
Fast Prefix Matching of Bounded Strings

Adam L. Buchsbaum
�

Glenn S. Fowler
�

Balachander Krishnamurthy
�

Kiem-Phong Vo
�

Jia Wang
�

Abstract

Longest Prefix Matching (LPM) is the problem of finding which
string from a given set is the longest prefix of another, given string.
LPM is a core problem in many applications, including IP rout-
ing, network data clustering, and telephone network management.
These applications typically require very fast matching of bounded
strings, i.e., strings that are short and based on small alphabets. We
note a simple correspondence between bounded strings and natural
numbers that maps prefixes to nested intervals so that computing the
longest prefix matching a string is equivalent to finding the shortest
interval containing its corresponding integer value. We then present
retries, a fast and compact data structure for LPM on general alpha-
bets. Performance results show that retries often outperform previ-
ously published data structures for IP look-up. By extending LPM
to general alphabets, retries admit new applications that could not
exploit prior LPM solutions designed for IP look-ups.

1 Introduction

Longest Prefix Matching (LPM) is the problem of determin-
ing from a set of strings the longest one that is a prefix of
some other, given string. LPM is at the heart of many im-
portant applications. Internet Protocol (IP) routers [14] rou-
tinely forward packets by computing from their routing ta-
bles the longest bit string that forms a prefix of the destina-
tion address of each packet. Krishnamurthy and Wang [20]
describe a method to cluster Web clients by identifying a set
of IP addresses that with high probability are under common
administrative control and topologically close together. Such
clustering information has applications ranging from net-
work design and management to providing on-line quality-
of-service differentiation based on the origin of a request.
The proposed clustering approach is network aware in that
addresses are grouped based on prefixes in snapshots of Bor-
der Gateway Protocol (BGP) routing tables.

Telephone network management and marketing appli-
cations often classify regions in the country by area codes
or combinations of area codes and the first few digits of the
local phone numbers. For example, the state of New Jersey
is identified by area codes such as 201, 908, and 973. In
turn, Morris County in New Jersey is identified by longer

�
AT&T Labs, Shannon Laboratory, 180 Park Avenue, Florham Park, NJ

07932, USA,
�
alb,gsf,bala,kpv,jiawang � @research.att.com.

telephone prefixes like 908876 and 973360. These appli-
cations typically require computing in seconds or minutes
summaries of calls originating and terminating at certain lo-
cations from daily streams of telephone calls, up to hundreds
of millions records at a time. This requires very fast classifi-
cation of telephone numbers by finding the longest matching
telephone prefixes.

Similar to other string matching problems [17, 19, 27]
with practical applications [1, 5], LPM solutions must be
considered in the context of the intended use to maximize
performance. The LPM applications discussed above have
some common characteristics:

� Look-ups overwhelmingly dominate updates of the pre-
fix sets. A router may route millions of packets before
its routing table changes. Similarly, telephone number
classifications rarely change, but hundreds of millions
of phone calls are made daily.

� The look-up rate is extremely demanding. IP routing
and clustering typically require LPM performance of
200 nanoseconds per look-up or better. This severely
limits the number of machine instructions and memory
references allowed.

� Prefixes and strings are bounded in length and based on
small alphabets. For example, current IP addresses are
32-bit strings, and U.S. telephone numbers are 10-digit
strings.

The first two characteristics mean that certain theoret-
ically appealing solutions based on, e.g., suffix trees [22],
string prefix matching [3, 4], or dynamic string search-
ing [13] are not applicable, as their performance would
not scale. Fortunately, the third characteristic means that
specialized data structures can be designed with the de-
sired performance levels. There are many papers in the
literature proposing schemes to solve the IP routing prob-
lem [8, 9, 10, 11, 12, 21, 25, 28, 29] with various trade-
offs based on memory consumption or memory hierarchies.
We are not aware of any published work that generalizes to
bounded strings such as telephone numbers, however.

Work on routing Internet packets [21] exploits a simple
relationship between IP prefixes and nested intervals of nat-
ural numbers. We generalize this idea to a correspondence

00100000/3 a
00101000/5 b

11000000/2 c
11010000/4 d

(a)

[32,63]
[40,47]

[192,255]
[208,223]

(b)

[32,39] 00100000/5 a
[40,47] 00101000/5 b
[48,63] 00110000/4 a
[192,207] 11000000/4 c
[208,223] 11010000/4 d
[224,255] 11100000/3 c

(c)

Figure 1: (a) An example prefix set, with associated values, for matching 8-bit strings; (b) corresponding nested intervals;
(c) corresponding disjoint intervals and the equivalent set of disjoint prefixes.

between bounded strings and natural numbers, which shows
that solutions to one instance of LPM may be usable for other
instances. We present retries, a novel, fast, and compact data
structure for LPM on general alphabets; and we perform sim-
ulation experiments based on trace data from real applica-
tions. On many test sets, retries outperform other published
data structures for IP routing, often by significant margins.
By extending LPM to general alphabets, retries also admit
new applications that could not exploit prior LPM solutions
designed for IP look-ups.

2 Prefixes and Intervals

Let � be an alphabet of finite size �������	� . Without loss of
generality, assume that � is the set of natural numbers in the
range
 �
����� . Otherwise, map � ’s elements to their ranks in
any fixed, arbitrary order. We can then think of elements of
� as digits in base � so that a string ��������������������� over �
represents an integer ��� �!��� ��"�� �#����� ��"$� �%�������&��� . We
denote ')(*��+,�-� and .�(/�0+1�2� . When we work with fixed-
length strings, we shall let .�(3�4+ have enough 0’s padded on
the left to gain this length. For example, when the string
�����5� represents a number in base 2, ')(6�����
��+ is the decimal
value 7 . Conversely, in base 3 and with prescribed length 6,
.�(/78+ is the string �8���
����� . Clearly, for any two strings � and9

with equal lengths, ')(:��+�;-')(9 + if and only if � precedes
9

lexicographically.

2.1 Longest matching prefixes and shortest containing
intervals. Let < be some fixed integer. Consider ��=?> and
�@> , respectively the sets of strings over � with lengths AB<
and lengths exactly equal to < . Let CEDF��=$> , and with
each G2HIC let there be associated a data value; the data
values need not be mutually distinct. We define an LPM
instance (/���J<K+ as the problem of finding the data value
associated with the longest string in C that is a prefix of some
string �LHM�@> . C is commonly called the prefix set, and its
elements are called prefixes. Following a convention in IP
routing, we shall write �ON!P to indicate the length- P prefix of
a string � (PQA len (:��+).

To show examples of results as they develop, we shall
use the binary alphabet �R�TS��
����U and maximum string

length <R�WV . Figure 1(a) shows an example prefix set of
four strings and associated values. For example, the first
string in the set would best match the string 00100101,
yielding result a. On the other hand, the second string would
best match 00101101, yielding b.

For any string � in �X=$> , let ��Y#�Z���[�����J� and ��\M�
���]�����)� be two strings in which enough � ’s and � ’s are used to
pad � to length < . Using the above correspondence between
strings and integers, � can be associated with the closed
interval of integers
 ')(:��YO+^�_')(*��\�+`� . This interval is denoteda (:��+ , and its length is ')(:� \ +cb#')(:� Y +d�e� .

Now let � be in
a (*��+ , and consider the string .�(3�4+ , 0-

padded on the left to be length < . By construction, .�(/�0+
must agree with ��Y and ��\ up to the length of � . On the other
hand, if �f;g')(:��Y�+ , then .�(3�4+ lexicographically precedes ��Y ,
so � cannot be a prefix of .�(/�0+ . A similar argument applies
when �ihe')(:��\�+ . Thus, we have:

LEMMA 2.1. Let � be a string in � =?> and �	;j� > . Then
� is a prefix of .�(3�4+ if and only if � is in

a (*��+ .
For any prefix set C , we use

a (:CX+ to denote the set
of intervals associated with prefixes in C . Now consider
two prefixes G)� and Gk� and their corresponding intervalsa (lG���+ and

a (lG$��+ . Applying Lemma 2.1 to the endpoints of
these intervals shows that either the intervals are completely
disjoint or one is contained in the other. Furthermore,

a (mGn��+
contains

a (lG � + if and only if G � is a prefix of G � . Next, when
� has length < , ')(:��Y�+��o')(*��\�+p�q')(:��+ . Lemma 2.1 asserts
that if G is a prefix of � then

a (lG?+ must contain ')(*��+ . The
nested property of intervals in a prefix set C then gives:

THEOREM 2.1. Let C be a prefix set and � a string in �,> .
Then G is the longest prefix matching � if and only if

a (mG$+ is
the shortest interval in

a (/CX+ containing 'J(*��+ .
Figure 1(b) shows the correspondence between prefixes

and intervals. For example, the string 00101101 with
numerical value 45 would have [40,47] as the shortest
containing interval, giving b as the matching result.

Two intervals that are disjoint or nested are called nested
intervals. Theorem 2.1 enables treating the LPM problem as

that of managing a collection of mutually nested intervals
with the following basic operations.

Insert (��$� � �J�4+ . Insert new interval
 �$� � � with associated data
value � .
 �k� � � must contain or be contained in any
interval it intersects.

Retract (��$� � + . Delete existing interval
 �$� � � .
Get (mG$+ . Determine the value associated with the shortest

interval, if any, that contains integer G .
When < and � are small, standard computer integer

types suffice to store the integers arising from strings and
interval endpoints. This allows construction of practical data
structures for LPM based on integer arithmetic.

2.2 Equivalence among LPM instances and prefix sets.
A data structure solving an (/���J<K+ instance can sometimes
be used for other instances, as follows. Let (�� ���n+ be another
instance of the LPM problem with � the size of � and � the
maximal string length. Suppose that �c>��	��
 . Since the
integers corresponding to strings in � =�
 are less than � > ,
they can be represented as strings in ��=$> . Furthermore, leta (mG$+ be the interval corresponding to a prefix G in ��=

 . Each
integer in

a (lG?+ can be considered an interval of length 1, so it
is representable as a prefix of length < in �?=?> . Thus, each
string and prefix set in (�� ���n+ can be translated into some
other string and prefix set in (/�X�)<f+ . We have shown:

THEOREM 2.2. Let (/���J<K+ and (��i���n+ be two instances of
the LPM problem in which the sizes of � and � are � and �
respectively. Then any data structure solving LPM on (/���J<K+
can be used to solve (�� ���n+ as long as �c>�����
 .

Using single values in an interval to generate prefixes
is inefficient. Let
 lo � hi � be some interval where lo ; ��>
and hi ; � > . Figure 2 shows an algorithm (in C) for
constructing prefixes from
 lo � hi � . Simple induction on the
quantity hi b lo �F� shows that the algorithm constructs
the minimal set of subintervals covering
 lo � hi � such that
each subinterval corresponds to a single prefix in ��=?> . We
assume an array A[] such that A[i] has the value ��� . The
function itvl2pfx() converts an interval into a prefix by
inverting the process described earlier of mapping a prefix
into an interval. Such a prefix will have length < b�� .

Given a nested set of intervals
a
, we can construct a

minimal set of prefixes CL(a + such that (1)
a (lG?+ and

a (��!+ are
disjoint for G����� ; and (2) finding the shortest interval in

a
containing some integer � is the same as finding the longest
prefix in CL(a + matching .�(��6+ . This is done as follows.

1. Sort the intervals in
a

by their low ends, breaking ties
by taking longer intervals first. The nested property of
the intervals means that
 �_���!� ;
 P���� � in this ordering if
�L;eP or
 �_���!� contains
 P?���3� .

while (lo <= hi)
{ for (i = 0; i < m; ++i)

if ((lo % A[i+1]) != 0 ||
(lo + A[i+1] - 1) > hi)
break;

itvl2pfx(lo, lo + A[i] - 1);
lo += A[i];

}

Figure 2: Constructing the prefixes covering interval
 lo � hi� .

2. Build a new set of intervals by adding the sorted inter-
vals in order. When an interval
 �_����� is added, if it is
contained in some existing interval
 P?��� � , then in addi-
tion to adding
 �_���!� , replace
 P?��� � with at most two new
disjoint intervals,
 P?���5b	��� and
 �]�M����� � , whenever they
are of positive length.

3. Merge adjacent intervals that have the same data values.

4. Apply the algorithm in Figure 2 to each of the resulting
intervals to construct the new prefixes.

Figure 1(c) shows how the nested intervals are split into
disjoint intervals. These intervals are then transformed into
a new collection of prefixes. A property of the new prefixes
is that none of them can be a prefix of another.

From now on, we assert that every considered prefix set
C shall represent disjoint intervals. If not, we convert it into
the equivalent set of prefixes CL(a (/CX+J+ as discussed.

3 The Retrie Data Structure

Theorem 2.2 asserts that any LPM data structure for one
type of string can be used for other LPM instances as long
as alphabet sizes and string lengths are within bounds. For
example, 15-digit international telephone numbers fit in 64-
bit integers, so data structures for fast look-ups of IPv4 32-bit
addresses are potentially usable, with proper extensions, for
telephone number matching. Unfortunately, many of these
are too highly tuned for IP routing to be effective in the
other applications that we consider, such as network address
clustering and telephone number matching (Section 4). We
next describe the retrie data structure for fast LPM queries
in �X=$> . We compare it to prior art in Section 5.

3.1 The basic retrie scheme. Let C be a prefix set over
� =$> . Each prefix in C is associated with some data value,
an integer in a given range
 �5�� � . We could build a table
of size � > that covers the contents of the intervals in C .
Then the LPM of a string can be looked up with a single
index. Such a table would be impossibly large for interesting
values of � and < , however. We therefore build a smaller,
recursively structured table, which we call a radix-encoded
trie (or retrie). The top-level table is indexed by some

for (node = root, shift = m; ; sv %= A[shift])
{ shift -= node >> (obits+1);

if (node & (1 << obits))
node = Node[(node & ((1 << obits) - 1)) + sv/A[shift]];

else return Leaf[(node & ((1 << obits) - 1)) + sv/A[shift]];
}

Figure 3: Searching a retrie for a longest prefix; obits is the number of bits reserved for offset.

number of left digits of a given string. Each entry in this table
points to another table, indexed by some of the following
digits, and so on. As such, there are two types of tables:
internal and leaf. An entry of an internal table has a pointer
to the next-level table and indicates whether that table is an
internal or leaf table. An entry of a leaf table contains the
data associated with the prefix matched by that entry. All
internal tables are kept in a single array Node, and all leaf
tables are kept in a single array Leaf.

We show later how to minimize the total space used.
The size of a leaf entry depends on the maximum data
value associated with any given prefix. For example, if the
maximum data value is ;�� � , then a leaf entry can be stored
in a single byte, while a maximum data value between � �
and � ��� means that leaf data must be stored using 2 bytes,
etc. For fast computation, the size of an internal table entry is
chosen so that the entry would fit in some convenient integer
type. We partition the bits of this type into three fields: index,
type, and offset. Index specifies the number of digits used
to index the next-level table, which thus has � index entries;
type is a single bit, which if 1 indicates that the next level is
internal, and if 0 indicates that the next level is leaf; offset
specifies the offset into the Node or Leaf array at which the
next-level table begins.

Let � be the word size in bits of an internal-entry type.
If
���

bits are reserved for offset, then the maximum size for
the Node and Leaf arrays is � �
	���
 ��� , the largest power of
� no greater than � �
	 , which thus upper bounds the size of
any table. Now if

�
� bits are reserved for index, then the

maximum table size is also � �����^"d� . Therefore,
�
� and

� �
should be chosen so that these two values are about equal,
i.e., so that

�
� is about ���k(J� � � � N���� � + , keeping in mind that�

� �
� � � �@��� . In practice, we often use 32-bit integers for

internal table entries. For �j��� , we thus choose
� � �����

and
�
� ��� , since ���?(6�k� �!� N"�#�$��+ is about 4.8. These choices

allow the sizes of the Node and Leaf arrays to be up to � �%� ,
which is ample for our applications.

Given a retrie built for some prefix set C D �?=$> , let
root be a single internal table entry that describes how to
index the top-level table. Let A[] be an integer array such
that A[i] �o� � . Now let � be a string in � > with integer
value &(' �W'J(*��+ . Figure 3 shows the algorithm to compute
the data value associated with the LPM of � .

index offset

00

01

10

11

0

1

1

0

0

2

0

2

1

0

0

0

0

0

type 00

00

01

01

10

10

11

11 a

a

b

a

c

d

c

c

Leaf

Node

Figure 4: A retrie data structure.

Figure 4 shows a 3-level retrie for the prefix set shown
in Figure 1(c). The Node array begins with the top-level
internal table. Indices to the left of table entries are in
binary and with respect to the head of the corresponding
table within the Node or Leaf array. Each internal-table entry
has three fields as discussed. All internal-table entries with
offset � nil indicate some default value for strings without
any matching prefix. For example, the string 00101101 is
matched by first stripping off the starting 2 bits, 00, to index
entry � of the top-level table. The type of this entry is 1,
indicating that the next level is another internal table. The
offset of the entry points to the base of this table. The index
of the entry indicates that one bit should be used to index
the next level. Then the indexed entry in the next-level table
points to a leaf table. The entries of this table are properly
defined so that the fourth and fifth bits of the string, 01, index
the entry with the correct data: b.

A retrie with P levels enables matching with at most P
indexing operations. This guarantee is important in applica-
tions such as IP forwarding. Smaller P ’s mean larger look-up
tables, so it is important to ensure that a retrie with P levels
uses minimal space. We next discuss how to do this using
dynamic programming.

3.2 Optimizing the basic retrie scheme. Given a prefix
set C , define len (:CX+ �*),+!-?S len (lG?+/.OG�H C�U . For ��A �[A

� (:C ��P
+ � ����� � len ���
	 if C ��� or PL� � ; otherwise,

)�
���� ��� � len ����	 �%)�
�� � = ��� len ����	 � ��� � � � ����� C�= � � �����! #" ���%$ � 	 � (strip ('&L���6+^�_PXbB��+)(!(+*
Figure 5: Dynamic program to compute the optimal size of a retrie.

len (/CX+ , let C = � be the subset of prefixes with lengths A�� .
Then let , (/C ���6+ be the partition of C�b�C = � into equivalence
classes induced by the left � digits. That is, each part & in,@(/C ���6+ consists of all prefixes longer than � and having the
same first � digits. Now, let strip (-& ���6+ be the prefixes in &
with their left � digits stripped off. Such prefixes represent
disjoint intervals in the LPM instance (/�X�)< b � + . Finally,
let

� �
be the size of a data (leaf table) entry and

� �
the size

of an internal-table entry. The dynamic program in Figure 5
computes

� (:C ��P
+ , the optimal size of a retrie data structure
for a prefix set C using at most P levels.

The first case states that a leaf table is built whenever
the prefix set is empty or only a single level is allowed.
The second case recurses to compute the optimal retrie and
its size. The first part of the minimization considers the
case when a single leaf table is constructed. The second
part of the minimization considers the cases when internal
tables may be constructed. In these cases, the first term� � � � expresses the size of the constructed internal table to
be indexed by the first � digits of a string. The second term� � � C�= � � expresses the fact that each prefix short enough to
end at the given level requires a single leaf-table entry for
its data value. The last term �.�/ #" ���%$ � 	 � (strip (-& ���6+���P[b ��+
recurses down each set strip ('&L���6+ to compute a retrie with
optimal size for it.

Each set strip ('& ��� + is uniquely identified by the string
formed from the digits stripped off from the top level of the
recursion until strip ('& ���6+ is formed. The number of such
strings is bounded by

� C � len (:CX+ . Each such set contributes
at most one term to any partition of the len (/CX+ bits in a
prefix. For PMA len (/CX+ , the dynamic program examines all
partitions of
 ��� len (/CX+`� with A%P parts. The number of such
partitions is 0 (len (/CX+ ��"�� + . Thus, we have:

THEOREM 3.1.
� (/C �_P
+ can be computed in 0 (� C � len (:CX+ � +

time.

In practice, len (/CX+ is bounded by a small constant, e.g.,
32 for IP routing and 10 for U.S. phone numbers. Since there
cannot be more than len (/CX+ levels, the dynamic program
essentially runs in time linear in the number of prefixes.

3.3 Superstring lay-out of leaf tables. The internal and
leaf tables are sequences of elements. In the dynamic
program, we consider each table to be instantiated in the
Node or Leaf array as it is created. We can reduce memory
usage by exploiting redundancies, especially in the leaf

tables. For example, in IP routing, the leaf tables often
contain many similar, long runs of relatively few distinct data
values. Computing a short superstring of the tables reduces
space very effectively. Since computing shortest common
superstrings (SCS) is MAX-SNP hard [2], we experiment
with three heuristics.

1. The trivial superstring is formed by catenating the leaf
tables.

2. The left and right ends of the leaf tables are merged in
a best-fit order.

3. A superstring is computed using a standard greedy SCS
approximation [2].

Both methods 2 and 3 effectively reduce space usage.
(See Section 4.) In practice, however, method 2 gives the
best trade-off between computation time and space.

Finally, it is possible to add superstring computation
of leaf tables to the dynamic program to estimate more
accurately the actual sizes of the leaf tables. This would
better guide the dynamic program to select an optimal overall
lay-out. The high cost of superstring computation makes this
impractical, however. Thus, the superstring lay-out of leaf
tables is done only after the dynamic program finishes.

4 Applications and Performance

We consider three applications: IP routing, network cluster-
ing, and telephone service marketing. Each exhibits different
characteristics. In current IP routing, the strings are 32 bits
long, and the number of distinct data values, i.e., next-hops,
is small. For network clustering, we merge several BGP ta-
bles together and use either the prefixes or their lengths as
data values so that after a look-up we can retrieve the match-
ing prefix itself. In this case, either the number of data values
is large or there are many runs of data values. For routing
and clustering, we compared retries to data structures with
publicly available code: LC-tries [25], which are conceptu-
ally quite similar, and the compressed-table data structure of
Crescenzi, Dardini, and Grossi (CDG) [8], which is among
the fastest IP look-up data structures reported in the litera-
ture. (See Section 5.) We used the authors’ code for both
benchmarks and included in our test suite the FUNET router
table and traffic trace used in the LC-trie work [25]. These
data structures are designed specifically for IP prefix match-
ing. The third application is telephone service marketing, in
which strings are telephone numbers.

Table 1: Number of entries, next-hops, and data structure sizes for tables used in IP routing experiment.

Data struct. size (KB)
Routing Entries Next-hops retrie

table -FL -LR -GR lctrie CDG

AADS 32505 38 1069.49 866.68 835.61 763.52 4446.37
ATT 71483 45 2508.79 2231.89 2180.21 1659.52 15601.92
FUNET 41328 18 506.57 433.00 411.36 967.36 682.93
MAE-WEST 71319 38 1241.14 1040.37 1000.52 1654.06 5520.26
OREGON 118190 33 3828.93 3107.78 3035.73 2711.16 12955.85
PAIX 17766 28 912.94 741.92 723.85 417.74 3241.31
TELSTRA 104096 182 2355.03 2023.08 1971.78 2384.66 9863.96

4.1 IP routing. Table 1 and Figure 6 summarize the rout-
ing tables we used. They report how many distinct prefixes
and next-hops each contained and the sizes of the data struc-
tures built on each. Retrie-FL (rsp., -LR, -GR) is a depth-2
retrie with catenated (rsp., left-right/best-fit merge, greedy)
record layout. For routing, we limited depth to 2 to empha-
size query time. We use deeper retries in Section 4.2. ATT is
a routing table from an AT&T BGP router; FUNET is from
the LC-trie work [25]; TELSTRA comes from Telstra Inter-
net [30]; the other tables are described by Krishnamurthy and
Wang [20].

We timed the LPM queries engendered by router traf-
fic. Since we lacked real traffic traces for the tables other
than ATT and FUNET, we constructed random traces by
choosing, for each table, 100,000 prefixes uniformly at ran-
dom (with replacement) and extending them to full 32-bit
addresses. We used each random trace in the order gener-
ated and also with the addresses sorted lexicographically to
present locality that might be expected in a real router. We
generated random traces for the ATT and FUNET tables as
well, to juxtapose real and random data. We processed each
trace through the respective table 100 times, measuring av-
erage LPM query time; each data structure was built from
scratch for each unique prefix table. We also recorded data
structure build times.

We performed this evaluation on two machines: an SGI
Challenge (400 MHz R12000) with split 32 KB L1 data and
instruction caches, 8 MB unified L2 cache, and 12 GB main
memory, running IRIX 6.5; and a 1 GHz Pentium III with
split 16 KB L1 data and instruction caches, 256 KB unified
L2 cache, and 256 MB main memory, running Linux 2.4.6.
Each time reported is the median of five runs. Table 2 reports
the results, and Figures 7–9 plot the query times.

LC-tries were designed to fit in L2 cache and do so
on all the tables on the SGI but none on the Pentium. Re-
tries behave similarly, although they were not designed to
be cache resident. CDG fits in the SGI cache on AADS,
FUNET, MAE-WEST, and PAIX. Retries uniformly outper-

formed LC-tries, sometimes by an order of magnitude, al-
ways by a factor exceeding three. CDG significantly out-
performed retries on the real and sorted random traces for
FUNET on the Pentium, but this advantage disappeared for
the random trace and also for all the FUNET traces on the
SGI. This suggests the influence of caching effects. Also,
the numbers of prefixes and next-hops for FUNET were rela-
tively low, and CDG is sensitive to these sizes. On the larger
tables (ATT, MAE-WEST, OREGON and TELSTRA), re-
tries significantly outperformed CDG, even for the real and
sorted random traces for ATT (on both machines). As rout-
ing tables are continually growing, with 250,000 entries ex-
pected by the year 2005, we expect that retries will outper-
form CDG on real data. Finally, the FUNET trace was fil-
tered to zero out the low-order 8 bits of each address for pri-
vacy purposes [24] and is likely not a true trace for the prefix
table, which contains some prefixes longer than 24 bits.

The data suggest that the non-trivial superstring retrie
variations significantly reduce retrie space. As might be ex-
pected, the greedy superstring approximation is compara-
tively slow, but the best-fit merge runs with little time degra-
dation over the trivial superstring method and still provides
significant space savings. The FUNET results, in particular
on the real and sorted random traces, suggest that CDG ben-
efits from the ordering of memory accesses more than retries
benefit from the superstring layouts. A first-fit superstring
merging strategy might be useful in testing this hypothesis.

There is a nearly uniform improvement in look-up times
from retrie-FL to retrie-LR to retrie-GR even though each
address look-up performs exactly the same computation and
memory accesses in all three cases. This suggests beneficial
effects from the hardware caches. We believe that this is due
to the overlapping of leaf tables in retrie-LR and retrie-GR,
which both minimizes space usage and increases the hit rates
for similar next-hop values.

The data also suggest that LPM queries on real traces
run significantly faster than on random traces. Again this
suggests beneficial cache effects, from the locality observed

Table 2: Build and query times for routing.

SGI Pentium
Routing Data Build Query (ns) Build Query (ns)

table struct. (ms) Traffic Sort. rand. Rand. (ms) Traffic Sort. rand. Rand.

AADS retrie-FL 195 15 20 150 25 48
retrie-LR 225 15 20 180 24 42
retrie-GR 4157 15 20 3010 22 40
lctrie 113 160 215 100 153 380
CDG 214 17 144 220 25 69

ATT retrie-FL 459 18 16 31 370 20 32 83
retrie-LR 518 17 16 22 440 18 31 68
retrie-GR 9506 17 16 22 7220 19 31 66
lctrie 245 163 159 214 270 146 181 452
CDG 1011 64 39 224 1010 42 43 85

FUNET retrie-FL 166 14 14 18 120 14 20 28
retrie-LR 190 14 14 17 130 14 21 24
retrie-GR 1650 14 14 17 1020 14 19 24
lctrie 136 134 149 199 140 111 153 381
CDG 102 15 14 20 70 8 14 26

MAE-WEST retrie-FL 340 14 21 270 28 65
retrie-LR 388 15 20 310 26 52
retrie-GR 8241 15 21 6950 26 49
lctrie 233 155 210 250 176 454
CDG 325 19 152 310 33 73

OREGON retrie-FL 447 15 67 350 34 76
retrie-LR 512 16 23 390 31 59
retrie-GR 8252 16 23 7740 31 56
lctrie 383 155 341 420 206 464
CDG 949 26 142 1050 41 81

PAIX retrie-FL 118 15 20 90 24 36
retrie-LR 132 14 18 90 22 30
retrie-GR 2100 14 18 1360 22 28
lctrie 66 162 213 60 146 284
CDG 136 15 123 150 22 58

TELSTRA retrie-FL 508 16 27 420 37 86
retrie-LR 572 16 21 480 31 62
retrie-GR 10000 15 21 8510 31 56
lctrie 343 155 311 390 201 458
CDG 599 26 180 610 47 83

in our IP traffic traces. Real trace data is thus critical
for accurate measurements, although random data seem to
provide an upper bound to real-world performance.

Finally, while retries take longer to build than LC-tries
(and sometimes CDG), build time (for -FL and -LR) is
acceptable, and query time is more critical to routing and
on-line clustering, which we assess next.

4.2 Network clustering. For clustering, we combined the
routing tables used above. There were 168,161 unique

prefixes in the tables. The goal of clustering is to recover the
actual matching prefix for an IP address, thereby partitioning
the addresses into equivalence classes [20]. PREF assigns
each resulting prefix itself as the data value. LEN assigns the
length of each prefix as its data value, which is sufficient to
recover the prefix, given the input address. PREF, therefore,
has 168,161 distinct data values, whereas LEN has only 32.

We built depth-2 and -3 retries and LC-tries for PREF
and LEN. Table 3 and Figure 10 detail the data structure
sizes. Note the difference in retrie sizes for the two tables.

Table 3: Data structure sizes for tables used in clustering experiment.

Data struct. size (KB)
Routing depth-2 retrie depth-3 retrie

table -FL -LR -GR -FL -LR -GR lctrie

PREF 13554.87 13068.88 13054.80 3181.63 2878.24 2889.90 3795.91
LEN 5704.37 4938.74 4785.66 1400.84 1045.53 990.33 3795.91

Table 4: Build and query times for clustering.

Times (build: ms) (query: ns)
Machine Table Operation depth-2 retrie depth-3 retrie

-FL -LR -GR -FL -LR -GR lctrie

SGI PREF build 1732 2028 25000 6919 7478 43000 801
query (Apache) 20 19 19 36 35 35 136
query (EW3) 20 19 19 36 36 36 139

LEN build 1299 1495 28000 4299 4476 25000 588
query (Apache) 15 16 16 32 32 32 135
query (EW3) 15 16 16 33 32 32 139

Pentium PREF build 1300 1570 19000 4670 5060 32000 750
query (Apache) 26 26 26 41 40 40 121
query (EW3) 27 27 27 43 42 42 129

LEN build 990 1170 25000 2860 3070 18000 640
query (Apache) 21 21 21 35 34 34 117
query (EW3) 23 21 21 37 35 35 124

The relative sparsity of data values in LEN produces a
much smaller Leaf array, which can also be more effectively
compressed by the superstring methods. Also note the space
reduction achieved by depth-3 retries compared to depth-2
retries. Depth-3 retries are smaller than LC-tries for this
application, yet, as we will see, outperform the latter. CDG
could not be built on either PREF or LEN. CDG assumes a
small number of next-hops and exceeded memory limits for
PREF on both machines. CDG failed on LEN, because the
number of runs of equal next-hops was too large. Here the
difference between the IP routing and clustering applications
of LPM becomes striking: retries work for both applications,
but CDG cannot be applied to clustering.

We timed the clustering of Apache and EW3 server logs.
Apache contains IP addresses recorded at www.apache.org.
The 3,461,361 records gathered in late 1997 had 274,844
unique IP addresses. EW3 contains IP addresses of clients
visiting three large corporations whose content were hosted
by AT&T’s Easy World Wide Web. Twenty-three million
entries were gathered during February and March, 2000,
representing 229,240 unique IP addresses. The experimental
setup was as in the routing assessment. In an on-line
clustering application, such as in a Web server, the data

structures are built once (e.g., daily), and addresses are
clustered as they arrive. Thus, query time is paramount.
Retries significantly outperform LC-tries for this application,
even at depth 3, as shown in Table 4 and Figure 11.

4.3 Telephone service marketing. In our telephone ser-
vice marketing application, the market is divided into re-
gions, each of which is identified by a set of telephone pre-
fixes. Given daily traces of telephone calls, the application
classifies the callers by regions, updates usage statistics, and
generates a report. Such reports may help in making deci-
sions on altering the level of advertisement in certain regions.
For example, the set of prefixes identifying Morris County,
NJ, includes 908876 and 973360. Thus, a call originating
from a telephone number of the form 973360XXXX would
match Morris County, NJ.

Table 5 shows performance results (on the SGI) from
using a retrie to summarize telephone usage in different
regions of the country for the first half of 2001. The second
column shows the number of call records per month used
in the experiment. Since this application is off-line, we
consider the total time required to classify all the numbers.
The third column shows this time (in seconds) for retries, and

Table 5: Time to classify telephone numbers on the SGI.

Month Counts Retrie (s) Bsearch (s)

1 27,479,712 24.35 83.51
2 25,510,814 22.37 74.73
3 28,993,583 25.49 84.60
4 28,452,823 24.94 80.76
5 29,786,302 26.11 84.86
6 28,874,669 25.27 80.79

the fourth column contrasts the time using a binary search
approach for matching. This shows the benefit of retries for
this application. Previous IP look-up data structures, which
we review next, do not currently extend to this alphabet,
although they could be extended using the correspondence
between bounded strings and natural numbers.

5 Comparison to Related Work

The popularity of the Internet has made IP routing an im-
portant area of research. Several LPM schemes for binary
strings were invented in this context. The idea of using
ranges induced by prefixes to perform IP look-ups was sug-
gested by Lampson, Srinivasan, and Varghese [21] and later
analyzed by Gupta, Prabhakar, and Boyd [16] to guarantee
worst-case performance. Ergun et al. [11] considered biased
access to ranges. Feldmann and Muthukrishnan [12] gen-
eralized the idea to packet classification. We generalized
this idea to non-binary strings and showed that LPM tech-
niques developed for strings based on one alphabet can also
be used for strings based on another. Thus, under the right
conditions, the data structures invented for IP routing can be
used for general LPM. Encoding strings over arbitrary alpha-
bets as reals and searching in that representation goes back at
least to arithmetic coding; see, e.g., Cover and Thomas [7].

Retries are in the general class of multi-level table look-
up schemes used for both hardware [15, 18, 23] and soft-
ware [9, 10, 25, 28, 29] implementations for IP routing.
Since modern machines use memory hierarchies with some-
times dramatically different performance levels, some of
these works attempt to build data structures conforming to
the memory hierarchies at hand. Both the LC-trie scheme of
Nilsson and Karlsson [25] and the multi-level table of Srini-
vasan and Varghese [29] attempt to optimize for L2 caches
by adjusting the number of levels to minimize space usage.
Efficient implementations, however, exploit the binary al-
phabet of IP addresses and prefixes.

Cheung and McCanne [6] took a more general approach
to dealing with memory hierarchies that includes the use of
prefix popularity. They consider a multi-level table scheme
similar to retries and attempt to minimize the space usage

of popular tables so that they fit into the fast caches. Since
the cache sizes are limited, they must solve a complex con-
strained optimization problem to find the right data structure.
L1 caches on most machines are very small, however, so
much of the gain comes from fitting a data structure into L2
caches. In addition, the popularity of prefixes is a dynamic
property and not easy to approximate statically. Thus, we
focus on bounding the number of memory accesses and min-
imizing memory usage. We do this by (1) separating internal
tables from leaf tables so that the latter can use small inte-
ger types to store data values; (2) using dynamic program-
ming to optimize the lay-out of internal and leaf tables given
some bound on the number of levels, which also bounds the
number of memory accesses during queries; and (3) using
a superstring approach to minimize space usage of the leaf
tables. The results in Section 4 show that we achieve both
good look-up performance and small memory usage.

Crescenzi, Dardini, and Grossi [8] introduced a
compressed-table data structure for IP look-up. The key idea
is to identify runs induced by common next-hops among the
��� � implicit prefixes to compress the entire table with this
information. This works well when the number of distinct
next-hops is small and there are few runs, which is mostly
the case in IP routing. The compressed-table data structure
is fast, because it bounds the number of memory accesses
per match. Unfortunately, in network clustering applications,
both the number of distinct next-hop values and the number
of runs can be quite large. Thus, this technique cannot be
used in such applications. Section 4 shows that retries often
outperform the compressed-table data structure for IP rout-
ing and use much less space.

6 Conclusions

We considered the problem of performing LPM on short
strings with limited alphabets. We showed how to map such
strings into the integers so that small strings would map to
values representable in machine words. This enabled the use
of standard integer arithmetic for prefix matching. We then
presented retries, a novel, multi-level table data structure
for LPM. Experimental results were presented showing that

retries outperform other comparable data structures.
A number of open problems remain. A dynamic LPM

data structure that performs queries empirically fast remains
elusive. Build times for static structures are acceptable for
present applications, but the continual growth of routing ta-
bles will likely necessitate dynamic solutions in the future.
As with general string matching solutions, theoretically ap-
pealing approaches, e.g., based on interval trees [26], do
not exploit some of the peculiar characteristics of these ap-
plications. Feldmann and Muthukrishnan [12] report par-
tial progress. We have a prototype based on nested-interval
maintenance but have not yet assessed its performance.

Our results demonstrate that LPM data structures per-
form much better on real trace data than on randomly gen-
erated data. Investigating the cache behavior of LPM data
structures on real data thus seems important. Compiling
benchmark suites of real data is problematic given the pro-
prietary nature of such data, so work on modeling IP address
traces for experimental purposes is also worthwhile.

Acknowledgments

We thank John Linderman for describing the use of prefixes
in telephone service marketing. We also thank the anony-
mous reviewers, who made several helpful comments.

References

[1] K. C. R. C. Arnold. Screen Updating and Cursor Movement
Optimization: A Library Package. 4.2BSD UNIX Program-
mer’s Manual, 1977.

[2] A. Blum, M. Li, J. Tromp, and M. Yannakakis. Linear
approximation of shortest superstrings. J. ACM, 41(4):630–
47, 1994.

[3] D. Breslauer. Fast parallel string prefix-matching. Theor.
Comp. Sci., 137(2):268–78, 1995.

[4] D. Breslauer, L. Colussi, and L. Toniolo. On the comparison
complexity of the string prefix-matching problem. J. Alg.,
29(1):18–67, 1998.

[5] Y.-F. Chen, F. Douglis, H. Huang, and K.-P. Vo. TopBlend:
An efficient implementation of HtmlDiff in Java. In Proc.
WebNet’00, 2000.

[6] G. Cheung and S. McCanne. Optimal routing table design for
IP address lookup under memory constraints. In Proc. 18th
IEEE INFOCOM, volume 3, pages 1437–44, 1999.

[7] T. M. Cover and J. A. Thomas. Elements of Information
Theory. John Wiley & Sons, New York, 1991.

[8] P. Crescenzi, L. Dardini, and R. Grossi. IP address lookup
made fast and simple. In Proc. 7th ESA, volume 1643 of
LNCS, pages 65–76. Springer-Verlag, 1999.

[9] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small
forwarding tables for fast routing lookups. In Proc. ACM
SIGCOMM ’97, pages 3–14, 1997.

[10] W. Doeringer, G. Karjoth, and M. Nassehi. Routing
on longest-matching prefixes. IEEE/ACM Trans. Netwk.,
4(1):86–97, 1996. Err., 5(1):600, 1997.

[11] F. Ergun, S. Mittra, S. C. Sahinalp, J. Sharp, and R. K. Sinha.
A dynamic lookup scheme for bursty access patterns. In Proc.
20th IEEE INFOCOM, volume 3, pages 1444–53, 2001.

[12] A. Feldmann and S. Muthukrishnan. Tradeoffs for packet
classification. In Proc. 19th IEEE INFOCOM, volume 3,
pages 1193–202, 2000.

[13] P. Ferragina and R. Grossi. A fully-dynamic data structure for
external substring search. In Proc. 27th ACM STOC, pages
693–702, 1995.

[14] V. Fuller, T. Li, J. Yu, and K. Varadhan. Classless
Inter-Domain Routing (CIDR): An Address Assignment and
Aggregation Strategy. Internet Engineering Task Force
(www.ietf.org), 1993. RFC 1519.

[15] P. Gupta, S. Lin, and M. McKeown. Routing lookups in
hardware and memory access speeds. In Proc. 17th IEEE
INFOCOM, volume 3, pages 1240–7, 1998.

[16] P. Gupta, B. Prabhakar, and S. Boyd. Near-optimal routing
lookups with bounded worst case performance. In Proc. 19th
IEEE INFOCOM, volume 3, pages 1184–92, 2000.

[17] D. S. Hirschberg. Algorithms for the longest common subse-
quence problem. J. ACM, 24(4):664–75, 1977.

[18] N.-F. Huang, S.-M. Zhao, J.-Y. Pan, and C.-A. Su. A fast IP
routing lookup scheme for gigabit switching routers. In Proc.
18th IEEE INFOCOM, volume 3, pages 1429–36, 1999.

[19] G. Jacobson and K.-P. Vo. Heaviest increasing/common
subsequence problems. In Proc. 3rd CPM, volume 644 of
LNCS, pages 52–65. Springer-Verlag, 1992.

[20] B. Krishnamurthy and J. Wang. On network-aware clustering
of Web clients. In Proc. ACM SIGCOMM ’00, pages 97–110,
2000.

[21] B. Lampson, V. Srinivasan, and G. Varghese. IP lookups
using multiway and multicolumn search. IEEE/ACM Trans.
Netwk., 7(3):324–34, 1999.

[22] E. M. McCreight. A space-economical suffix tree construc-
tion algorithm. J. ACM, 23(2):262–72, 1976.

[23] A. Moestedt and P. Sjödin. IP address lookup in hardware for
high-speed routing. In Proc. Hot Interconnects VI, Stanford
Univ., 1998.

[24] S. Nilsson. Personal communication. 2001.
[25] S. Nilsson and G. Karlsson. IP-address lookup using LC-

tries. IEEE J. Sel. Area. Comm., 17(6):1083–92, 1999.
[26] F. P. Preparata and M. I. Shamos. Computational Geometry:

An Introduction. Springer-Verlag, 1988.
[27] D. Sankoff and J. B. Kruskal. Time Warps, String Edits

and Macromolecules: The Theory and Practice of Sequence
Comparisons. Addison Wesley, Reading, MA, 1983.

[28] K. Sklower. A tree-based routing table for Berkeley UNIX.
In Proc. USENIX Winter 1991 Tech. Conf., pages 93–104,
1991.

[29] V. Srinivasan and G. Varghese. Fast address lookup us-
ing controlled prefix expansion. ACM Trans. Comp. Sys.,
17(1):1–40, 1999.

[30] Telstra Internet. http://www.telstra.net/ops/bgptab.txt.

0

5000

10000

15000

D
at

a
st

ru
ct

ur
e

si
ze

 (
by

te
s)

retrie-FL
retrie-LR
retrie-GR
lctrie
CDG

AADS

38 next-hops
32505 entries

ATT

45 next-hops
71483 entries

FUNET

18 next-hops
41328 entries

MAE-WEST

38 next-hops
71319 entries

OREGON

33 next-hops
118190 entries

PAIX

28 next-hops
17766 entries

TELSTRA

182 next-hops
104096 entries

Figure 6: Data structure sizes for tables used in IP routing experiment.

0

100

200

300

400

500

L
P

M
 t

im
e

(n
s) retrie-FL

retrie-LR
retrie-GR
lctrie
CDG

SGI P3
ATT

SGI P3
FUNET

Figure 7: Query times for routing using real traffic data.

0

100

200

300

400

500

L
P

M
 t

im
e

(n
s) retrie-FL

retrie-LR
retrie-GR
lctrie
CDG

SGI P3
AADS

SGI P3
ATT

SGI P3
FUNET

SGI P3
MAE-WEST

SGI P3
OREGON

SGI P3
PAIX

SGI P3
TELSTRA

Figure 8: Query times for routing using sorted random traffic data.

0

100

200

300

400

500

L
P

M
 t

im
e

(n
s) retrie-FL

retrie-LR
retrie-GR
lctrie
CDG

SGI P3
AADS

SGI P3
ATT

SGI P3
FUNET

SGI P3
MAE-WEST

SGI P3
OREGON

SGI P3
PAIX

SGI P3
TELSTRA

Figure 9: Query times for routing using random traffic data.

0

5000

10000

15000

D
at

a
st

ru
ct

ur
e

si
ze

 (
by

te
s)

retrie-2-FL
retrie-2-LR
retrie-2-GR
retrie-3-FL
retrie-3-LR
retrie-3-GR
lctrie

PREF LEN

Figure 10: Data structure sizes for tables used in clustering experiment.

0

100

200

300

400

500

L
P

M
 t

im
e

(n
s)

retrie-2-FL
retrie-2-LR
retrie-2-GR
retrie-3-FL
retrie-3-LR
retrie-3-GR
lctrie

SGI P3
Apache (PREF)

SGI P3
EW3 (PREF)

SGI P3
Apache (LEN)

SGI P3
EW3 (LEN)

Figure 11: Query times for clustering.

