The Cutting-Stock Approach to Bin Packing:
Theory and Experiments

DaviD L. APPLEGATE *

DAVID S. JOHNSON §

Abstract

We report on an experimental study of the Gilmore-Gomory
cutting-stock heuristic and related LP-based approaches to
bin packing, as applied to instances generated according to
discrete distributions. No polynomial running time bound is
known to hold for the Gilmore-Gomory approach, and em-
pirical operation counts suggest that no straightforward im-
plementation can have average running time O(m?), where
m is the number of distinct item sizes. Our experiments
suggest that by using dynamic programming to solve the
unbounded knapsack problems that arise in this approach,
we can robustly obtain average running times that are o(m*)
and feasible for m well in excess of 1,000. This makes a vari-
ant on the previously un-implemented asymptotic approxi-
mation scheme of Fernandez de la Vega and Lueker practical
for arbitrarily large values of m and quite small values of e.

We also observed two interesting anomalies in our ex-
perimental results: (1) running time decreasing as the num-
ber n of items increases and (2) solution quality improving
as running time is reduced and an approximation guarantee
is weakened. We provide explanations for these phenomena
and characterize the situations in which they occur.

1 Introduction

In the classical one-dimensional bin packing problem, we
are given a list L = (a1, ..., ap) of items, a bin capacity
B, and a size s(a;) € (0, B] for each item in the list. We
wish to pack the items into a minimum number of bins of
capacity B, i.e., to partition the items into a minimum
number of subsets such that the sum of the sizes of the
items in each subset is B or less. This problem is NP-

*AT&T Labs, Room C224, 180 Park Avenue, Florham Park,
NJ 07932, USA. Email: david@research.att.com.

TUNICAMP - Universidade Estadual de Campinas, DEN-
SIS/FEEC, Rua Albert Einstein 400 - Caixa Postal 6101, Camp-
inas - SP - Brazil. Email: buriol@densis.fee.unicamp.br. Work
done while visiting AT&T Labs.

i Department of Mathematics, University of Maryland, College
Park, MD 20742. Email: bld@math.umd.edu. Work done while
visiting AT&T Labs.

$ AT&T Labs, Room C239, 180 Park Avenue, Florham Park,
NJ 07932, USA. Email: dsj@research.att.com.

TAT&T TLabs, Room C237, 180 Park Avenue, Florham Park,
NJ 07932, USA. Email: shor@research.att.com.

LucianNA S. Burior |

BERNARD L. DILLARD ¥

PETER W. SHOR I

hard and has a long history of serving as a test bed for
the study of new algorithmic techniques and forms of
analysis.

Much recent analysis (e.g., see [3, 4, 6]) has con-
cerned the average case behavior of heuristics under dis-
crete distributions. A discrete distribution F' consists of
a bin size B € Z™T, a sequence of positive integral sizes
s1 < 89 < +++ < 8y, < B, and an associated vector
Pr = {p1,P2,---,Pm) Of rational probabilities such that
> i=1pj = 1. In a list generated according to this dis-
tribution, the ith item a; has size s(a;) = s; with prob-
ability p;, chosen independently for each ¢ > 1. The
above papers analyzed the asymptotic expected perfor-
mance under such distributions for such classical bin
packing heuristics as Best and First Fit (BF and FF),
Best and First Fit Decreasing (BFD and FFD), and the
new Sum-of-Squares heuristic of [6, 7].

Three of the above algorithms are online algorithms,
and for these the order of the items in the list is
significant. However, if we are allowed to do our packing
offline, i.e., with foreknowledge of the entire list of
items to be packed, then there is a much more compact
representation for an instance generated according to a
discrete distribution: simply give a list of pairs (s;,7;),
1 < i < m, where n; is the number of items of
size s;. This is the way instances are represented
in a well-known special case of bin packing, the one-
dimensional cutting-stock problem, which has many
industrial applications. For such problems, an approach
using linear programming plus knapsack-based column
generation, due to Gilmore and Gomory [14, 15], has
for 40 years been the practitioner’s method of choice
because of its great effectiveness when m is small. The
packings it produces cannot use more than OPT(L)+m
bins (and typically use significantly fewer) and although
the worst-case time bound for the original algorithm
may well be exponential in m, in practice running time
does not seem to be a problem.

In this paper we examine the Gilmore-Gomory
approach and some of its variants from an experimental
point of view, in the context of instances generated
according to discrete distributions. We do this both to

get a clearer idea of how the Gilmore-Gomory approach
scales as m, n, and B grow (and how to adapt it
to such situations), and also to gain perspective on
the existing results for classical bin packing algorithms.
Previous experiments with Gilmore-Gomory appeared
primarily in the Operations Research literature and
typically concentrated on instances with m < 100,
where the approach is known to work quite quickly
[10, 11, 21]. The restriction of past studies to small m
has two explanations: (1) most real-world cutting stock
applications have m < 100 and (2) for m this small, true
optimization becomes possible via branch-and-bound,
with Gilmore-Gomory providing both lower and, with
rounding, upper bounds, e.g., see [10, 11]). Here we are
interested in the value of the LP-based approaches as
approximation algorithms and hence our main results
go well beyond previous studies. We consider instances
with m as large as is computationally feasible (which
in certain cases can mean m = 50,000 or more). This
will enable us to pose plausible hypotheses about how
running time and solution quality typically scale with
instance parameters.

In Section 2 we describe the original Gilmore-
Gomory approach and survey the relevant literature.
In Section 3 we describe an alternative linear program-
ming formulation for computing the Gilmore-Gomory
bound using a flow-based model, independently pro-
posed by Valério de Carvalho [8, 9] and Csirik et al.
[6, 7]. This approach can be implemented to run in time
polynomial in m, logn, and B (a better bound than we
have for Gilmore-Gomory) but to our knowledge has
not previously been studied computationally. In Sec-
tion 4 we discuss the key grouping technique introduced
in the asymptotic fully-polynomial-time approximation
scheme for bin packing of Fernandez de la Vega and
Lueker [12], another algorithmic idea that does not ap-
pear to have previously been tested experimentally (and
indeed could not have been tested without an efficient
Gilmore-Gomory implementation or its equivalent). In
Section 5 we describe the instance classes covered by
our experiments and summarize what is known theoret-
ically about the average case performance of classical
bin packing heuristics for them. Our results and con-
clusions are presented in Sections 6.

2 The Gilmore-Gomory Approach

The Gilmore-Gomory approach is based on the following
integer programming formulation of the cutting stock
problem. Suppose our instance is represented by the
list L of size/quantity pairs (s;,n;), 1 < i < m. A
nonnegative integer vector p = (p[1],p[2],...,p[m]) is
said to be a packing patternif 3 ;" | pli]s; < B. Suppose
there are t distinct packing patterns pi,...,p; for the

given set of item sizes. The integer program has a
variable z; for each pattern p;, intended to represent
the number of times that pattern is used, and asks us
to minimize Eﬁ-:l z; subject to the constraints

(2.1)

(2.2)

The solution value for the linear programming re-
laxation of this integer program, call it LP(L), is a lower
bound on the optimal number of bins. Moreover, it is a
very good one. For note that in a basic optimal solution
there will be at most m non-zero variables, and hence
at most m fractional variables. If one rounds each of
these up to the nearest integer, one gets a packing of a
superset of the items in the original instance that uses
fewer than LP(L) + m bins. Thus an optimal packing
of the original set of items can use no more bins and so
OPT(L) < LP(L) +m in the worst case, and we can
get a packing at least this good. In practice, a better
rounding procedure is the following one, recommended
by Wischer and Gau [21]: Round the fractional vari-
ables down and handle the unpacked items using FFD.
It is easy to prove that this “round down” approach also
satisfies an OPT(L) 4+ m worst-case bound. Our exper-
iments suggest that in practice its excess over OPT(L)
is typically no more than 4% of m.

There is an apparent drawback to using the LP
formulation, however: the number ¢ of packing patterns
can be exponential in m. The approach suggested
by Gilmore and Gomory was to avoid listing all the
patterns, and instead generate new patterns only when
needed. Suppose one finds a basic optimal solution to
the above LP restricted to some particular subset of the
patterns. (In practice, a good starting set consists of the
patterns induced by an FFD packing of the items.) Let
yi, 1 < i < m, be the dual variables associated with the
solution. Then it is an easy observation that the current
solution can only be improved if there is a packing
pattern p’ not in our subset such that Y ;*, p'[i]y; > 1,
in which case adding the variable for such a pattern
may improve the solution. (If no such pattern exists,
our current solution is optimal.) In practice it pays to
choose the pattern with the largest value of Y7 | p'[i]y;
[15]. Note that finding such a pattern is equivalent to
solving an unbounded knapsack problem where B is the
knapsack size, the s;’s are the item sizes, and the y;’s are
the item values. We thus have the following procedure
for solving the original LP.

1. Use FFD to generate an initial set of
patterns P.

2. Solve the LP based on pattern set P.
3. While not done do the following;:

(a) Solve the unbounded knapsack prob-
lem induced by the current LP.

(b) If the resulting pattern has value 1 or
less, we are done.

(¢) Otherwise add the pattern to P and
solve the resulting LP.

4. Derive a packing from the current LP
solution by rounding down.

The original approach of [14, 15] did not solve the LP in
step (3a) but simply performed a single pivot. However,
the reduction in iterations obtained by actually solving
the LP’s more than pays for itself, and this is the
approach taken by current implementations.

There are still several potential computational bot-
tlenecks here: (1) We have no subexponential bound
on the number of iterations. (2) Even though modern
simplex-based LP codes in practice seem to take time
bounded by low order polynomials in the size of the LP,
this is not a worst-case guarantee. (3) The unbounded
knapsack problem is itself NP-hard.

Fortunately, there are ways to deal with this last
problem. First, unbounded knapsack problems can
be solved in (pseudo-polynomial) time O(mB) using
dynamic programming. This approach was proposed
in the first Gilmore-Gomory paper [14]. A second
approach was suggested in the follow-up paper [15],
where Gilmore and Gomory observed that dynamic
programming could often be bested by a straightforward
branch-and-bound algorithm (even though the worst-
case running time for the latter is exponential rather
than pseudo-polynomial). The current common wisdom
[2, 21] is that the branch-and-bound approach is to
be preferred, and this is indeed the case for the small
values of m considered in previous studies. In this paper
we study the effect of using relatively straightforward
implementations of both approaches, and conclude that
solving the knapsack problems is not typically the
computational bottleneck.

Note that the times for both the LP and the knap-
sack problems are almost independent of the number of
items n. Moreover, the initial set of patterns can be
found in time O(m?) by generating the FFD packing in
size-by-size fashion rather than item-by-item. The same
bound applies to our rounding procedure. Thus for
any fixed discrete distribution, the Gilmore-Gomory ap-
proach should be asymptotically much faster than any
of the classical online bin packing heuristics, all of which
pack item-by-item and hence have running times that
are 2(n). Of course, in applications where the items

must actually be individually assigned to bins, any al-
gorithm must be Q(n), but in many situations we are
only looking for a packing plan or for bounds on the
number of bins needed.

3 The Flow-Based Approach

An alternative approach to computing the LP bound,
one that models the problem in a flow-oriented way,
has recently been proposed independently by Valério de
Carvalho [8, 9] and Csirik et al. [6, 7]. We follow the
details of the latter formulation, although both embody
the same basic idea. Let us view the packing process as
placing items into bins one at a time. For each pair of
an item size s and a bin level h, 0 < h < B, we have
a variable v(i, h), intended to represent the number of
items of size s; that are placed into bins whose prior
contents totaled h. It is easy to see that the following
linear program has the same optimal solution value as
the one in the previous section: Minimize Y ;- v(i,0),
i.e., the total number of bins used, subject to

(3.1) v(i,h) >0, 1<i<m,
0<h<B
(3.2) v(i,h) =0, 1<i<m,
si>B—nh
(3.3) v(i,h) =0, 1<h<s;,
1<i<m
B-1
(3.4) v(i, h) = ny, 1<i<m
h=0
(3.5) Y v(i,h) <Y w(i,h—s;), 1<h<B
i=1 i=1

where the value of v(k, h — si) when h — s < 0 is taken
to be 0 by definition for all k. Constraints of type (3.2)
say that no item can go into a bin that is too full to
have room for it. Constraints of type (3.3) imply that
the first item to go in any bin must be larger than the
second. (This is not strictly necessary, but helps reduce
the number of nonzeros in the coefficient matrix and
thus speed up the code.) Constraints of type (3.4) say
that all items must be packed. Constraints of type (3.5)
say that bins with a given level are created at least as
fast as they disappear.

Solving the above LP does not directly yield a pack-
ing, but one can derive a corresponding set of packing
patterns using a simple greedy procedure that will be
described in the full paper. Surprisingly, this procedure
obeys the same bound on the number of non-zero pat-
terns as does the classical column-generation approach,
even though here the LP has m + B constraints. In the
full paper we prove the following:

THEOREM 3.1. The greedy procedure for extracting pat-
terns from a solution to the flow-based LP runs in time
O(mB) and finds a set C of patterns, |C| < m, that
provides an optimal solution to the pattern-based LP.

The flow-based approach has a theoretical advan-
tage over the column-based approach in that it can be
implemented to run in provably pseudo-polynomial time
using the ellipsoid method. However, the LP involved
is much bigger than the initial LP in the pattern-based
approach, and it will have ©(mB) nonzeros, whereas
the latter will have O(m?) (O(m) when the smallest
item size exceeds ¢B for some fixed ¢ > 0). Thus the
pattern-based approach may well be faster in practice,
even though Q(m) distinct LP’s may need to be solved.

4 Speedups by Grouping

A key idea introduced in the asymptotic approximation
scheme for bin packing of [12] is that of grouping.
Suppose the items in list L are ordered so that s(aq) >
s(az) > -+ > s(ap), suppose g << n, and let K =
[n/g]. Partition the items into groups G, 1 < k < K,
where Gy = {agr_1)4i : 1 < i < g} for k < K, and
Gk ={a;:g(K—-1)<i<n}.

Consider the list L; consisting of g items of size
s(agk+1), 1 < k < K. There is a one-to-one corre-
spondence between the items of L; and items at least
as large in Up—'Gy, so OPT(L) > OPT(L;). On the
other hand, there is also a one-to-one correspondence
between items in L with items in L, = L; U G; that
are at least as large, so OPT(L) < OPT(Ly)+g. Thus
if we use one of the previous two LP-based approaches
to pack Ly, replace each item of size s(agry1) in Ly by
an item from G4y in L, and then place the items of
(71 into separate bins, we can derive a packing of L that
uses at most OPT(L)+ [n/g] + g bins. Varying g yields
a tradeoff between running time and packing quality.

Moreover we can get better packings in practice as
follows: After computing the fractional LP solution for
L, round down the fractional patterns of L1, obtaining
a packing of subset of L;, replace the items of size
s(agk+1) in this packing by the largest items in Gp41,
and then pack the leftover items from L (including those
from G4) using FFD.

Note that by the construction of L, the solution of
the LP for it will be a lower bound on LP(L). Thus
running this approach provides both a packing and a
certificate for how good it is, just as does the original
Gilmore-Gomory algorithm.

5 Instance Classes

In this study we considered three distinct classes of
discrete distributions for generating our test instances:

(1) Discrete Uniform Distributions, (2) Near Uniform
Sampled Distributions, and (3) Zipf’s Law Sampled
Distributions.

5.1 Discrete Uniform Distributions. These are
distributions denoted by U{h,j,k}, 1 < h < j < k,
in which the bin size B = k and the item sizes are
the integers s with A < s < j, all equally likely. Of
particular interest is the special case where h = 1, which
has been studied extensively from a theoretical point of
view, e.g., see [3, 4, 6].

Let L,(F) denote a random n-item list with item
sizes chosen independently according to distribution F',
let s(L) denote the lower bound on OPT(L) obtained
by dividing the sum of the item sizes in L by the bin
size, and let A(L) be the number of bins used in the
packing of L generated by algorithm A. Define

EW{(F) = E[A(Ln(F)) = s(Ln(F))]

Then we know from [4] that EWSFT(F) is O(1) for all
U{1,j,k} with j < k—1 and ©(y/n) for j = k — 1.
The same holds if OPT is replaced by the online Sum-
of-Squares algorithm of [6, 7] (denoted by SS in what
follows). On the other hand, although EWI¥P(F) =
O(1) for many of these distributions, it can also be ©(n),
albeit with a small constant of proportionality [3, 5].

Experimental studies of classical bin packing algo-
rithms reported in [3, 7] concentrated on discrete uni-
form distributions with & < 100, the most thorough
study being the one in [7] for U{1, 4,100}, 2 < j < 99,
and U{18,5,100}, 19 < j < 99. As we shall see,
these present no serious challenge to our LP-based ap-
proaches. To examine questions of scaling, we also con-
sider distributions that might arise if we were seeking
better and better approximations to the continuous uni-
form distributions U(0,], where item sizes are chosen
uniformly from the real interval (0, a]. For example the
continuous distribution U(0,.4] can be viewed as the
limit of the sequence U{1, 200k, 500k} as h — oo.

5.2 Bounded Probability Sampled Distribu-
tions. These distributions were introduced in [10], ex-
panding on an instance generator introduced in [13],
and are themselves randomly generated. To get a dis-
tribution of type BS{h,j,k,m}, 1 < h < j < k and
m < j — h+ 1 we randomly choose m distinct sizes s
such that h < s < 7, and to each we randomly assign
a weight w(s) € [0.1,0.9]. The probability associated
with size s is then w(s) divided by the sum of all the
weights. Values of the bin size B = k studied in [10]
range up to 10,000, and values of m up to 100. To get
an n-item instance of type BS{h, j, k,m}, we randomly
generate a distribution of this type and then choose n

item sizes according to that distribution. We consider
three general classes of these distributions in our scal-
ing experiments, roughly of the form BS{1, B/2, B, m},
BS{B/6,B/2,B,m}, and BS{B/4,B/2,B,m}.

The first sequence mirrors the discrete uniform dis-
tributions U{1, B/2, B}. The last two model the situ-
ation where there are no really small items, with the
third generating instances like those in the famous 3-
PARTITION problem. These last two are also interest-
ing since they are unlike the standard test cases previ-
ously used for evaluating knapsack algorithms.

5.3 Zipf’s Law Sampled Distributions. This is
a new class, analogous to the previous one, but with
weights distributed according to Zipf’s Law. In a type
ZS{h, j, k,m} distribution, m sizes are chosen as before.
They are then randomly permuted as s1, s2,.. ., Sm, and
we set w(s;) =1/i, 1 <14 < m. We tested sequences of
7S distributions mirroring the BS distributions above.

6 Results

Our experiments were performed on a Silicon Graphics
Power Challenge with 196 Mhz MIPS R10000 proces-
sors and 1 Megabyte 2nd level caches. This machine
has 7.6 Gigabytes of main memory, shared by 28 of
the above processors. The parallelism of the machine
was exploited only for performing many individual ex-
periments at the same time. The programs were writ-
ten in C and compiled with the system compiler using
-03 code optimization and 32-bit word options. (Turn-
ing off optimization entirely caused the dynamic pro-
gramming knapsack solutions to take 4 times as long,
but had less of an effect on the other codes.) LP’s
were solved by calling CPLEX 6.5’s primal simplex code.
(CPLEX 6.5’s dual and interior point codes were non-
competitive for our LP’s.) The “presolve” option was
turned on, which for some instances improved speed
dramatically and never hurt much. In addition, for the
pattern-based codes we set the undocumented CPLEX pa-
rameter FASTMIP to 1, which turns off matrix refactoring
in successive calls and yields a substantial speedup. In-
stances were passed to CPLEX in sparse matrix format
(another key to obtaining fast performance).

We should note here that the CPLEX running times
reported by the operating system for our larger in-
stances could vary substantially (by as much as a factor
of 2) depending on the overall load of the machine. The
times reported here are the faster ones obtained when
the machine was relatively lightly loaded. Even so, the
CPLEX times and the overall running times that in-
clude them are the least accurately reproducible statis-
tics we report. Nevertheless, they still suffice to indicate
rough trends in algorithmic performance.

Our branch-and-bound code for the unbounded
knapsack was similar to the algorithm MTUI of [18] in
that we sped up the search for the next item size to add
by keeping an auxiliary array that held for each item
the smallest item with lower density y;/s;. As a further
speed-up trick, we also kept an array which for each
item gave the next smallest item with lower density.

For simplicity in what follows, we shall let PDP
and PBB denote the pattern-based approaches using
dynamic programming and branch-and-bound respec-
tively, and FLO denote the flow-based approach. A
sampling of the data from our experiments is presented
in Tables 1 through 10 and Figures 1 and 2. In the space
remaining we will point out some of the more interesting
highlights and summarize our main conclusions.

6.1 Discrete Uniform Distributions with k& =
100. We ran the three LP-based codes plus FFD, BFD,
and SS on five m-item lists generated according to
the distributions U{1,5,100}, 2 < j < 99, and for
U{18,5,100}, 19 < j < 99, for n = 100, 1,000,
10,000, 100,000, and 1,000,000. For these instances
the rounded-down LP solutions were almost always
optimal, using just [LP(L)] bins, and never used more
than [LP(L)] + 1. (No instance of bin packing has
yet been discovered for which OPT > [LP(L)] + 1,
which has led some to conjecture that this is the worst
possible [16, 17, 20].) The value of rounding down
rather than up is already clear here, as rounding up
(when n = 1,000, 000) yielded packings that averaged
around [LP] + 12 for PBB and PDP, and [LP] + 16
for FLO. This difference can perhaps be explained by
the observation that FLO on average had 45% more
fractional patterns than the other two, something that
makes more of a difference for rounding up than down.

Table 1 reports average running times for the first
set of distributions as a function of n and j for PDP and
FLO. (The times for PBB are here essentially the same
as those for PDP.) The running times for all three codes
were always under a second per instance, so in practice
it wouldn’t make much difference which code one chose
even though FLO is substantially slower than the other
two. However, one trend is worth remarking.

For the larger values of m, the average running
times for PBB and PDP actually decrease as n increases,
with more than a factor of 2 difference between the times
for n = 100 and for n = 10,000 when 60 < m < 69.
This is a reproducible phenomenon and we will examine
possible explanations in the next section.

As to traditional bin packing heuristics, for these
distributions both FFD and SS have bounded expected
excess except for m = 99. However, while FFD is almost
as good as our LP approaches, finding optimal solutions

almost as frequently, SS is much worse. For instance,
for j = 90, its asymptotic average excess appears
to be something like 50 bins. Both these classical
heuristics perform much more poorly on some of the
U{18,j,100} distributions. Many of these distributions
have EWOFT(F) = ©(n), and for these FFD and SS
can use as many as 1.1 times the optimal number of bins
(a linear rather than an additive excess).

6.2 How can an algorithm take less time when n
increases? In the previous section we observed that for
discrete uniform distributions U{1, j, 100}, the running
times for PBB and PDP decrease as n increases from
100 to 10,000. This phenomenon is not restricted to
small bin sizes, as is shown in Table 2, the top half of
which covers the distribution U{1,600,1000}, with n
increasing by factors of roughly v/10 from m to 1000m.
Here the total running time consistently decreases as
n goes up, except for a slight increase on the first size
increment.

What is the explanation? It is clear from the
data that the dominant factor in the running time
decrease is the reduction in the number of iterations
as n increases. But why does this happen? A first
guess might be that this is due to numeric precision
issues. CPLEX does its computations in floating point
arithmetic with the default tolerance set at 1076 and
a maximum tolerance setting of 107?. Thus, in order
to guarantee termination, our code has to halt as soon
as the current knapsack solution has value 1 + €, where
€ is the chosen CPLEX tolerance. Given that the FFD
packings for this distribution are typically within 1 bin
of optimal, the initial error gets closer to the tolerance
as n increases, and so the code might be more likely to
halt prematurely as n increases.

This hypothesis unfortunately is unsupported by
our data. For these instances, the smallest knapsack
solutions that exceed 1 also exceed 1 + 107*, and our
pattern-based codes typically get the same solution
value and same number of iterations whether € is set to
10~* or 10~°. Moreover the solutions appear typically
to be the true (infinite precision) optima. This was
confirmed in limited tests with an infinite-precision
Gilmore-Gomory implementation that combines our
code with (1) the exact LP solver of Applegate and
Still [1] (a research prototype that stores all numbers
as rationals with arbitrary precision numerators and
denominators) and (2) an exact dynamic programming
knapsack code. Thus precision does not appear to be
an issue, although for safety we set e = 1079 in all our
subsequent experiments.

We suspect that the reduction in iterations as n
increases is actually explained by the number of initial

patterns provided by the FFD packing. As reported
in Table 2, when n = 600,000 the FFD supplied
patterns are almost precisely what is needed for the
final LP — only a few iterations are needed to complete
the set. However, for small n far fewer patterns
are generated. This means that more iterations are
needed in order to generate the full set of patterns
needed for the final LP. This phenomenon is enough
to counterbalance the fact that for the smallest n we
get fewer item sizes and hence smaller LP’s. The
latter effect dominates behavior for distributions where
FFD is not so effective, as shown in the lower part of
Table 2, which covers the bounded probability sampled
distribution B.S{1,6000,10000,400}. Here the number
of excess FFD bins, although small, appears to grow
linearly with n, and the total PDP running time is
essentially independent of n, except for the smallest
value, where less than 60% of the sizes are present.

6.3 How Performance Scales. In the previous sec-
tion we considered how performance scales with n. Our
next set of experiments addressed the question of how
performance scales with m and B, together and sep-
arately. Since we are interested mainly in trends, we
typically tested just one instance for each combination
of distribution, m, and B, but this was enough to sup-
port several general conclusions.

Tables 3 and 4 address the case in which both
m and B are growing. (B must grow if m is to
grow arbitrarily.) Table 3 covers the discrete uniform
distributions U{1,200h,500h} for h = 1,2,4,8,16,32.
In light of the discussion in the last section, we chose a
small fixed ratio of » to m (n = 2m) so as to filter out
the effect of n and obtain instances yielding nontrivial
numbers of iterations for PDP and PBB. Had we chosen
n = 1000m, we could have solved much larger instances.
For example, with this choice of n, PBB finds an optimal
solution to an instance of U{1, 51200, 128000} in just 36
iterations and 303 seconds.

For the instances covered by Table 3, the rounded
down LP solution was always an optimal packing, as
indeed was the FFD packing used to generate the initial
set of patterns. In fact, the FFD solution always equaled
the size bound [(D,., s(a))/B], so one could have
concluded that the FFD packing was optimal without
these computations. Nevertheless, it is interesting to
observe how the running times for the LP-based codes
scale, since, as remarked above, there are U{1,j,k}
distributions for which FFD’s expected excess grows
linearly with n, and for these the LP-based algorithms
would find better packings. The times reported for PDP
are roughly consistent with the combinatorial counts.
The number of arithmetic operations needed for solving

the knapsack problems using our dynamic programming
code grows as ©(mB) (and so greater increases here
suggest that memory hierarchy effects are beginning
to have an impact). The time for solving an LP
might be expected to grow roughly as the number of
columns (patterns) times the number of pivots. Using
“iterations” as a reasonable surrogate for the number of
patterns, we get that overall time for PDP should grow
as
(iterations)((iterations x pivots) + mB)

Note that both iterations and pivots per LP are growing
superlinearly, and so we would expect greater-than-
cubic overall time, which is what we see (the times
reported in successive rows go up by more than a factor
of 8). The growth rate is still less than n*, however.
PBB is here faster than PDP since the knapsack time
is comparatively negligible, although its advantage over
PDP is limited by the fact that LP time has become
the dominant factor by the time B = 16,000. It is
also worth noting that for an individual instance the
number of pivots per LP can be highly variable, as
illustrated in Figure 1. The difficulties of the LP’s
can also vary significantly between PBB and PDP,
whose paths may diverge because of ties for the best
knapsack solution. For the instance depicted in Figure
1 the average number of pivots under PBB was 18%
lower than that for PDP, although the same irregularity
manifested itself. The extremely high numbers of pivots
for some of the LP’s in the PDP run suggest that
the danger of runaway LP-time cannot be ignored, no
matter what our average-case projections say. FLO’s
running times are again not competitive, and in any case
its much larger memory requirement rules out applying
it to the largest instances.

Table 4 contains analogous results for bounded
probability distributions in which the sizes sampled
must lie in the intervals (0,B/2), (B/6,B/2), or
(B/4,B/2). Once again, overall running times grow
at a rate somewhere between n® and n* and LP time
dominates dynamic programming time for the largest
values of B. For the last set of distributions, however,
LP time is exceeded by branch-and-bound knapsack so-
lution time, which gets worse as the lower bound on the
size interval increases. Indeed, for the (B/4, B/2) set of
distributions, the time per branch-and-bound knapsack
solution closely tracks the time needed for full exhaus-
tive search, i.e., ©(m?) in this case, and PBB is slower
than FLO for m as large as 16, 000.

Another difference between the last two sets of
distributions and the first lies in the “excess” of the
rounded-down packing, i.e., the difference between the
number of bins contained in that packing and the LP so-
lution value. The first set of distributions behaves much

like the discrete uniform distributions it resembles, with
typical excesses of less than one. For the latter two, the
excesses grow with m, although they are typically be-
tween 3 and 4% of m, far below the proven upper bound
of m itself. It remains to be seen whether the true op-
timum number of bins is closer to the LP lower bound
on the rounded-down upper bound.

Tables 5 and 6 cover experiments in which m was
held fixed and B was allowed to grow. Here growth
in dynamic programming time is expected, but note
that branch-and-bound knapsack time also increases,
perhaps because as B increases there are fewer ties
and so more possibilities must be explored. Iterations
also increase (perhaps because greater precision is now
needed for an optimal solution), although pivots and
seconds per LP remail relatively stable once a moderate
value of B has been attained.

Table 7 shows the effect of increasing m while hold-
ing B fixed. Once again LP time eventually dominates
dynamic programming time. In the (B/2,B/4) case,
FLO time again comes to dominate PBB time, and is
even gaining on PDP as m approaches its maximum
possible value, but it is not clear that we will ever find
a situation where it beats the latter. PBB does have
one surprising advantage over PDP in the (B/2,B/4)
case. As indicated in Table 8, the patterns generated by
branch-and-bound knapsack solutions seem to be better
in the context of the overall algorithm. PDP needs both
more iterations and more pivots per iteration than does
PBB. This doesn’t hold for all distributions, but was
seen often enough in our experiments to be suggestive.

Table 9 provides more detailed information for the
(B/6,B/2) case, illustrating the high variability in
the branch-and-bound times, which not only can vary
widely for the same value of m, but can actually decline
as m increases. Figure 2 charts the evolution of LP time
and branch-and-bound knapsack time during the run for
one of the more troublesome instances. Note that here
LP time is relatively well-behaved (in contrast to the
situation charted in Figure 1), while branch-and-bound
time now can vary widely depending on the stage of the
overall computation.

6.4 Grouping. See Table 10. Here is a major
surprise: For instances with n < 10,000 and m = 1, 600,
grouping not only yields running times that are orders
of magnitude faster than those for the basic Gilmore-
Gomory (g = 1) procedure, it also provides better
packings. This is presumably because for this value of
n and these values of g, the savings due to having far
fewer patterns (and hence far fewer fractional patterns
to round down) can outweigh the cost of having to
separately pack the g largest items (which FFD does

fairly efficiently anyway). Even for n = 1,000,000,
where ¢ = 1 is now dominant in terms of solution
quality, very good results can be obtained in very little
time if n/g € {100,200}. Similar results hold for
m = 3,200.

6.5 Zipf’s Law Distributions. We do not have
space here to present our results for ZS distributions, ex-
cept to note that although they typically yielded similar
behavior to that for the corresponding BS distributions,
a few ZS instances caused more dramatic running time
explosions than we have seen so far. In particular, for
a million-city ZS5{1667,4999, 10000, 2200} instance, the
first 40 iterations of PBB (out of 7802) averaged over 24
minutes per knapsack solution and took roughly 60% of
the total time.

6.6 Directions for Future Research. These pre-
liminary results are based on straightforward implemen-
tations of the algorithmic components. Presumably we
can improve performance by improving those compo-
nents. One way to attack LP time, the major asymp-
totic bottleneck, would be to identify and remove un-
necessary columns from the later LP’s, rather than let
the LP size grow linearly with iteration count. There
are also more sophisticated knapsack algorithms to try,
such as those of [18, 19]. Even a simple improvement to
the dynamic programming code such as identifying and
removing “dominated” items can have a major effect,
and can be implemented by a relatively minor change
in the inner loop of the code. Preliminary experiments
suggest that this idea can often reduce dynamic pro-
gramming time by a factor of 3 or more, as we shall
illustrate in the full paper.

References

[1] D. L. Applegate and C. Still. Personal communication,
2002.

[2] V. Chvédtal. The cutting-stock problem. In Linear
Programming, pages 195-212. W. H. Freeman and
Company, New York, 1983.

[3] E. G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S.
Johnson, L. A. McGeoch, P. W. Shor, R. R. Weber,
and M. Yannakakis. Fundamental discrepancies be-
tween average-case analyses under discrete and contin-
uous distributions. In Proceedings 23rd Annual ACM
Symposium on Theory of Computing, pages 230-240,
New York, 1991. ACM Press.

[4] E. G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S.
Johnson, P. W. Shor, R. R. Weber, and M. Yannakakis.
Bin packing with discrete item sizes, Part I: Perfect
packing theorems and the average case behavior of
optimal packings. SIAM J. Disc. Math., 13:384-402,
2000.

[5] E. G. Coffman, Jr., D. S. Johnson, L. A. McGeoch,
P. W. Shor, and R. R. Weber. Bin packing with discrete

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

20]

[21]

item sizes, Part III: Average case behavior of FFD and
BFD. (In preparation).

J. Csirik, D. S. Johnson, C. Kenyon, J. B. Orlin,
P. W. Shor, and R. R. Weber. On the sum-of-squares
algorithm for bin packing. In Proceedings of the 32nd
Annual ACM Symposium on the Theory of Computing,
pages 208-217, New York, 2000. ACM.

J. Csirik, D. S. Johnson, C. Kenyon, P. W. Shor,
and R. R. Weber. A self organizing bin packing
heuristic. In M. Goodrich and C. C. McGeoch, editors,
Proceedings 1999 Workshop on Algorithm Engineering
and FEzperimentation, pages 246-265, Berlin, 1999.
Lecture Notes in Computer Science 1619, Springer-
Verlag.

J. M. Valério de Carvalho. Exact solutions of bin-
packing problems using column generation and branch
and bound. Annals of Operations Research, 86:629—
659, 1999.

J. M. Valério de Carvalho. Lp models for bin packing
and cutting stock problems. European Journal of
Operational Research, 141:2:253-273, 2002.

Z. Degraeve and M. Peeters. Optimal integer solutions
to industrial cutting stock problems: Part 2: Bench-
mark results. INFORMS J. Comput., 2002. (To ap-
pear).

Z. Degraeve and L. Shrage. Optimal integer solutions
to industrial cutting stock problems. INFORMS J.
Comput., 11:4:406-419, 1999.

W. Fernandez de la Vega and G. S. Lueker. Bin packing
can be solved within 1+e¢ in linear time. Combinatorica,
1:349-355, 1981.

T. Gau and G. Wischer. Cutgenl: A problem gen-
erator for the standard one-dimensional cutting stock
problem. European J. of Oper. Res., 84:572-579, 1995.
P. C. Gilmore and R. E. Gomory. A linear program-
ming approach to the cutting stock problem. Oper.
Res., 9:948-859, 1961.

P. C. Gilmore and R. E. Gomory. A linear program-
ming approach to the cutting stock program — Part II.
Oper. Res., 11:863-888, 1963.

O. Marcotte. The cutting stock problem and integer
rounding. Math. Programming, 33:82-92, 1985.

O. Marcotte. An instance of the cutting stock problem
for which the rounding property does not hold. Oper.
Res. Lett., 4:239-243, 1986.

S. Martello and P. Toth. Knapsack Problems.
Wiley & Sons, Chichester, 1990.

D. Pisinger. A minimal algorithm for the bounded
knapsack problem. INFORMS J. Computing, 12:75—
84, 2000.

G. Scheithauer and J. Terno. Theoretical investigations
on the modified integer round-up property for the one-
dimensional cutting stock problem. Oper. Res. Lett.,
20:93-100, 1997.

G. Wischer and T. Gau. Heuristics for the integer one-
dimensional cutting stock problem: A computational
study. OR Spektrum, 18:131-144, 1996.

John

PDP FLO
n|[30<;j<39 60<;j<69 90<;<99[30<;j<39 60<;j<69 90<;<99
102 .040 .082 .058 144 182 173
103 .033 .044 .050 150 .206 .300
104 .030 .034 .041 .150 .206 .342
10° .029 .032 .035 .146 .203 .367
108 .029 .032 .034 .147 .204 .356

Table 1: Average running times in seconds for discrete uniform distributions U{1, j,100} as a function of j and
n. Averages are taken over 5 samples for each value of j and n. Results for PBB are similar to those for PDP.
Packings under all three approaches were almost always optimal.

U{1,600, 1000}

Ave# #Pat Pivots | Ave Secs Tot Opt FFD

n | sizes Iters | FFD Final | /iter | LP KNP | Secs Val | Excess

600 | 374.7 | 730.7 | 170.3 901.0 18.7 | .01 01| 174 180.9 .8

1,897 | 573.7 | 599.7 | 394.0 993.7 18.7 | .02 .02 | 19.6 571.3 7

6,000 | 600.0 157.0 | 633.7 790.7 34.1 | .03 .02 7.2 1797.3 .7

18,974 | 600.0 77.3 | 800.0 877.3 51.0 | .04 .02 4.3 5686.5 .5

60,000 | 600.0 46.7 | 881.3 928.0 58.7 | .04 .02 2.6 18058.4 .6

189,737 | 600.0 25.0 | 885.7 910.7 18.8 | .01 .02 7| 56941.8 .6

600,000 | 600.0 7.3 1 909.0 916.3 12.5 | .00 .02 .2 | 180328.2 "3}
BS{1,6000,10000,400}

Ave# #Pat Pivots | Ave Secs Tot Opt FFD

n | sizes Iters | FFD Final | /iter | LP KNP | Secs Val | Excess

400 | 231.0 | 904.3 | 110.3 1014.7 27.9 | .02 .07 80 117 1

1,264 | 355.3 | 1303.0 | 259.7 1562.7 45.0 | .05 A1) 201 404 1

4,000 | 394.7 | 1069.0 | 442.3 1511.3 55.4 | .06 12 202 1177 3

12,649 | 400.0 | 994.3 | 519.7 1514.0 57.8 | .07 A2 | 194 3645 6

40,000 | 400.0 | 989.0 | 561.3 1550.3 58.0 | .07 A3 | 199 11727 21

126,491 | 400.0 | 998.0 | 565.7 1563.7 58.0 | .07 A2 193 38977 93

400,000 | 400.0 | 1014.7 | 576.7 1591.3 58.7 | .07 A3 | 204 117241 197

Table 2: Effect of increasing N (by factors of roughly +/10) on PDP, averaged over three samples for each value of
N. For the BS table, three distinct distributions were chosen and we generated one sample for each distribution
and each value of N.

U{1,200h, 500k}, h =1,2,4,...,64, n =2m

Pivots | Ave LP | Avg knp secs Total secs
m B | Tters | /iter secs | PDP PBB PDP PBB FLO
200 500 175 2.9 .00 .00 .00 .8 .3 13
400 1000 440 4.9 .00 .01 .00 6.7 2.0 156
800 2000 | 1011 10.9 .01 .04 02 57.5 28.8 2167
1600 4000 | 2055 24.0 07 .20 .00 565.6 194.4 38285
3200 8000 | 4667 57.0 .52 91 .01 | 6669.1 2415.3 —

6400 16000 | 10192 | 202.8 421 | 3.78 .02 | 81497.7 41088.6

Table 3: Scaling behavior for LP-based codes. The number of distinct sizes in the instances was 87+1% of m and
the number of initial patterns was 39+1% of m. Unless otherwise specified, entries are for PDP.

U{1,6400,16000}, n = 128,000

+
o +
S
o _|
S +
o
+
o :
s |
© ¥
+
3 +
S #
o +
o
- ES %F+
+ f+
= +# +
27 3 s
.
o _|
=| e
HHHH
[I I I I \
0 2000 4000 6000 8000 10000

ITERATION OF PDP

Figure 1: Number of Pivots for successive LP’s under PDP plotted on a log scale. Over 15% of the total PDP
running time was spent solving the 5 hardest LP’s (out of 10,192). The possibility of such aberrant behavior means
that the asymptotic running time projections derived from our data are unlikely to be worst-case guarantees.

BS{1,[625k/2] — 1,625k, 100k}, k = 1,2,4,8,16, n = 1,000,000

Pivots | Average | Avg knp secs Total secs PDP
m B | Tters | /iter | LP secs | PDP PBB PDP PBB FLO | Excess
100 625 | 144 9.7 .00 .00 .00 1 1 12 5
200 | 1250 | 238 17.9 .01 .01 .00 4 2 145 .6
400 | 2500 | 502 32.2 .03 .03 .00 30 16 2353 .8
800 | 5000 | 1044 69.3 .14 12 .00 281 143 48620 3
1600 | 10000 | 2154 | 166.0 1.11 .64 .01 3781 2898 — 2
3200 | 20000 | 4617 | 385.4 10.39 | 2.72 .01 | 60530 38124 — 1.2
BS{|625k/6] + 1, [625k/2] — 1,625k,100k}, k = 1,2,4,8,16, n = 1,000, 000
Pivots | Average | Avg knp secs Total secs PDP
m B | Tters | /iter | LP secs | PDP PBB PDP PBB FLO | Excess
100 625 | 184 10.4 .00 .00 .00 1 1 4 2.6
200 1250 375 21.2 .01 .01 .00 7 4 41 4.8
400 | 2500 | 840 46.9 .05 .03 .04 60 63 404 9.6
800 | 5000 | 1705 95.8 .23 12 .51 597 1092 4523 18.0
1600 | 10000 | 3730 | 214.3 1.48 .53 .46 7527 5847 — 37.7
3200 | 20000 | 7845 | 478.5 10.76 | 2.34 5.02 | 102730 92778 — 76.2
BS{|625k/4]| + 1, [625k/2] — 1,625k,100k}, k = 1,2,4,8,16, n = 1,000, 000
Pivots | Average | Avg knp secs Total secs PDP
m B | Tters | /iter | LP secs | PDP PBB PDP PBB FLO | Excess
100 625 | 116 5.3 .00 .00 .00 0 1 2 3.0
200 1250 427 17.8 .01 .01 .03 7 14 12 11.2
400 | 2500 | 704 29.3 .02 .02 A7 33 107 101 16.5
800 | 5000 | 1422 52.5 .08 q1 1.08 274 1299 800 30.0
1600 | 10000 | 3055 | 119.8 .61 47 8.07 3314 20123 19415 57.2
3200 | 20000 | 6957 | 265.9 3.59 | 2.16 67.73 | 40001 345830 — 128.5

Table 4: Scaling behavior for bounded probability sampled distributions. Unless otherwise specified, entries are
for PDP. Note that amount by which the PDP packing exceeds the LP bound does not grow significantly with m

in the first case, and is no more than 3% or 4% of m in the latter two.

BS{1, 6251 — 1, 1250k, 200}, n = 1,000,000

Pivots | Ave LP | Ave knp secs Total secs PDP

h B | Tters | [iter secs | PDP PBB | PDP PBB FLO | Excess

1 1,250 220 14.4 .01 .01 .00 3 3 12 4

2 2,500 320 21.5 .01 .02 .00 9 5 145 .

4 5,000 | 510 25.4 .02 .03 .00 24 9 2353 .8

8 10,000 | 444 26.0 .02 .06 .00 36 10 — .3
16 20,000 | 600 29.0 .02 13 .00 93 14 — .3
32 40,000 | 736 28.0 .03 .28 .01 229 23 — 4
64 80,000 | 776 29.9 .05 .58 .01 485 21 — 1.0
128 160,000 | 976 29.4 .04 | 1.16 .03 | 1170 57 — .6
256 320,000 | 977 27.5 .03 | 2.88 A7 | 2834 205 — .8
512 640,000 | 1081 28.7 .03 | 11.06 19 | 11970 231 — 5
1024 | 1,280,000 | 1267 32.3 .04 | 41.49 .67 | 52532 894 — .8

Table 5: Effect of increasing the bin size B while m an N are fixed and other parameters remain proportionately
the same (one instance for each value of k). Unless otherwise specified, column entries refer to PDP. The “Excess”

values for all three algorithms are roughly the same.

BS{1250h + 1, 2500h — 1, 5000h, 1000}, n = 1,000,000

Pivots | Ave LP | Ave knp secs Total secs PDP

h B | Tters | /iter secs | PDP PBB | PDP PBB FLO | Excess
1 5,000 | 1778 70.7 .14 12 1.43 470 2100 1212 36.9
2 | 10,000 | 2038 69.4 .15 .34 1.80 | 1002 3346 3050 37.8
4 | 20,000 | 2299 75.5 .19 .65 1.95 | 1925 4108 8957 374
8 40,000 | 2617 74.6 .19 1.35 2.13 4044 5243 29187 38.5
16 80,000 | 2985 80.6 23| 2.79 2.28 9019 6383 — 38.9
32 | 160,000 | 3195 71.5 21 5.65 244 | 18732 7723 — 32.8

Table 6: Effect of increasing the bin size B while m and N are fixed and other parameters remain proportionately
the same (one instance for each value of h). Unless otherwise specified, the entries are for PDP, which has roughly
the same number of pivots as PBB but averages about 18% more iterations than PBB (the ratio declining as B

increases). The “Excess” values for all three algorithms are roughly the same.

BS{1,4999,10000,m}, n = 1,000,000

Pivots | Average | Avg knp secs Total secs PDP
m | Iters | /iter | LP secs | PDP PBB | PDP PBB FLO | Excess
100 411 12.0 .01 .03 .01 15 5 27131 1.2
200 | 453 29.3 .02 .06 .00 37 9 47749 2
400 | 843 56.2 .07 13 .00 169 65 — .8
800 | 1454 98.3 .30 .29 .00 859 368 — .6
1600 | 2326 157.4 1.65 .63 .01 5308 2443 — 1.2
3200 | 2166 212.6 4.66 | 1.28 .01 | 12872 5684 — .6
BS{5001, 9999, 20000, m}, n = 1,000,000
Pivots | Average | Avg knp secs Total secs PDP
m | Iters | /iter | LP secs | PDP PBB | PDP PBB FLO | Excess
100 203 6.3 .00 .05 .00 11 1 562 3.7
200 481 13.3 .01 .10 .02 53 12 1197 6.3
400 | 1121 27.6 .03 .22 .19 281 219 2879 13.8
800 | 1864 57.2 A1 .50 1.18 1131 2017 6745 31.5
1600 | 3586 116.2 .56 | 1.08 9.08 5878 26819 19415 63.9
3200 | 6957 | 265.9 3.59 | 2.16 67.73 | 40001 345830 — 128.5

Table 7: Effect of increasing the number of item sizes m while keeping the bin size fixed. Unless otherwise

specified, the entries are for PDP.

Table 8: Ratios of statistics for PDP to those for PBB. Note that for the BS{5001,9999,20000, m} distributions,
the dynamic programming knapsack solver seems to be generating worse patterns than the branch-and-bound
knapsack solver, leading to consistently more iterations and usually more pivots per iteration. This appears to

BS{1,4999,10000,m} | BS{5001,9999,20000,m}

Pivots Pivots
m || Tters /iter | LP secs || Iters | /iter | LP secs
100 .95 .99 1.00 || 1.16 1.15 1.00
200 || 1.05 1.01 1.00 || 1.15 1.14 1.00
400 .98 1.00 1.00 || 1.11 1.05 1.50
800 || 1.04 1.01 1.15 || 1.18 1.07 1.10
1600 || 1.01 .99 95 1.28 .98 1.10
3200 .97 1.05 1.00 || 1.42 .96 1.18
Average || 1.00 1.01 1.02 || 1.22 1.06 1.15

be typical for BS{h, j, B,m} distributions when & is sufficiently greater than 0.

BS{1667,4999,10000, m}

Tters Ave Pivots | Ave LP secs | Avg knp secs Total secs PDP

m | PBB % PBB % PBB % PDP PBB | PDP PBB FLO | Excess
100 | 262 1.03 | 10.9 .98 .00 1.00 .03 .00 8 2 644 1.8
200 | 659 1.06 | 204 1.15 .01 1.00 .05 .01 48 15 10833 4.6
400 | 1147 1.04 | 49.9 1.00 .06 1.00 11 .01 205 82 58127 9.8
600 | 1477 1.11| 71.9 1.00 13 1.00 17 .02 500 223 — 14.5
800 | 1864 1.12 | 101.4 .99 260 1.19 .24 .03 | 1138 537 — 20.0
1000 | 2352 1.08 | 124.3 1.01 44 1.16 31 .75 2109 2805 — 24.2
1200 | 2618 1.11 | 136.5 1.02 89 1.25 .38 2.67 3240 8534 — 29.0
1400 | 2902 1.14 | 184.8 1.01 1.01 1.27 .46 21 5719 3567 — 33.4
1600 | 3146 1.19 | 212.1 1.01 | 140 1.06 .53 46 | 7527 5847 — 37.7
1800 | 3433 1.19 | 234.8 98 | 1.83 1.10 .62 .46 | 10810 7886 — 43.3
2000 | 3903 1.17 | 260.7 1.08 | 2.44 1.18 .70 1.98 | 16437 17259 — 47.3
2200 | 4221 1.15|291.1 1.02 | 3.16 1.08 .75 2.76 | 20240 24973 — 51.5
2400 | 4242 1.23 | 331.4 1.03 | 3.95 1.08 .81 1.01 | 26482 21025 — 54.7

Table 9: Results for bounded probability distributions and n = 1,000,000 (one sample for each value of n).
Excesses for PBB and the flow-based code (where available) were much the same.

LP SOLUTION TIME SECONDS
1.0

0.1

BS{1667,4999,10000,2200}

100.0 1000.0
| |

10.0
|

T T
2000 3000

ITERATION

4000

KNAPSACK B&B SOLUTION TIME SECONDS
1.0

0.1

BS{1667,4999,10000,2200}

100.0 1000.0
1 1

10.0
1

1000 2000 3000

ITERATION

4000

Figure 2: LP and Branch-and-Bound running times (plotted on a log scale) for successive iterations when PBB
is applied to a million-item instance of type BS{1667,4999,10000,m}. Note that LP times here are much more
well-behaved than they were for the instance of U{1,6400,16000} covered in Figure 1. Now the potential for
running time blow-up comes from the knapsack code, whose running time for U{1,6400, 16000} was negligible.
The situation can be even worse for Zipf Law distributions.

BS{1667,4999,10000,1600} BS{5001, 9999, 20000, 1600}
Total | Percent Percent Total | Percent Percent
PDP | Packing LB PDP | Packing LB
g #Sizes Secs Excess | Shortfall g #Sizes Secs Excess | Shortfall
n = 1,000
1 1600 853 4.580 .000 1 1600 | 1018 5.963 .000
5 200 39 1.675 531 50 200 55 2.318 471
10 100 7 1.094 978 100 100 13 1.277 .923
20 50 2 1.385 1.879 200 50 2 1.277 1.744
FFD .02 5.161 .150 FFD .03 7.265 3.147
n = 10,000
1 1600 | 7185 .964 .000 1 1600 | 5681 1.471 .000
25 400 179 .392 .256 25 400 269 .440 222
50 200 46 .362 .508 50 200 57 518 433
100 100 10 .542 1.004 100 100 10 .569 .813
200 50 2 1.084 1.949 200 50 2 1.085 1.556
FFD 2 4.908 .000 FFD 2 7.451 3.506
n = 100,000
1 1600 | 7627 119 .000 1 1600 | 6117 .162 .000
250 400 195 137 253 250 400 265 .136 218
500 200 46 .249 .505 500 200 57 .229 432
1000 100 9 .516 .982 1000 100 11 .460 .830
2000 50 1 1.108 1.888 | 2000 50 2 .985 1.589
FFD 2 5.044 .000 FFD 2 7.384 3.565
n = 1,000,000
1 1600 | 7527 .011 .000 1 1600 | 5878 .017 .000
2500 400 197 .126 251 2500 400 266 .110 217
5000 200 48 .250 .502 5000 200 63 .216 435
10000 100 9 .529 .976 | 10000 100 13 444 856
20000 50 1 1.123 1.780 | 20000 50 2 954 1.644
FFD 2 5.008 .000 FFD 2 7.310 3.142
BF 134 6.320 - BF 271 8.909 -
SS 305 478 - SS 518 4.341 -

Table 10: Results for grouping. The “Percent Packing Excess” is the percent by which the number of bins used in
the rounded down packing exceeds the LP lower bound. the “Percent LB Shortfall” is the percent by which the
fractional solution for the grouped instance falls short of LP(L). For comparisons purposes, we include results for
an O(m?) implementation of FFD and, in the case of n = 1,000,000, for O(nB) implementations of the online
algorithms Best Fit (BF) and Sum-of-Squares (SS). The “Shortfall” entry for FFD gives the percent gap between

LP(L) and the size-based lower bound s(L) = 3" _(a;)/B.

