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Abstract

A phylogeny is a reconstruction of the evolutionary history
of a group of organisms. Phylogenies are used throughout
the life sciences, as they offer a structure around which
to organize the knowledge and data accumulated by
researchers. Computational phylogenetics has been a rich
area for algorithm design over the last 15 years.

The biology community has embarked on an enor-
mously ambitious project, the assembly of the Tree of
Life—the phylogeny of all organisms on this planet. This
project presents a true computational grand challenge:
current phylogenetic methods can barely handle a few
hundred organisms, yet the Tree of Life has an estimated
10–100 million organisms. Thus, while data collection and
cataloguing is one of the major tasks, algorithm design and
engineering is a crucial enabling component of the project.

In this paper, I briefly introduce the principles of phylo-
genetic analysis, then discuss the computational challenges
posed by the Tree of Life project, from the design and vali-
dation of computationally useful models of evolution to the
actual computation and assessment of the Tree of Life itself.

1 Introduction

The life sciences, and especially the study of evolution,
have been almost completely redefined by modern
information technology, both in terms of data ac-
quisition (e.g., new genomic data accumulate at a
rate exceeding Moore’s law) and in terms of analysis
(e.g., the literature shows over 10, 000 citations to
the top three phylogenetic software packages, with
exponentially growing rates).

The study of evolution is the foundation of the life
sciences: biological knowledge, much of which consists
of large amounts of data, is organized through an under-
standing of evolutionary relationships between organ-
isms at every level, from DNA data to epidemiology and
population ecology. The broad-scale history of genetic
descent during organismal evolution takes the form of a
single, enormous “Tree of Life”—see Figure 1 for a high-
level draft of such a tree. This phylogeny stands as one
of science’s great discoveries. Its implication—that all
living things on Earth today (from bacteria, to mush-
rooms, to humans) are related—has forever changed
our perception of the world around us. Over the last 30
years, biologists have come to embrace reconstruction of
this phylogeny as a major research goal [23, 34, 60, 63].
The use of phylogenetic principles is almost as ubiqui-
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Figure 1: A rough sketch of the Tree of Life, showing
only some of the main branches (after [23]).

tous today as the idea of Darwinian evolution. Phyloge-
neticists have formulated specific models and questions
that can now be addressed using recent advances in
database technology and optimization algorithms.

2 Phylogenies: What and Why?

A phylogeny is a reconstruction of the evolutionary
history of a group of organisms or other entities
subject to evolution—these entities are usually referred
to as taxa. Because evolution traces the descent of
contemporary characteristics from common ancestors,
a phylogeny usually takes the form of a tree, although
certain evolutionary events, such as hybridization, may
cause it to assume the form of a directed acyclic graph.
Figures 2 and 3 illustrate phylogenies from the domains
of epidemiology (the evolution and spread of the West
Nile encephalitis virus) and virology (the relationships
among herpes viruses that affect humans). Note that
the first of these phylogenies is rooted (it has an implied
evolutionary flow from left to right), whereas the second
(like the sketch of the Tree of Life in Figure 1) is not. As
we shall see, most phylogenetic reconstruction methods
produce unrooted trees. Phylogenies are reconstructed
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Figure 2: Epidemiology of the West Nile encephalitis
virus (after [72]).

using data of all kinds, from molecular data (DNA se-
quences) through whole-genome data, metabolic data,
morphological data, to geographical and geological data.

Because it reflects the history of transmission
of life’s genetic information, phylogeny has unique
power to organize our knowledge of diverse organisms,
genomes, and molecules. A reconstructed phylogeny
guides our interpretation of the evolution of organismal
characteristics, indicating in what lineages traits arose
and under what circumstances, thus playing a vital role
in studies of adaptation and evolutionary constraints
[27, 32, 58, 75, 78, 82, 83, 137]. Patterns of divergence
of species lineages indicated by the phylogeny inform us
of the dynamics of speciation and extinction, the forces
that generate and reduce biodiversity [20, 37], including
the assembly and maintenance of species in ecological
communities [136]. Phylogeny informs far more than
evolutionary biology, however. The evolutionary
histories of genes bear the marks of the functional
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Figure 3: Species of herpes viruses that affect humans
(after [85]).

demands to which they have been subjected, thus
allowing phylogenetic analysis to elucidate functional
relationships within living cells [38, 45, 139]. Thus,
for instance, pharmaceutical companies are increas-
ingly using phylogenetic analyses to make functional
predictions from sequence data banks of gene families
[4], for ligand prediction [21, 126, 140], and in the
development of vaccines [50] and antimicrobials and
herbicides [12, 98, 109, 138]. Molecular biologists use
phylogenies to determine the relevance of model organ-
isms [16, 30, 36, 62, 92]. Phylogenetic analysis is also
implicitly used in the inference of secondary structure
of RNAs [17, 40, 48, 49], as well as in predicting the
structure of proteins or making proteins in the lab
[22, 40]. Finally, phylogenetic reconstruction is used
well beyond the boundaries of biology and biomedicine:
it is a crucial tool in forensic studies (see, for instance,
the dentist case [61, 97], the HIV murder trial [84], and
recent work on the anthrax terrorist attacks), in secu-
rity applications for networks and computers, and in a
variety of disciplines such as historical linguistics [135].

3 Phylogenetic Reconstruction

Reconstructing a phylogeny for a group of taxa requires
data about these taxa, a model of evolution for the
data and for this group of taxa, and an algorithm. The
model of is necessity simplified, as the reconstruction al-
gorithm must, implicitly or explicitly, invert the model;
and the algorithm is either ad hoc or an approximation
algorithm for a difficult optimization problem.

3.1 Data While many types of data have been, and
continue to be, used, the dominant choice today is
molecular data [125]—typically, the DNA sequences
of a few genes. Molecular data have the significant
advantage of being exact and reproducible, at least
within experimental error, not to mention fairly easy
to obtain. Each nucleotide in a DNA or RNA sequence
(or each codon) is, by itself, a well defined character,
whereas morphological data, for instance, must first
be encoded into characters, with all the attending
problems of interpretation, discretization, etc. While
genomic sequences (nucleotides or codons) remain the
main source of molecular data, promising new types
of genomic data are appearing, most notably gene
rearrangement data [89].

In sequence data, characters are individual posi-
tions in the string and so can assume one of a few states:
4 states for nucleotides or 20 states for amino-acids.
Such data evolve through point mutations, i.e., changes
in the state of a character, plus insertions and deletions
(or just indels for short)—the three main string editing
operations in conventional string algorithms [47].
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Figure 4: Sequence evolution: the sequences at the
leaves are modern data evolved from the common
ancestral sequence AAGACTT .

Figure 4 illustrates the concept. Sequence data are by
far the most common form of molecular data used in
phylogenetic analyses. Large amounts of sequence data
are easily available from databases such as GenBank,
along with search tools and annotations; moreover,
the volume of such data grows at an exponential pace.
Many analysis tools have been developed for such
data: packages such as PAUP* [124], MacClade [77],
Mesquite [80], Phylip [33], MEGA [70], MrBayes [64],
and TNT [41], all available either freely or for a modest
fee, are in widespread use.

Sequence data suffer from some problems. The
relatively fast pace of mutation in many regions of the
genome, combined with the fact that each character
can assume one of only a few states, results in silent
changes—changes that are subsequently reversed in
the course of evolution, leaving no trace in modern
organisms. Sequence data must therefore be selected to
fit the problem at hand: stable regions to reconstruct
old events, and variable regions to reconstruct recent
history. Most importantly, the evolution of any given
gene (or region of the sequence) need not be identical
to that of the organism: this is the gene tree vs. species
tree problem [79, 100]. Because of that problem, an
analysis that uses all available genes risks running into
internal contradictions, while one based on individual
genes will typically yield different trees for the different
genes, trees that must then be reconciled through
a process known as reconciliation or lineage sorting
[76, 99, 100, 102]. Sequence data also suffer from com-
putational problems: most prominently, the problem
of multiple sequence alignment is currently only poorly
solved—indeed, most systematists will align sequence
data by hand, or at least edit by hand the alignments
proposed by the software.

The newer gene rearrangement data consist of lists

of genes in the order in which they are placed along one
or more chromosomes. Each gene along a chromosome
is identified by some number, a number shared with its
homologs (i.e., similar genes that are expected to have
evolved from a common ancestral gene) on other chro-
mosomes or, for that matter, on the same chromosome
in case of gene duplications. In a signed gene order,
each number is signed to indicate the strandedness of
the gene. The entire gene order thus forms a single
character that can assume a huge number of states.
In addition to insertions (including gene duplications)
and deletions, which modify the gene content, a gene
order evolves through rearrangements, which leave the
gene content unchanged. A rearrangement acts on a
contiguous fragment of the chromosome (a piece of
the gene order); known rearrangements are inversions,
sometimes also called reversals (well documented in
chloroplast organelles [67, 101]), and transpositions
(strongly suspected in mitochondria [10, 11]). For
instance, an inversion from the third to the fifth
position causes the following change:

(1 2 3 4 5 6 7) −→ (1 2 -5 -4 -3 6 7)

and a transposition of the second and third elements to
the sixth position in turn causes the following change:

(1 2 -5 -4 -3 6 7) −→ (1 -4 -3 6 2 -5 7)

Finally, in the case of genomes with multiple chro-
mosomes, additional operations include fusion and
fission of chromosomes, as well as translocations, which
move a piece of a chromosome to another chromosome
(in effect, they are transpositions where the target
locations reside in a different chromosome).

The use of gene-content and gene-order data in phy-
logenetic reconstruction is attractive for several reasons:
(i) because the entire genome is studied at once, there
is no gene tree vs. species tree problem; (ii) there is no
need for alignment; and (iii) gene rearrangements and
duplications are “rare genomic events” in the sense of
Rokas and Holland [110] and thus enable us to trace evo-
lution farther back than sequence data. On the other
hand, we have so far very little whole-genome data, are
gathering such data at a relatively slow pace, and lack
good models for the evolution of gene content and gene
order. Moreover, the mathematics of gene orders is far
more complex than that of DNA sequences—we have far
more open problems than results and most results are
proofs of NP-hardness for relatively simple tasks, such
as computing the edit distance between two gene orders.

3.2 Models Most algorithms for phylogenetic recon-
struction attempt to reverse a given model of evolution,



which embodies certain knowledge and assumptions
about the process of evolution, such as characteristics
of speciation and details about evolutionary changes
that affect the content of molecular sequences. Models
of evolution vary in their complexity. For instance,
the Jukes-Cantor model [68], which assumes that all
characters evolve identically and independently and
that all substitutions are equally likely, requires just
one parameter per edge of the tree, viz., the expected
number of changes of a random site on that edge; thus
a rooted Jukes-Cantor tree with n leaves requires 2n−2
parameters. Under more complex models of evolution,
the process operating on a single edge can require
up to 12 parameters for nucleotide data, far more for
codon data. These parameters describe how a single
site evolves down the tree and so require additional
assumptions in order to describe how different sites
evolve. Usually the sites are assumed to evolve inde-
pendently; sometimes they are also assumed to evolve
identically. Moreover, the different sites are assumed
either to evolve under the same process or to have
rates of evolution that vary depending upon the site.
For more on stochastic models of (sequence) evolution,
see [31, 69, 74, 125]. Tree generation models typically
have parameters regulating speciation rates, but also
inheritance characteristics, etc. For an interesting
discussion of models of tree generation, see [56, 86].

By studying the performance of methods under
explicit stochastic models of evolution, we can assess
the relative strengths of different methods, as well as
understand how the methods can fail. Such studies can
be theoretical, for instance proving statistical consis-
tency : given long enough sequences, the method will
return the true tree with arbitrarily high probability.
Others can use simulations to study the performance
of the methods under conditions closely approximating
practice. In a simulation, sequences are evolved down
different model trees and then given to different meth-
ods for reconstruction; the reconstructions can then be
compared against the model trees that generated the
data. Such studies provide important quantifications
of the relative merits of phylogenetic reconstruction
methods. Thus, from an algorithm engineering point
of view, models of evolution play two crucial roles: (i)
inverting them forms the basis of most reconstruction
algorithms; and (ii) they provide the datasets needed
to assess and refine the performance of the algorithms.

3.3 Algorithms Algorithms for phylogenetic re-
constructions can be roughly partitioned into two
categories: distance-based methods, which operate
from a pairwise distance matrix and typically only
produce a tree, and criterion-based methods, which

attempt to optimize a selected criterion and typically
infer additional data (such as character states at
internal nodes or parameter values for the model).
In addition, meta-methods have been proposed that
decompose the dataset into smaller subsets, construct
trees on these subsets using a base method from the
previous two categories, and then combine the resulting
trees into a phylogeny for the entire dataset.

3.3.1 Distance-based methods These methods
first estimate pairwise distances between every pair
of taxa, then rely solely on the matrix of pairwise
distances to compute an edge-weighted tree. The sta-
tistical consistency (if any) of these methods requires
that a statistically consistent distance estimator and an
appropriate distance-based algorithm be used. The dis-
tance estimator should return a value that approaches
the expected number of times a random site changes on
the path between the two taxa: thus, the estimation of
pairwise distances must be done with respect to some
assumed stochastic model of evolution. Näıvely defined
distances, such as the Hamming distance, typically
underestimate the number of changes that took place
in the evolutionary history; thus the first step of a
distance-based method is to correct the näıvely defined
distance into one that accurately accounts for the
expected number of unseen back-and-forth changes in
a site. Such corrections are not without problems: as
the measured distance grows larger, the variance in
the estimator increases, causing increasing errors in
reconstruction. The simplest and most commonly used
distance-based method is neighbor-joining (NJ) [113];
improved variants include BioNJ [39] and Weighbor
[13]. NJ is known to be statistically consistent under
most models of evolution.

3.3.2 Criterion-based methods These methods
attempt to optimize a criterion in order to approach
the “truth,” i.e., the actual evolutionary history. One
widely used criterion is parsimony (also appearing
under a slightly different guise as minimum evolution).
Parsimony-based methods seek to solve the maximum
parsimony (MP) problem: find the tree, along with
character sequences labelling its internal nodes, that
together minimize the total number of evolutionary
changes (viewed as distances summed along all edges
of the tree). This problem is NP-hard [25]; its point
estimation version (given a fixed tree, find the labelling
for its internal nodes that optimizes the criterion),
however, is solvable in linear time [35]. Current ap-
proaches to solving MP are heuristics based on iterative
improvement techniques; they appear to return very
good solutions for up to a few hundred taxa. Many soft-



ware packages implement such heuristics, among them
MEGA [70], PAUP* [124], Phylip [33], and TNT [41].

If one postulates a model of evolution, it becomes
possible to ask for a phylogeny that is the best fit for
the data under the model; this approach forms the
basis for the likelihood-based criteria. The maximum
likelihood (ML) problem asks for the tree and asso-
ciated model parameter values that maximizes the
probability of producing the given set of character
sequences. ML is not known to be NP-hard, although a
version that also asks for labelling internal nodes with
character sequences consistent with the model choices,
called ancestral maximum likelihood, is known to be
NP-hard [1]. However, it appears considerably more
difficult than MP: its point estimation problem (given
a fixed tree, estimate the model parameter to obtain
the maximum likelihood value for that tree) does not
currently have any exact solution (except for some
trivial instances of four taxa) [121]. Current approaches
to ML are heuristic searches through tree space with
heuristics for point estimation and are typically limited
to fewer than 100 taxa; they are implemented in various
software packages, including PAUP* [124], Phylip [33],
FastDNAml [96], and PhyML [46].

The computational problems associated with ML
approaches, along with some statistical considerations,
have motivated a Bayesian approach to the problem, in
which one attempts to estimate, under a given model,
the posterior probability of trees given the data. This
approach is invariably implemented with a Markov
Chain Monte Carlo (MCMC) approach, most notably
in the software package MrBayes [64]. The MCMC
approach scales better than the direct ML approach,
but remains limited to a few hundred taxa at best.

3.4 Meta-methods The most successful meta-
method is the Disk-covering method (DCM) developed
by Warnow and her colleagues in a series of papers
[65, 66, 112, 128]. All versions of the method work
in three phases: (i) they decompose the set of taxa
into a number of overlapping subsets; (ii) they apply a
so-called base method (one of those discussed above) to
each subset; and (iii) they combine the resulting trees
to produce a phylogeny for the original dataset. They
are thus a type of divide-and-conquer methodology; the
overlap between the subproblems, which is uncharac-
teristic of divide-and-conquer, is required here in order
to combine the smaller trees into a final large tree.
Combining smaller trees into a large tree is a well estab-
lished problem in phylogenetic reconstruction, known
as the supertree problem [8]; the DCM approaches, by
controlling the decomposition into subproblems, also
enable better recombination of the pieces [111].

DCM approaches have two main advantages. By
running the expensive base methods on smaller datasets
only (the latest uses of DCM are recursive [112, 128] in
order to ensure a maximum size for each subset), they
avoid the exponential growth in running time of these
methods and can be applied to much larger datasets—
tens of thousands of sequences instead of a few hundred
[112] and thousands of gene orders instead of a dozen
[128]. By carefully decomposing the dataset, they also
produce subsets that are better conditioned for recon-
struction: in particular they minimize the problems
due to large ratios between the largest and the smallest
pairwise distances that plague all base methods.

4 Assessment of Phylogenetic Reconstruction

Methods

In phylogenetic reconstruction, an assessment must
take into account the accuracy of the reconstruction
(in terms of the chosen optimization criterion but
also, and more importantly, in terms of the biological
significance of the results) as well as the scaling up
of resource consumption (time and space). In turn,
conducting such an assessment requires the use of a
carefully designed set of benchmark datasets [90].

4.1 Choosing benchmark sets Biological datasets
test performance where it really matters, but they can
typically be used only for ranking (because we do not
know the “true” answer) and are too few to permit
quantitative evaluations. (When it comes to the Tree of
Life itself, it is a single dataset!) Moreover, the analysis
of any large biological dataset is hard to evaluate: a
10,000-taxon tree is a very complex object and not
directly amenable to human evaluation. Thus biological
datasets are good for “reality checks,” a capacity in
which they are indispensable, as no simulation can be
accurate enough to replace real data. Simulated datasets
permit absolute evaluations of solution quality (because
the model, and thus the “true” answer, is known) and
can be generated in large numbers to ensure statistical
significance, as well as tailored to answer specific
performance questions. Thus a combination of large-
scale simulations and reasonable numbers of biological
datasets is the only way to obtain valid characteriza-
tions of algorithms for phylogenetic reconstruction.

4.2 Phylogenetic considerations A typical simu-
lation study runs as follows:

1. Generate a rooted binary tree (according to a
chosen model of speciation and extinction) with the
appropriate number of leaves—this tree is known as
the model tree.



2. Assign a “length” (i.e., a number of evolutionary
events) to each edge of the tree according to a
chosen model of divergence.

3. Place a label of suitable size and composition (e.g.,
a DNA sequence or a gene order) at the root.

4. Evolve the labels down the tree, i.e., transform
the parent label along each edge to its children
according to the number of evolutionary events on
that edge and to the chosen model of evolution.

5. Collect the labels thus generated at the leaves and
use them as input to the reconstruction algorithm
under test.

6. Compare the topology (and, if desired, the internal
labels) of the reconstructed tree with that of the
model tree.

This sequence of operations is run many times for the
same parameter values (number of taxa, size of labels,
parameters of the model of evolution, distribution of
edge lengths, etc.) to ensure statistical significance.
In five years of experimentation, we have found a few
useful guidelines (see [89, 90] for details):

• Tree shape, as determined by the model of specia-
tion and extinction, plays a surprisingly large role.

• The evolutionary models for divergence and label
evolution are important. In particular, most re-
construction methods exhibit poor accuracy when
the diameter of the dataset (the ratio of the largest
to the smallest pairwise distance in the dataset) is
large.

• Testing a large range of parameters and using
many runs for each setting to estimate variance
are essential parts of any testing strategy. In
the huge parameter space induced by even the
simplest of models, it is easy to fall within an
uncharacteristic region and draw wrong conclusions
about the behavior of the algorithm.

5 Algorithmic Challenges with Sequence Data

Very few methods offer any performance guarantees,
except in purely theoretical terms. Statistical consis-
tency has been viewed as an important attribute: a
statistically consistent method will, given sufficient
data generated under a process obeying the conditions
of the chosen model, produce the true tree with
high probability. ML is known to be statistically
consistent under most models; but the same cannot
be said of its heuristic implementation, in which
many corners are cut. Even neighbor-joining, which
is also statistically consistent under most models and
is implemented exactly, may return very poor trees:

statistical consistency only implies good performance in
the limit, as sequence lengths become sufficiently large.
Unfortunately, the sequence length for a single gene
appears to be bounded in nature, to a few thousand
base pairs; and attempts to obtain longer sequences by
concatenating the sequences of several genes tend to
exacerbate difficulties with alignments and of course
give rise to the gene tree vs. species tree problem. One
way to get around this problem is to devise methods for
which the implied convergence is rapid: whereas all that
is known for most statistically consistent methods is
that they converge for sequences of length exponential
in the diameter of the dataset, fast-converging methods
have been devised [24, 134] that only require sequences
of length polynomial in the diameter. The approach
proposed by Warnow et al. [134] can convert any
distance-based method into a fast-converging method,
yet little remains known of the convergence properties
of the more powerful criterion-based approaches. One
of our findings, however, has been that very high accu-
racy in optimization is required to produce good trees
[112]: with trees of 10,000 taxa, we need MP scores that
are better than 99.99% of optimal in order to obtain
tree with less than 5% of edges in error! Such accuracy
is unheard of in the world of (practical) approximation,
yet it can (at least sometimes) be achieved with MP
optimization; similar constraints no doubt hold for ML
and Bayesian approaches and need to be studied.

Because biologists and biochemists have been
studying DNA sequences for many decades, we have
a fairly good understanding of the process by which a
DNA character evolves—mutations and indels. Many
statistical models have been proposed for nucleotide
or codon mutation, using 4 × 4 or 20 × 20 transition
matrices [42, 125]. However, the problem of sequence
evolution has not been well addressed to date: most
models assume that each character evolves indepen-
dently of all others, which is clearly false in nature,
and, moreover, that each character evolves according to
the same model, which is another serious oversimplifi-
cation. Of course, an ML approach can easily postulate
a model in which the evolution of each character obeys
its own model and depends on the evolution of all
other characters, but such a model would have far
too many parameters to be useful. A challenge, then,
is to design a model of sequence evolution that takes
into account dependencies among characters (perhaps
within some distance) and allows flexibility in the
choice of model parameters for different characters, yet
does not require much larger quantities of data nor
much larger computational resources.

We mentioned earlier that multiple sequence
alignment (MSA) is not well solved. It is particularly



poorly solved for phylogenetic uses, as the main eval-
uation criterion has long been the sum of all pairwise
alignment scores—whereas, in reality, the alignment
scores between distantly related taxa are not very
important while those between closely related taxa are
crucial. As long ago as 1975, Sankoff [115] introduced
the phylogenetic tree alignment problem: given a
collection of sequences, find the tree leaf-labelled by
these sequences and an assignment of (new) sequences
to its internal nodes such that the sum, over all edges
of the tree, of the pairwise alignments of the sequences
labeling the endpoints of each edge, is minimized. This
formulation leads to an NP-hard problem [130], for
which a PTAS exists [131]. Using an iterative refine-
ment approach described by Sankoff et al. [119], several
alignment programs, such as GESTALT [71], produce
such tree alignments. However, most multiple sequence
alignments are still created by software designed to
optimize the sum of all pairwise alignment scores, such
as ClustalW [59] and TCoffee [95]. The challenge here is
to develop an algorithm that runs reasonably quickly on
a collection of unaligned sequences and returns accurate
phylogenies. If the phylogeny is correct, the tree align-
ment problem reduces to assigning the best possible
sequences to internal nodes for a fixed leaf-labelled tree,
a problem that can be solved by dynamic programming.

Finally, in order to approach the reconstruction of
the Tree of Life, we need to scale up existing reconstruc-
tion methods or develop entirely new ones. The largest
sequence-based reconstructions to date have reached
nearly 15,000 taxa [112]; the methodology we used in
that work appears capable of scaling to significantly
larger datasets (most likely to 100,000 taxa), yet we do
not expect it to be applicable to datasets with millions
of taxa. Further research on DCM and related methods
and on supertree construction is clearly necessary. En-
abling these codes to run in parallel on large machines is
a plus: in 2000, it enabled our group to solve in 24 hours
on a 512-CPU machine a problem that would have re-
quired over a year of computation on a workstation [3].

6 Algorithmic Challenges with Gene-Order

Data

As mentioned earlier, gene-order data give rise to some
very complex combinatorial problems. We consider two
such problems here: how to compute pairwise distances
and how to compute the median of three gene orders.

6.1 Distance computations The simplest version
of the problem is to computer the edit distance between
two gene orders with identical gene content and no
duplication (i.e., two permutations of the set {1, . . . , n})
under a single rearrangement operation. When the

allowed operation is inversion, the measure is called the
inversion distance; when it is transposition, the mea-
sure is called the transposition distance. Computing the
inversion distance is NP-hard when the genes are not
signed (i.e., when we do not know on what strand they
reside) [18], but solvable in linear time [5] when the
genes are signed, using the elaborate theory of Hannen-
halli and Pevzner [52]. The best result known to date
for the transposition distance is a 1.5-approximation
[53, 54]—the complexity of the problem remains
unknown. Combining inversions and transpositions
makes for a much more difficult problem, with only a
2-approximation known [44]; if the transpositions are
also inverted, then a 1.5-approximation exists [55].

All of these methods consider all inversions and
transpositions to have equal weight—i.e., to be equally
likely. Yet there is evidence that transpositions are
more common than inversions in some genomes (such
as mitochondria) and less common in others (such as
chloroplasts). Moreover, at least in bacterial genomes,
short inversions appear more common than long ones
[73], confirming a result from Sankoff [117] in which he
showed that short inversions tend to preserve gene clus-
ters (unordered groups of genes, similar to the operon
groups commonly found in bacteria). Since gene clusters
are of independent interest, much research has been con-
ducted on identifying such clusters [57] and using them
in computing pairwise distances [7]. Almost no work
to date has been done on the identification of so-called
“hot spots”—that is, locations in the genome where
the a DNA strand is easier to break and thus where
rearrangements and insertions are more likely to occur,
although one study seems to indicate that such hot
spots are common in some mammalian genomes [104].

Every method discussed so far assumes that the
genomes have equal gene content and no duplicate
genes—that every genome is a (signed) permutation
of the same set. In biology, however, such is never the
case: the gene content varies, sometimes drastically
even among closely related species, and duplications are
frequent and often produce very large gene families—it
is not uncommon to find families of size 50–100
in bacteria, while some gene families in eukaryotic
genomes may reach sizes in the thousands. El-Mabrouk
[29] extended the theory of Hannenhalli and Pevzner
to account for deletions, but only in the absence of
duplications. Sankoff [116] proposed to get rid of all du-
plicates (for computational purposes) by selecting one
exemplar from each gene family, namely that homolog
whose selection minimizes the edit distance; however,
selecting an exemplar is itself an NP-hard problem [14].
Marron et al. [81] gave a bounded approximation for the
edit distance between a permutation and an arbitrary



gene order, while Swenson et al. [123] reported good
results with a heuristic to approximate directly the true
evolutionary distance between two arbitrary genomes
and Tang et al. [129] used simple enumeration to handle
datasets with small difference in gene content. All of
these methods, however, are limited to just inversions
and assume that all inversions have equal weight.

Finally, we have already noted that edit distances
underestimate the true evolutionary distance. Alone
among the methods described so far, the heuristic
of Swenson et al. approximates the true evolutionary
distance directly. Earlier efforts resulted in distance
corrections for special cases: estimating the true
evolutionary distance (in terms of inversions) from the
breakpoint distance1 through a formal derivation [132]
and from the inversion distance through an empirical
formula [88], both under the assumption of equal gene
content and no duplication (see also [133]).

Thus the challenges in distance computation for
gene orders include developing a theoretical framework
and suitable algorithms for the following problems: (i)
the transposition distance; (ii) an edit distance that
combine inversions and transpositions; (iii) weighted
versions of these first two distances according to both
locations and lengths of the operations; (iv) combining
these distances with deletions and insertions in the
absence of duplications; and (v) adding duplications
(including specific models of duplications, such as
tandem duplications) to the existing frameworks. Since
many of these problems are likely to be computationally
intractable, a crucial aspect of research will be the
development and validation of fast heuristics.

6.2 Computing the median of three gene

orders Once a suitable distance measure has been
defined and an algorithm designed and implemented for
its computation, one may proceed to use gene-content
and gene-order data in phylogenetic reconstruction.
The most successful approach to date has been one
based loosely on maximum parsimony, first proposed by
Sankoff [118] and then extended by us to produce the
software suite GRAPPA, which has been refined over
several years [88, 91, 128, 129]. The algorithm evaluates
each tree topology in turn; a tree is scored by recon-
structing gene orders at internal nodes and summing
the pairwise distances along the edges of the tree.

The internal gene orders are computed so as to
minimize that sum of edge lengths through an iterative
improvement process: first the algorithm assigns initial
gene orders to the internal nodes in some manner,

1The breakpoint distance, proposed by Sankoff [9, 118] for use
in phylogenetic reconstruction, simply counts the number of gene
adjacencies present in one genome. but not in the other.

then it refines these gene orders by computing, at
each internal node, the median of the gene orders of
its three neighbors (i.e., a gene order that minimizes
the sum of the distances to its three neighboring gene
orders), repeating the process throughout the tree until
convergence. While this approach nests two exponential
processes (the number of trees grows exponentially with
the number of taxa and computing the median of three
gene orders is NP-hard [103]) and does not guarantee an
optimal solution (the iterative improvement process can
stop at local optima), it has done well in practice [89].

The key step is the computation of the median of
three gene orders under a given distance measure; this is
relatively simple for breakpoint distances (in which case
the problem reduces to a highly structured version of
the Travelling Salesperson Problem), but quite difficult
for other distances, even the simple inversion distance.
Indeed, current methods [19, 120] simply conduct an ex-
haustive search of the space of gene orders around the
three neighbors, a search that becomes impractical as
soon as the distance to the median is at all large.

When the gene contents of the three neighbors
differ, the problem gets much more complex. Tang and
Moret proposed to solve it in two steps, by first com-
puting the gene content alone, then only computing the
gene order [127, 129], an approach that worked well for
small chloroplast datasets, but proved more problematic
when used with much larger bacterial genomes [28].

Thus the main algorithmic challenge is how to
compute the median exactly (or with very strong
guarantees) in the presence of potentially large pairwise
distances and for a variety of distance measures (as
described in the previous section).

7 Other Algorithmic Challenges

Reconstructing the Tree of Life will require the collec-
tion, curation, storage, and analysis of large quantities
of heterogeneous data. Thus numerous informatics
problems arise, most centered around the proper design
and deployment of data models. One obvious com-
putational challenge will be the integration of various
types of data—today, integrating even closely related
data such as DNA sequences and gene orders remains
beyond our reach. Most of these challenges, however,
do not yet qualify as algorithmic, although the advent
of the database as the central repository of knowledge
about a biological problem introduces to computational
biology the model of preprocessing and querying long
used in, e.g., computational biology [26], a model that
phylogenetic databases will have to support [93].

Closer to algorithm design is the issue of tree gen-
eration for simulations. Computer scientists have used
trees selected uniformly at random from all leaf-labelled



trees on n leaves, while biologists typically prefer to use
so-called birth-death trees, generated by a coalescent
process (as implemented in r8s [114], for instance).
Neither type of tree appears to match the shapes
observed in published phylogenies [86]: random trees
are too imbalanced and birth-death trees too balanced.
A better model was studied by Heard [56] and includes
a notion of inheritance for speciation—a well known bi-
ological property. Our experiments in the last few years
have shown that tree shape plays a larger role than one
might expect in the performance of methods, so that it
is crucial to use good tree shapes in evaluating recon-
struction algorithms and thus to use a model for tree
generation that is biologically plausible and matches
observed data. The challenge here is to design and
validate a model that provides biological mechanisms
for tree generation and uses few parameters—the latter
of particular importance for algorithm assessment, since
every additional parameter exponentially increases the
space of configurations that must be tested.

For a final challenge problem, let us return to an
early remark: the Tree of Life is not really a tree,
but a DAG, because of evolutionary events such as
hybridization and lateral gene transfer, both of which
result in one organism having parents from two different
lineages. Biologists call such non-tree evolutionary
events reticulations. Reticulations are common among
plants (hybridization) and prokaryotes (hybridization
and lateral gene transfer) and present in other areas
of life. Very little is known about reticulate evolution;
most of our knowledge comes from populations genetics,
where recombinations present much the same picture
as reticulations [108], but where the time scale and the
distance between taxa are orders of magnitude smaller
than in phylogenetic analysis. Posada and Crandall
[107] showed that ignoring reticulations could lead to
the reconstruction of inaccurate trees; in other work
[105, 106], they investigated the reconstruction of DAGs
rather than trees, a step that had been advocated by
several authors [43, 122]. Working from sequence data,
the main tool for detecting reticulation has been the
presence of incongruent gene trees [79, 94]; with gene
order data, reconciliation amounts to matching dupli-
cates and this analysis can be combined with detection
of horizontal gene transfer [2, 51]. Detecting conflicts in
the data (but not resolving these conflicts) can be done
by the method of splits [6], implemented by Bryant and
Moulton as NeighborNet [15]. None of these methods,
however, can reconstruct a phylogenetic network (the
reticulated equivalent of a phylogenetic tree). We have
now provided an error metric [87] to compare network
reconstructions; this metric will allow algorithm design-
ers to assess the accuracy of their algorithms in much

the same way as is done for phylogenetic trees. Chal-
lenges here abound: how do we reliably detect reticula-
tions? how can we estimate their number and location
with high reliability? how can sequence and gene order
data be combined to overcome some of these challenges?
what is a good model for reticulation events (e.g., are
there sequence-level or genome-level characteristics
that can predict the likely occurrence of hybridization
or gene transfer)? and finally, of course, how do we go
about reconstructing evolutionary networks at the level
of accuracy to which we are accustomed with trees?

8 Conclusion

We have briefly surveyed the field of computational phy-
logenetics, with a particular emphasis on the ultimate
challenge, the reconstruction of the Tree of Life. The
algorithmic challenges we have listed are but a small
fraction of the challenges in just this one small area of
computational biology; and as these challenges are met
and overcome, their solutions will lead to even more
complex problems, such as relating in a computational
manner phylogeny to population genetics, evolution to
development, etc. There are enough problems here, al-
ready formulated or yet to be developed, to keep teams
of algorithm designers busy for many years and just the
right combination of real data, credible simulation, and
scaling issues to make it the ideal testing ground for
algorithm engineering.

9 Acknowledgments

Our work in this area is supported in part by the
National Science Foundation under grants DEB 01-
20709 (on a subcontract to U. Texas at Austin),
IIS 01-13095, IIS 01-21377, ANI 02-03584. and EF
03-31654, by the National Institutes of Health under
grant 2R01GM056120-05A1 (on a subcontract to U.
Arizona), and by the IBM Corporation under a contract
from the Defense Advanced Research Projects Agency
(the PERCS project).

References

[1] L. Addario-Berry, B. Chor, M. Hallett, J. Lagergren,
A. Panconesi, and T. Wareham. Ancestral maximum
likelihood of phylogenetic trees is hard. In Proc. 3rd
Int’l Workshop Algs. in Bioinformatics (WABI’03),
volume 2812 of Lecture Notes in Computer Science,
pages 202–215. Springer Verlag, 2003.

[2] L. Arvestad, A.-C. Berglund, J. Lagergren, and
B. Sennblad. Bayesian gene/species tree reconcilia-
tion and orthology analysis using MCMC. In Proc.
11th Int’l Conf. on Intelligent Systems for Mol. Biol.
(ISMB’03), volume 19 of Bioinformatics, pages i7–i15,
2003.



[3] D.A. Bader and B.M.E. Moret. GRAPPA runs in
record time. HPC Wire, 9(47), 2000.

[4] D.A. Bader, B.M.E. Moret, and L. Vawter. Industrial
applications of high-performance computing for phy-
logeny reconstruction. In H. J. Siegel, editor, Proc.
SPIE Commercial Applications for High-Performance
Computing, volume 4528, pages 159–168, Denver, CO,
2001. SPIE.

[5] D.A. Bader, B.M.E. Moret, and M. Yan. A fast
linear-time algorithm for inversion distance with an
experimental comparison. J. Comput. Biol., 8(5):483–
491, 2001.

[6] H. J. Bandelt and A. W. M. Dress. Split decomposition:
a new and useful approach to phylogenetic analysis of
distance data. Mol. Phyl. Evol., 1:242–252, 1992.

[7] A. Bergeron, S. Heber, and J. Stoye. Common intervals
and sorting by reversals: a marriage of necessity. In
Proc. 2nd European Conf. Comput. Biol. ECCB’02,
pages 54–63, 2002.

[8] O.R.P. Bininda-Edmonds, editor. Phylogenetic Su-
pertrees: Combining information to reveal the Tree of
Life. Kluwer Academic Publishers, 2004.

[9] M. Blanchette, G. Bourque, and D. Sankoff. Break-
point phylogenies. In S. Miyano and T. Takagi, edi-
tors, Genome Informatics, pages 25–34. Univ. Academy
Press, Tokyo, 1997.

[10] J.L. Boore and W.M. Brown. Big trees from little
genomes: Mitochondrial gene order as a phylogenetic
tool. Curr. Opinion Genet. Dev., 8(6):668–674, 1998.

[11] J.L. Boore, T. Collins, D. Stanton, L. Daehler, and
W.M. Brown. Deducing the pattern of arthropod
phylogeny from mitochondrial DNA rearrangements.
Nature, 376:163–165, 1995.

[12] J.R. Brown and P.V. Warren. Antibiotic discovery: Is
it in the genes? Drug Discovery Today, 3:564–566,
1998.

[13] W.J. Bruno, N.D. Socci, and A.L. Halpern. Weighted
neighbor joining: A likelihood-based approach to
distance-based phylogeny reconstruction. Mol. Biol.
Evol., 17(1):189–197, 2000.

[14] D. Bryant. The complexity of calculating exemplar dis-
tances. In D. Sankoff and J. Nadeau, editors, Compara-
tive Genomics: Empirical and Analytical Approaches to
Gene Order Dynamics, Map Alignment, and the Evo-
lution of Gene Families, pages 207–212. Kluwer Aca-
demic Pubs., Dordrecht, Netherlands, 2000.

[15] D. Bryant and V. Moulton. NeighborNet: An agglom-
erative method for the construction of planar phylo-
genetic networks. In Proc. 2nd Int’l Workshop Algs.
in Bioinformatics (WABI’02), volume 2452 of Lecture
Notes in Computer Science, pages 375–391. Springer
Verlag, 2002.

[16] R.M. Bush, C.B. Smith, N.J. Cox, and W.M. Fitch.
Effects of passage history and sampling bias on phylo-
genetic reconstruction of human influenza A evolution.
Proc. Nat. Acad. Sci., USA, 97:6974–6980, 2000.

[17] J.J. Cannone and S. Subramanian et al. The com-
parative RNA web (CRW) site: An online database

of comparative sequence and structure information for
ribosomal, intron, and other RNAs. BioMed Central
Bioinformatics, 3(2), 2002.

[18] A. Caprara. Formulations and hardness of multiple
sorting by reversals. In Proc. 3rd Ann. Int’l Conf.
Comput. Mol. Biol. (RECOMB’99), pages 84–93. ACM
Press, New York, 1999.

[19] A. Caprara. On the practical solution of the reversal
median problem. In Proc. 1st Int’l Workshop Algs.
in Bioinformatics (WABI’01), volume 2149 of Lecture
Notes in Computer Science, pages 238–251. Springer
Verlag, 2001.

[20] S.B. Carroll, J.K. Grenier, and S.D. Weatherbee. From
DNA to Diversity. Blackwell Science, 2001.

[21] J.K. Chambers and L.E. Macdonald et al. A G protein-
coupled receptor for UDP-glucose. J. Biol. Chem.,
275(15):10767–10771, 2000.

[22] B.S. Chang and M.J. Donoghue. Recreating ancestral
proteins. Trends Ecol. Evol., 15:109–114, 2000.

[23] J. Cracraft and M.J. Donoghue, editors. Assembling
the Tree of Life. Oxford University Press, 2004.
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