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Abstract
We study the minimum enclosing ball (MEB) problem for
sets of points or balls in high dimensions. Using techniques
of second-order cone programming and “core-sets”, we have
developed (1+ε)-approximation algorithms that perform well
in practice, especially for very high dimensions, in addition
to having provable guarantees. We prove the existence of
core-sets of size O(1/ε) , improving the previous bound of
O(1/ε2) , and we study empirically how the core-set size
grows with dimension. We show that our algorithm, which
is simple to implement, results in fast computation of nearly
optimal solutions for point sets in much higher dimension
than previously computable using exact techniques.

1 Introduction
We study the minimum enclosing ball (MEB) problem:
Compute a ball of minimum radius enclosing a given
set of objects (points, balls, etc) in Rd. The MEB problem
arises in a number of important applications, often re-
quiring that it be solved in relatively high dimensions.
Applications of MEB computation include gap toler-
ant classifiers [8] in Machine Learning, tuning Support
Vector Machine parameters [10], Support Vector Clus-
tering [4, 3], doing fast farthest neighbor query approx-
imation [17], k-center clustering [5], testing of radius
clustering for k = 1 [2], approximate 1-cylinder prob-
lem [5], computation of spatial hierarchies (e.g., sphere
trees [18]), and other applications [13].

In this paper, we give improved time bounds for ap-
proximation algorithms for the MEB problem, applica-
ble to an input set of points or balls in high dimensions.
We prove a time bound of O

(
nd
ε +

1
ε4.5 log 1

ε

)
, which is

based on an improved bound of O(1/ε) on the size of
“core-sets” as well as the use of second-order cone pro-
gramming (SOCP) for solving subproblems. We have
performed an experimental investigation to determine
how the core-set size tends to behave in practice, for a
variety of input distributions. We show that substan-
tially larger instances, both in terms of the number n of
input points and the dimension d, of the MEB problem
can be solved (1 + ε)-approximately, with very small

values of ε > 0, compared with the best known imple-
mentations of exact solvers. We also demonstrate that
the sizes of the core-sets tend to be much smaller than
the worst-case theoretical upper bounds.

Preliminaries. We let Bc,r denote a ball of radius
r centered at point c ∈ Rd. Given an input set S =
{p1, . . . , pn} of n objects in Rd, the minimum enclosing
ball MEB(S) of S is the unique minimum-radius ball
containing S. (Uniqueness follows from results of
[14, 33]; if B1 and B2 are two different smallest enclosing
balls for S, then one can construct a smaller ball
containing B1 ∩ B2 and therefore containing S.) The
center, c∗, of MEB(S) is often called the 1-center of S,
since it is the point of Rd that minimizes the maximum
distance to points in S. We let r∗ denote the radius of
MEB(S). A ball Bc,(1+ε)r is said to be (1+ε)-approximation
of MEB(S) if r ≤ r∗ and S ⊂ Bc,(1+ε)r.

Throughout this paper, S will be either a set of
points in Rd or a set of balls. We let n = |S|.

Given ε > 0, a subset, X ⊆ S, is said to be a core-set
of S if Bc,(1+ε)r ⊃ S, where Bc,r =MEB(X); in other words,
X is a core-set if an expansion by factor (1+ε) of its MEB
contains S. Since X ⊆ S, r ≤ r∗; thus, the ball Bc,(1+ε)r is a
(1 + ε)-approximation of MEB(S).

Related Work. For small dimension d, the MEB
problem can be solved in O(n) time for n points using
the fact that it is an LP-type problem [21, 14]. One of the
best implementable solutions to compute MEB exactly
in moderately high dimensions is given by Gärtner and
Schönherr [16]; the largest instance of MEB they solve
is d = 300, n = 10000 (in about 20 minutes on their
platform). In comparison, the largest instance we solve
(1 + ε)-approximately is d = 1000, n = 100000, ε = 10−3;
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in this case the virtual memory was running low on the
system1. Another implementation of an exact solver
is based on the algorithm of Gärtner [15]; this code is
part of the CGAL2 library. For large dimensions, our
approximation algorithm is found to be much faster
than this exact solver.

We are not aware of other implementations of
polynomial-time approximation schemes for the MEB
problem.

Independently from our work, the MEB problem in
high dimensions was also studied in [33]. The authors
consider two approaches, one based on reformulation
as an unconstrained convex optimization problem and
another based on a Second Order Cone Programming
(SOCP) formulation. Similarly, four algorithms (includ-
ing a randomized algorithm) are compared in [31] for
the computation of the minimum enclosing circle of cir-
cles on the plane. Both studies reveal that solving MEB
using a direct SOCP formulation suffers from mem-
ory problems as the dimension, d, and the number of
points, n, increase. This is why we have worked to
combine SOCP with core-sets in designing a practical
MEB method.

In a forthcoming paper of Bădoiu and Clarkson [6],
the authors have independently also obtained an upper
bound of O(1/ε) on the size of core-sets and have, most
recently [7], proved a worst-case tight upper bound
of d1/εe. Note that the worst case upper bound does
not apply to our experiments since in almost all our
experiments, the dimension d satisfies d < 1

ε . The worst
case upper bound of [6, 7] only applies to the case when
d ≥ 1

ε . Our experimental results on a wide variety of
input sets show that the core set size is smaller than
min( 1

ε , d + 1) (See Figure 2).
Bădoiu et al. [5] introduced the notion of core-sets

and their use in approximation algorithms for high-
dimensional clustering problems. In particular, they
give an O

(
dn
ε2 +

1
ε10 log 1

ε

)
time (1 + ε)-approximation

algorithm based on their upper bound of O(1/ε2) on
the size of core-sets; the upper bound on the core-
set size is remarkable in that it does not depend on
d. In comparison, our time bound (Theorem 3.2) is
O

(
nd
ε +

1
ε4.5 log 1

ε

)
.

Outline of paper. We first show in Section 2 how
to use second-order cone programming to solve the
MEB problem in O(

√
nd2(n + d) log(1/ε)) arithmetic

operations. This algorithm is specially suited for
problems in which n is small and d is large; thus, we
study algorithms to compute core-sets in Section 3 in
an effort to select a small subset X, a core-set, that is
sufficient for approximation purposes. This section
includes our proof of the new upper bound of O(1/ε) on

the size of core-sets. Section 4 is devoted to discussion
of the experiments and of the results obtained with our
implementation.

2 SOCP Formulation
The minimum enclosing ball (MEB) problem can be for-
mulated as a second-order cone programming (SOCP)
problem. SOCP can be viewed as an extension of linear
programming in which the nonnegative orthant is re-
placed by the second-order cone (also called the “Lorenz
cone,” or the “quadratic cone”), defined as

K = {(σ, x) ∈ R1+d : ‖x‖ ≤ σ}.

Therefore, SOCP is essentially linear programming
over an affine subset of products of second-order cones.
Recently, SOCP has received a lot of attention from
the optimization community due to its applications
in a wide variety of areas (see, e.g., [20, 1]) and due
also to the existence of very efficient algorithms to
solve this class of optimization problems. In particular,
any SOCP problem involving n second-order cones
can be solved within any specified additive error
ε > 0 in O(

√
n log(1/ε)) iterations by interior-point

algorithms [22, 26].
The MEB problem can be formulated as an SOCP

problem as

min
c,r

r, s.t. ‖c − ci‖ + ri ≤ r, i = 1, . . . ,n,

where c1, . . . , cn and r1, . . . , rn constitute the centers and
the radii of the input set S ⊂ Rd, respectively, c and r are
the center and the radius of the MEB, respectively (Note
that the formulation reduces to the usual MEB problem
for point sets if ri = 0 for i = 1, . . . ,n). By introducing
slack variables

(γi, si) ∈ K, i = 1, . . . ,n,

the MEB problem can be reformulated in (dual) stan-
dard form as

max
c,r,γ,s1,...,sn

−r, s.t. −

[
r
c

]
+

[
γi
si

]
= −

[
ri
ci

]
,

along with the constraints (γi, si) ∈ K, i = 1, . . . ,n, where
γ denotes the n-dimensional vector whose components
are given by γ1, . . . , γn. The Lagrangian dual is given
in (primal) standard form by

min
σ,x1,...,xn

−
∑n

i=1 riσi −
∑n

i=1 cT
i xi,

s.t. −
∑n

i=1

[
σi
xi

]
=

[
−1
0

]
,

(σi, xi) ∈ K, i = 1, . . . ,n,

1. This instance took approximately 3 hours to solve.
2. http://www.cgal.org



where σ := (σ1, . . . , σn)T.
The most popular and effective interior-point meth-

ods are the primal-dual path-following algorithms (see,
e.g., Nesterov and Todd [23, 24]). Such algorithms gen-
erate interior-points for the primal and dual problems
that follow the so-called central path, which converges
to a primal-dual optimal solution in the limit. The ma-
jor work per iteration is the solution of a linear system
involving a (d+ 1)× (d+ 1) symmetric and positive def-
inite matrix (see, e.g., [1]). For the MEB problem, the
matrix in question can be computed using O(nd2) basic
arithmetic operations (flops), and its Cholesky factor-
ization can be carried out in O(d3) flops. Therefore,
the overall complexity of computing an approximation,
with additive error at most ε, to the MEB problem with
an interior-point method is O(

√
nd2(n+d) log(1/ε)) . In

practice, we stress that the number of iterations seems
to be O(1) or very weakly dependent on n (see, for in-
stance, the computational results with SDPT3 in [30]).

The worst-case complexity estimate reveals that the
direct application of interior-point algorithms is not
computationally feasible for large-scale instances of the
MEB problem due to excessive memory requirements.
In [33], the largest instance solved by an interior-point
solver consists of 1000 points in 2000 dimensions and re-
quires over 13 hours on their platform. However, large-
scale instances can still be handled by an interior-point
algorithm if the number of points n can somehow be
decreased. This can be achieved by a filtering approach
in which one eliminates points that are guaranteed to
be in the interior of the MEB or by selecting a subset of
points and solving a smaller problem and iterating un-
til the computed MEB contains all the points. The latter
approach is simply an extension of the well-known col-
umn generation approach initially developed for solv-
ing large-scale linear programs that have much fewer
constraints than variables. The MEB problem formu-
lated in the primal standard form as above precisely
satisfies this property since n� d for instances of inter-
est in this paper.

We use the column generation approach to be able
to solve large-scale MEB instances. The success of such
an approach depends on the following factors:

B Initialization: The quality of the initial core set is
crucial since a good approximation would lead to
fewer updates. Furthermore, a small core set with
a good approximation would yield MEB instances
with relatively few points that can efficiently be
solved by an interior-point algorithm.

B Subproblems: The performance of a column gener-
ation approach is closely related to the efficiency
with which each subproblem can be solved. We use

state-of-the-art interior-point solver SDPT3 [29] in
our implementation.

B Core-set Updates: An effective approach should
update the core-set in a way that will minimize
the number of subsequent updates.

In the following sections, we describe our approach
in more detail in light of these three factors.

3 Using Core-Sets for Approximating the MEB
We consider now the problem of computing a MEB of a
set S = {B1,B2, ...,Bn} of n balls in Rd. One can consider
the MEB of points to be the special case in which the
radius of each ball is zero.

We note that computing the MEB of balls is an
LP-type problem [21, 14]; thus, for fixed d, it can
be computed in O(n) time, where the constant of
proportionality depends exponentially on d.

Our goal is to establish the existence of small core-
sets for MEB of balls and then to use this fact, in
conjunction with SOCP, to compute an approximate
MEB of balls quickly, both in theory and in practice.

We begin with a lemma that generalizes a similar
result known for MEB of points [5]:

L 3.1. Let Bc,r be the MEB of the set of balls S =
{B1,B2, ...,Bn} in Rd where n ≥ d + 1. Then any closed
halfspace passing through c contains at least one point in Bi,
for some i ∈ {1, . . . ,n}, at distance r from c.

Proof. We can assume that each ball of S touches ∂Bc,r;
any ball strictly interior to Bc,r can be deleted without
changing its optimality. Further, it is easy to see that
there exists a subset S′ ⊆ S, with |S′| ≤ d + 1, such
that MEB(S′) = MEB(S), and that c must lie inside
the convex hull, Q, of the centers of the balls S′; see
Fischer [14]. Consider a halfspace, H, defined by a
hyperplane through c. Since c ∈ Q, the halfspace H
must contain a vertex of Q, say c′, the center of a ball
Bc′,r′ . Let p =

# »

cc′ ∩ ∂Bc,r be the point where the ray
# »

cc′

exits Bc,r and let q =
# »

cc′ ∩ ∂Bc′,r′ be the point where
# »

cc′

exits Bc′,r′ . Then, ||cp|| = r. By the triangle inequality, all
points of Bc′,r′ \ {q} are at distance from c at most that of
q; thus, since Bc′,r′ touches ∂Bc,r, we know that p = q. i

Our algorithm for computing MEB(S) for a set S
of n points or balls begins with an enclosing ball of S
based on an approximate diameter of S. If S is a set of
points, one can compute a (1 − ε)-approximation of the
diameter, δ, yielding a pair of points at distance at least
(1 − ε)δ; however, the dependence on dimension d is
exponential [9]. For our purposes, it suffices to obtain
any constant factor approximation of the diameter δ,



so we choose to use the following simple O(dn) -time
method, shown by Eg̃eciog̃lu and Kalantari [11] to yield
a 1
√

3
-approximate diameter of a set S of points: Pick any

p ∈ S; find a point q ∈ S that is furthest from p; find a
point q′ ∈ S that is furthest from q; output the pair
(q, q′). It is easy to see that the same method applies to
the case in which S is a set of balls, yielding again a 1

√
3
-

approximation. (Principal component analysis can be
used to obtain the same approximation ratio for points
but does not readily generalize to the case of balls.)

Algorithm 1 Outputs a (1+ε)-approximation of MEB(S)
and an O(1/ε2) -size core-set
Require: Input set of points S ∈ Rd, parameter ε > 0,

subset X0 ⊂ S
1: X← X0
2: loop
3: Compute Bc,r =MEB(X).
4: if S ⊂ Bc,(1+ε)r then
5: Return Bc,r, X
6: else
7: p← point q ∈ S maximizing ||cq||
8: end if
9: X← X ∪ {p}

10: end loop

If Algorithm 1 is applied to input data, with X0 =
{q, q′} given by the simple 1

√
3
-approximation algorithm

for diameter, then it will yield an output set, X, that is of
size O(1/ε2) , as shown by Bădoiu et al. [5] Their same
proof, using Lemma 3.1 to address the case of balls,
yields the following:

L 3.2. [5] For any set S of balls in Rd and any
0 < ε < 1 there exists a subset X ⊆ S, with |X| = O(1/ε2) ,
such that the radius of MEB(S) is at most (1 + ε) times the
radius of MEB(X). In other words, there exists a core-set X
of size O(1/ε2) .

In fact, the proof of Lemma 3.2 is based on showing
that each iteration of Algorithm 1 results in an increase
of the radius of the current ball, MEB(X), by a factor of
at least (1 + ε2/16); this in turns implies that there can
be at most O(1/ε2) iterations in going from the initial
ball of radius at least δ

√
3

to the final ball (whose radius
is at most δ).

We bootstrap Lemma 3.2 to give a O(1/ε) -size
core-set, as shown in Algorithm 2.

L 3.3. The number of points added to X in round i+ 1
is at most 2i+6.

Proof. Round i gave as output the set Xi, of radius ri,
which serves as the input core-set to round (i+1). Thus,

Algorithm 2 Outputs a (1+ε)-approximation of MEB(S)
and an O(1/ε) -size core-set
Require: Input set of points S ∈ Rd, parameter ε = 2−m,

subset X0 ⊂ S
1: for i = 1 to m do
2: Call Algorithm 1 with input S, ε = 2−i, Xi−1
3: Xi ← the output core-set
4: end for
5: Return MEB(Xm),Xm

we know that (1 + 2−i)ri ≥ r∗ ≥ ri. For round i + 1,
ε = 2−(i+1), so in each iteration of Algorithm 1, the radius
goes up by factor (1 + ε2/16) = (1 + 2−2i−6); thus, each
iteration increases the radius by at least 2−2i−6ri. If in
round i + 1 there are ki+1 points added, the ball at the
end of the round now has radius ri+1 ≥ ri + ki+1 · 2−2i−6ri.
Since we know that (1 + 2−i)ri ≥ r∗ and that r∗ ≥ ri+1,
we get that (1+ 2−i)ri ≥ (1+ ki+1 · 2−2i−6)ri, implying that
ki+1 ≤ 2i+6 as claimed. i

T 3.1. The core-set output by Algorithm 2 has size
O(1/ε) .

Proof. The size of |Xm| is equal to the sum of the number
of points added in each round, which is, by Lemma 3.3,
at most

∑m
i=1 2i+6 = O(2m) = O(1/ε) . i

T 3.2. A (1 + ε)-approximation to the MEB of a
set of n balls in d dimensions can be computed in time
O

(
nd
ε +

1
ε4.5 log 1

ε

)
.

Proof. Since the size of the basis (core-set) is O( 1
ε ),

each call to our SOCP solver incurs a cost of
O

(
d2
√
ε

(
1
ε + d

)
log 1

ε

)
. We parse through the input O( 1

ε )

times, so the total cost is O
(

nd
ε +

d2

ε3/2

(
1
ε + d

)
log 1

ε

)
.

Putting d = O(1/ε) , as in [5], we get a total bound
of O

(
nd
ε +

1
ε4.5 log 1

ε

)
. i

Remark. The above theorem also improves the
best known time bounds for approximation results in-
dependent of d on the 2-center clustering (2O( 1

ε )dn) prob-
lem and the k-center clustering (2O( k log k

ε )dn) problem [5].

4 Implementation and Experiments
We implemented our algorithm in Matlab. The to-
tal code is less than 200 lines; it is available at
http://www.compgeom.com/meb/. No particular atten-
tion was given to optimizing the code; our goal was
to demonstrate the practicality of the algorithm, even
with a fairly straightforward implementation. The cur-
rent implementation takes only point sets as input; ex-
tending it to input sets of balls should be relatively



straightforward. We implemented Algorithm 1 and 2.
We also implemented the new gradient descent type
algorithm of [6] exactly the way it has been presented
in Claim 3.1 of the paper. The problem with this algo-
rithm is that as soon as ε decreases, it starts taking too
much time. As is predicted by theory, it takes exactly
O(dn/ε2) time. Our algorithm’s analysis is not as tight,
so it performs much better in practice than predicted
by theory as ε decreases. Very recently, the running
time of this algorithm (Claim 3.1 [6]) was improved
to O( dn

ε log2 1
ε ) by another algorithm that also avoids

quadratic programming [27]. Using this algorithm as
the base case solver in Theorem 3.2, the running time
can be reduced toO

(
nd
ε +

1
ε4 log2 1

ε

)
. This is slightly bet-

ter than our running time and does not use SOCP. The
improved algorithm might be a good competitor to our
algorithm in practice.

For the SOCP component of the algorithm, we
considered two leading SOCP solvers: SeDuMi [28]
and SDPT3 [29]. Experimentation showed SDPT3 to be
superior to SeDuMi for use in our application, so our
results here are reported using SDPT3.

We found it advantageous to introduce random
sampling in the step of the algorithm that searches for
the existence of a point that is substantially outside the
current candidate ball. This can speed the detection of
a violator; a similar approach has been used recently by
Pellegrini [25] in solving linear programming problems
in moderately high dimension. In particular, we sample
a subset, S′, of the points, of size L

√
n, where L is

initialized to be 1 and is incremented by 1 at each
iteration. Only if a violator is not found in S′ do we
begin scanning the full set of points in search of a
violator. We implemented random sampling only for
the implementation of Algorithm 1. For Algorithm 2,
we always found the violator farthest from the current
center in order to make the core set size as small as
possible. We recommend using Algorithm 2 only when
the user wants to minimize the size of the core set.

Another desirable property of the implementation
is that it is I/O efficient if we assume that we can solve
O( 1
ε ) size subproblems in internal memory (This was

always the case for our experiments, since the size of
the core-set did not even approach 1

ε in practice). If
this is true then the current implementation in the I/O
model does at most O( nd

Bε2 ) I/Os3 and the same bound
also generalizes to the cache-oblivious model [12]. The
implementation of Algorithm 2 has an I/O bound of
O( nd

Bε ) . Some of the large problems we report results
for here did actually use more memory while running
than we had installed on the system. For instance in
Figure 1, the sudden increase around dimension d = 400
for n = 105 points is due to effects of paging from disk,

as this is the largest input size that allowed subproblems
to fit within main memory. We believe that with our
algorithm and an efficient implementation(C++), really
large problems (n ≈ 107, d ≈ 104, ε ≈ 10−4) would
become tractable in practice on current state of the art
systems with sufficient memory and hard disk space.

Platform. All of the experimental results reported
in this paper were done on a Pentium III 1Ghz, 512MB
notebook computer, running Windows 2000. The hard
disk used was a 4200rpm/20GB hard disk drive (Fujitsu
MHM2200AT).

Datasets. Most of our experiments were con-
ducted on randomly generated point data, according
to various distributions. We also experimented with
the USPS data4 which is a dataset of handwritten char-
acters created by the US Postal service. We used Mat-
lab to generate random matrices. For generating uni-
form data we used rand, for generating specific distri-
butions we used random and for generating normally
distributed random numbers we used randn.

Specifically, we considered the following four
classes of point data:

① uniformly distributed within a unit cube;

② uniformly distributed on the vertices of a unit cube;

③ normally distributed in space, with each coordi-
nate chosen independently according to a normal
distribution with mean 0 and variance 1;

④ point coordinates that are Poisson random vari-
ables, with parameter λ = 1.

Methods for comparison. Bernd Gärtner [15] pro-
vides a code on his website that we used. We also used
the CGAL 2.4 implementation (using Welzl’s move-to-
front heuristic, together with Gärtner’s method [15]).
We were not able to compile code available from David
White’s web page5. We could not replicate the timings
reported in the paper by Gärtner and Schönherr [16]. In
the near future, a recent implementation of [16] is going
to appear in CGAL. We decided not to include the com-
parison with this version because the implementation
is not robust enough yet and sometimes gives wrong
results.

Experimental results. In Figure 1 we show how the
running time of Algorithm 1 varies with dimension, for
each of three sizes of inputs (n = 103, 104, and 105) for
points that are normally distributed (with mean µ = 0
and variance σ = 1). Here, ε = 0.001. Corresponding to

3. Here B denotes the disk block size.
4. http://www.kernel-machines.org/data/ups.mat.gz , 29MB
5. http://vision.ucsd.edu/˜dwhite



the same experiment, Figure 2 shows how the number
of iterations in Algorithm 1 varies with dimension.
Recall that the number of iterations is simply the size
of the core-set that we compute. Note that, while the
core-set size is seen to increase with dimension, it is
no where near the worst case predicted by theory (of
O(1/ε) ). Also notable is the fact that as the dimension
grows, the timings in Figure 1 do not seem to be linearly
increasing (as predicted by theory). This seems to stem
from the fact that the core set size is not constant with
ε fixed, and the SOCP solver takes more time as the
core set becomes bigger. These experiments also point
to the fact that the theoretical bounds, both for the core
set size and the running time are not tight, at least for
normally distributed points.

In Figures 3 and 4 we show how the running time
and the core-set size varies with dimension for each of
the four distributions of input points, and n = 10, 000,
ε = 0.001. Note again the correlation between running
times and core set sizes.

Figure 5 shows a timing comparison between our
algorithm, the CGAL 2.4 implementation, and Bernd
Gärtner’s code available from his website. Both these
codes assume that the dimension of the input point set
is fixed and have a threshold dimension beyond which
the computation time blows up.

Figures 6, 7, 8 and 9 compare the implementations
of Algorithm 1 and 2. For all the these experiments
the points were picked from a normal distribution with
µ = 0, σ = 1,n = 10000. Figure 6 compares the timings
of Algorithm 1 and 2 for ε = 2−10. Note that Algorithm
2 does not implement random sampling and hence
is quite slow in comparison to Algorithm 1. Recall
that Algorithm 2 was designed to keep the core set
size as small as possible. Also the implementation of
Algorithm 2 is not well optimized. Figure 7 and 8
compare the radius computed by both algorithms on
the input point set. Figure 8 is a plot of the difference
of the radii computed by the two algorithms on the
same input. Note that the radii computed by both
algorithms is always inside the window of variability
they are allowed. For instance, at dimension d = 1400,
the radii output from Algorithm 1 and 2 could vary by
at most εr ≤ 2−10

× 39.2 ≤ 0.0009 whereas actually it
differs by 0.000282.

Figure 9 shows the difference between the core set
sizes computed by Algorithm 1 and 2. Its surprising
that the theoretical improvement suggested by the
worst case core set sizes does not show up at all
in practice. This unexpected phenomenon might be
the result of Step 7 (Algorithm 1), which chooses the
farthest violator and hence maximizes the expansion
of the current ball. The slight difference between the

core set sizes of Algorithm 1 and 2 seems to be there
because Algorithm 1 does not find the exact farthest
violator but uses random sampling to find a good one
as explained in section 4. It seems that Algorithm 1
is as good as Algorithm 2 in practice as far as core set
sizes are concerned, but it remains open to prove a tight
bound on the core set size of Algorithm 1.

Figures 10 and 11 are an attempt to show the
running times and core set sizes of Algorithm 1 on real
world data sets. Note that these graphs suggest that
core set sizes are linear compared to log

(
1
ε

)
!

In Figures 12 and 13 we show results for low
dimensions (d = 2, 3), as the number n of points
increases, for two choices of ε. Note the logarithmic
scale. In both these experiments the core set size was
less than 10 for all runs. This means that the time to
do 2-center clustering on these data sets would take
at most O(210n) time. It remains an open problem
to determine if 2-center clustering is really practical in
2, 3-dimensions.

Finally in Figure 14 we compare our implementa-
tion with the implementation of Claim 3.1 of [6] for
different values of ε. The number of points n for this
experiment is 1000. Note that for ε = 0.03, this algo-
rithm is already very slow compared to Algorithm 1.
We have not implemented the improved version of [6]
which has a slightly slower running time than our algo-
rithm

(
O

(
nd
ε +

1
ε5

))
, but it seems that when ε is small, the

running time of the improved algorithm might suffer
because of the base case solver (Claim 3.1 [6]). But cer-
tainly, the improved algorithm suggested in section 4,
using [27] seems to be a better candidate for implemen-
tation than [6].

5 Open Problems
There are interesting theoretical and practical problems
that this research opens up.

B In Practice : Can one do MEB with outliers in
practice? 1-cylinder, 2-center and k-center approx-
imations? Is computing minimum enclosing ellip-
soid approximately feasible in higher dimensions?
Are there core sets for ellipsoids of size less than
Θ(d2)? Does dimension reduction help us to solve
large dimensional problems in practice [19]? Can
one use warm start strategies to improve running
times by giving a good starting point at every it-
eration [32]? How does the improved algorithm
with running time O

(
nd
ε +

1
ε4 log2 1

ε

)
suggested in

section 4 using the new base case algorithm of [27]
with running time O( dn

ε log2 1
ε ) compare with the

implementation of Algorithm 1?



B In Theory : Of particular theoretical interest is
the question about the optimal core-set size of the
MEB problem. Are there similar dimension in-
dependent core-sets for other LP-Type problems?
It remains an open question to tighten the core-
set bounds for different distributions when d < 1

ε .
From our experiments, at least for normal distri-
butions it seems that the core set size is less than
O( 1
ε ) .

Acknowledgements
The first author would like to thank Sariel Har-Peled and
Edgar Ramos for helpful discussions. The authors thank
Sachin Jambawalikar for help with importing the USPS data
set in their code.

0

200

400

600

800

1000

1200

1400

1600

1800

10 50 100 150 200 250 300 350 400 450 500

Dimension

T
im

e 
in

 s
ec

o
n

d
s

N = 10^3 N = 10^4 N = 10^5

Figure 1: Running time in seconds of algorithm 1’s
implementation vs. dimension for n = 103, 104, 105 and
ε = 0.001 for inputs of normally distributed points(µ =
0, σ = 1).
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Figure 2: The number of iterations(Core set size) vs.
dimension for n = 103, 104, 105 and ε = 0.001 for inputs
of normally distributed points(µ = 0, σ = 1).
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Figure 3: Running times for four distributions: uniform
within a unit cube, normally distributed, Poisson
distribution, and random vertices of a cube. Here,
n = 10000, ε = 0.001.
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Figure 4: Number of iterations (core-set size), as a
function of d, for four distributions. Here, n = 10000,
ε = 0.001.
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Figure 5: Timing comparison with CGAL and Bernd
Gärtner’s code [15], ε = 10−6,n = 1000, normally
distributed points(µ = 0, σ = 1).
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Figure 6: Timing comparison between Algorithm 1 and
2. (n = 10000, ε = 2−10, input from normal distribution,
µ = 0, σ = 1)
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Figure 7: Radius comparison of Algorithm 1 and 2.
(n = 10000, ε = 2−10, input from normal distribution,
µ = 0, σ = 1)



0

0.0005

0.001

0.0015

0.002

0.0025

0.003

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Dimension

R
ad

iu
s 

D
if

fe
re

n
ce

Radius Difference

Figure 8: Radius difference plot of Algorithm 1 and 2
on the same input data. (n = 10000, ε = 2−10, input from
normal distribution, µ = 0, σ = 1)
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Figure 9: Core Set Size comparison between Algorithm
1 and 2. Note that Algorithm 2 does not implement
random sampling. (n = 10000, ε = 2−10, input from
normal distribution, µ = 0, σ = 1)
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Figure 10: USPS data timing comparison with Nor-
mally distributed data(µ = 0, σ = 1). The data contains
7291 points in 256 dimensions and is a standard data
set used in clustering and machine learning literature
of digitized hand written characters.
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Figure 11: USPS data core set size comparison with
Normally distributed data(µ = 0, σ = 1).
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Figure 12: Experiments in 2D with different ε. All core
set sizes for this experiment were less than 10 in size.
Input from normal distribution(µ = 0, σ = 1).
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Figure 13: Experiments in 3D with different ε. Input
from normal distribution(µ = 0, σ = 1). The core
set sizes in this experiment were all less than 10.
This shows that 2-center approximation in 2D/3D is
practical. This could have applications in computation
of spatial hierarchies based on balls [18].
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Figure 14: Our algorithm is compared with BC [6] for
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silon becomes small, their algorithm performance dras-
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[15] B. Gärtner. Fast and robust smallest enclosing balls6.
In Proceedings of 7th Annual European Symposium on
Algorithms (ESA). Springer-Verlag, 1999.

[16] B. Gärtner and S. Schönherr. An efficient, exact, and
generic quadratic programming solver for geometric
optimization. In Proceedings of 16th Annual ACM
Symposium on Computational Geometry, pages 110–118,
2000.

[17] A. Goel, P. Indyk and K. R. Varadarajan. Reductions
among high dimensional proximity problems. In
Poceedings of 13th ACM-SIAM Symposium on Discrete
Algorithms, pages 769–778, 2001.

[18] P. M. Hubbard. Approximating polyhedra with spheres
for time-critical collision detection. ACM Transactions on
Graphics, 15(3):179–210, July 1996.

[19] W. Johnson and J. Lindenstrauss Extensions of Lipschitz
maps into a Hilbert space. Contemp. Math. 26, pages
189–206, 1984.

[20] M. S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret.
Applications of second-order cone programming. Lin-
ear Algebra and Its Applications, 248:193–228, 1998.
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[30] R. H. Tütüncü, K. C. Toh and M. J. Todd. Solving
semidefinite-quadratic-linear programs using SDPT3.
Technical report, Cornell University, 2001. To appear
in Mathematical Programming.

[31] S. Xu, R. Freund and J. Sun. Solution methodologies
for the smallest enclosing circle problem. Technical
report, Singapore-MIT Alliance, National University of
Singapore, Singapore, 2001.

[32] E. A. Yıldırım and S. J. Wright Warm-Start Strategies in
Interior-Point Methods for Linear Programming. SIAM
Journal on Optimization 12/3, pages 782–810.

[33] G. Zhou, J. Sun and K.-C. Toh. Efficient algorithms for
the smallest enclosing ball problem in high dimensional
space. Technical report, 2002. To appear in Procedings
of Fields Institute of Mathematics.

6. http://www.inf.ethz.ch/personal/gaertner
7. http://www.math.nus.edu.sg/˜mattohkc/sdpt3.html


