlude, K. Steinh�ofel,
D. Taylor, and P. Widmayer. On the complexity of
train assignment problems. In ISAAC: International

Symposium on Algorithms and Computation, LNCS.
Springer-Verlag, 2001.

[7] M. Gantenbein. The train length problem. Diploma
Thesis, Department of Computer Science, ETH Z�urich,
2001.

[8] I. Gerthsbak and Y. Gurevich. Constructing an opti-



mal 
eet for a transportation schedule. Transportation
Science, 11:20{36, 1977.

[9] S. Hochbaum and A. Segev. Analysis of a 
ow problem
with �xed charges. Networks, 19:291{312, 1989.

[10] J.B. Orlin. Minimizing the number of vehicles to meet
a �xed periodic schedule: an application of periodic
posets. Operations Research, 30:760{776, 1982.

[11] A. Schrijver. Minimum circulation of railway stock.
CWI Quarterly, 6(3):205{217, 1993.

[12] P. Sera�ni and W. Ukovich. A mathematical model
for periodic scheduling problems. SIAM J. Discrete

Mathematics, 2(4):550{581, 1989.


