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Abstract

We describe a new algorithm for the Decoding problem in

Statistical Machine Translation. Our algorithm is based on

the Alternating Optimization framework and employs dy-

namic programming. The time complexity of the algorithm

is O
�
m2 � , where m is the length of the sentence to be trans-

lated, which is the best among all known algorithms for the

problem. As the search space explored by the algorithm is

large, we propose two pruning techniques. Empirical results

obtained by extensive experimentation on test data show

that the new algorithm’s runtime grows only linearly with

m when either of the pruning techniques is employed. Our

algorithm outperforms the best known decoding algorithms

and a comparative experimental study shows that our im-

plementation is 10 times faster than the implementation of

the Greedy decoding algorithm released by [15].

1 Problem Specification.

We study the Decoding problem in Statistical Machine
Translation (SMT): given a French sentence f and a
probability distribution Pr (e|f), find the most probable
English translation of f 1 [3]:
(1.1)

ê = argmax
e

Pr (e|f) = argmax
e

Pr (f |e) Pr (e) .

Because of the particular structure of the distribu-
tion Pr (f |e) employed in SMT, the above problem is
recasted in the following form:

(1.2) (ê, â) = argmax
e,a

Pr (f , a|e) Pr (e)

where a is a many-to-one mapping from the words of the
sentence f to the words of e. In SMT parlance Pr (f |e),
Pr (e), and a are known as Translation Model, Language
Model, and alignment respectively [3].

Decoding is one of the three fundamental problems
in SMT and the only discrete optimization problem of
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1Following the custom in SMT literature, we use French
and English as the language pair in our discussion. The ideas
described in this paper are applicable to any language pair.

the three [10], [1]. The problem is known to be NP-
hard even in the simplest setting [1]. In applications
such as speech-to-speech translation and automatic
webpage translation, the translation system is expected
to have a very high throughput. In other words, the
Decoder should generate reasonably good translations
very quickly. Therefore, our primary goal is to develop
a fast decoding algorithm which produces good but
suboptimal translations. Another goal is to design the
decoding algorithm such that it is easy to implement
and requires nearly no tuning for best performance.

Several solutions have been proposed for this prob-
lem. The original IBM solution to the decoding prob-
lem employed a restricted stack-based search [10] which
takes exponential time in the worst case. An adaptation
of the Held-Karp dynamic programming based TSP al-
gorithm to the problem runs in O

(

l3m4
)

≈ O
(

m7
)

time
(where m and l are the lengths of the sentence and its
translation respectively) under certain assumptions [4].
For small sentence lengths, optimal solution to the de-
coding problem can be found using either the A∗ heuris-
tic [7] or integer linear programming [2]. The fastest and
arguably the most famous decoding algorithm employs
a greedy decoding strategy and finds a suboptimal so-
lution in O

(

m6
)

time [2] 2. A more complex greedy de-

coding algorithm finds a suboptimal solution in O
(

m2
)

time [6]. An implementation of the greedy algorithm
has been provided by its designers on their website [15].

In [14] we described an algorithmic framework for
solving the decoding problem. The framework is based
on alternating optimization in which the decoding prob-
lem is divided into two subproblems each of which can
be solved efficiently and combined to refine the solution
in an iterative fashion.

In this paper, we develop an O
(

m2
)

algorithm in
the alternating optimization framework (Section 2.3).
The key idea is to construct a reasonably large subspace
of the search space of the problem and design a com-
putationally efficient search scheme for finding the best
solution in the subspace. We show how to construct

2The conference version of the paper on greedy decoding
received a Best Paper Award at the 39th Annual Meeting of the
Association for Computation Linguistics (ACL-2001).



a family of alignments (with Θ (4m) alignments) start-
ing with any alignment (Section 3). We employ four
alignment transformation operations to build a family
of alignments from the initial alignment (3.1). We pro-
pose a dynamic programming algorithm to find the opti-
mal solution for the decoding problem within the family
of alignments thus constructed (Section 3.3). Although
the number of alignments in the subspace is exponen-
tial in m, the dynamic algorithm is able to compute
the optimal solution in O

(

m2
)

time. We extend the
algorithm to explore several such families of alignments
iteratively (Section 3.4). We look into the engineering
aspects of the algorithm and propose two intuitive and
simple heuristics to speedup the search (Section 3.5).
By caching some of the data used in the computations,
we improve the speed further (Section 3.6). Empirical
results show that our algorithm is about 10 times faster
than the greedy algorithm while computing better solu-
tions (Section 4).

2 The Decoding Problem

2.1 Preliminaries Let f and e denote a French
sentence and an English sentence respectively. Suppose
f has m > 0 words and e has l > 0 words. We can write
f = f1f2 . . . fm and e = e1e2 . . . el, where fj (ei) denotes
the jth (ith) word in the French (English) sentence. For
technical reasons, we prepend the null word e0 to every
English sentence 3.

Definition 2.1. (Alignment) An alignment, a, is a
mapping which associates each word fj , j = 1, . . . , m

in the French sentence (f) to some word eaj
, aj ∈

{0, . . . , l} in the English sentence e.

Equivalently, we can speak of a as a many-to-one
mapping from the words of f to the word positions
0, . . . , l in e. We can write a as a = a1a2 . . . am with
the meaning fj is mapped to eaj

.
Figure 1 shows an alignment a for the sentence pair

f , e. This particular alignment associates f1 with e1 (i.e.
a1 = 1) and f2 with e0 (i.e. a2 = 0). We note that f3

and f4 are mapped to e2 by a.

Definition 2.2. (Fertility) The fertility of ei, i =
0, . . . , l in an alignment a is the number of words of
f mapped to it by a. Let φi denote the fertility of
ei, i = 0, . . . , l.

In the alignment shown in Figure 1, the fertility of
e2 is 2 as f3 and f4 are mapped to it by the alignment
while the fertility of e3 is 0. A word with non-zero

3Null word is necessary to account for French words which are
not associated to any of the words in e.

Figure 1: Alignment

fertility is called a fertile word and a word with zero
fertility is called a infertile word. The maximum fertility
of an English word is denoted by φmax and is typically
a small constant.

Associated with every alignment are a tableau and a
permutation. Tableau is a partition of the words in the
sentence f induced by the alignment and permutation
is an ordering of the words in the partition.

Definition 2.3. (Tableau) Let τ be a mapping from
[0, . . . , l] to subsets of {f1, . . . , fm} defined as follows:

τi = {fj : j ∈ {1, . . . , m} ∧ aj = i} ∀ i = 0, . . . , l

τi is the set of French words which are mapped to
the word position i in the translation by the alignment.
τi, i = 0, . . . , l are called the tablets induced by the
alignment a and τ is called a tableau. The kth word in
the tablet τi is denoted by τik.

Definition 2.4. (Permutation) Let π be a mapping
from [0, . . . , l] to subsets of {1, . . . , m} defined as fol-
lows:

πi = {j : j ∈ {1, . . . , m} ∧ aj = i} ∀ i = 0, . . . , l.

πi is the set of positions which are mapped to position
i by the alignment a. The fertility of ei is φi = |πi|. We
can assume that the positions in the set πi are ordered,
i.e. πik < πik+1, k = 1, . . . , φi − 1. We may further
assume that τik = fπik

∀ i = 0, . . . , l ∀ k = 1, . . . , φi. π is
called a permutation.

It is easy to see that there is a unique alignment
corresponding to a tableau and a permutation.



Figure 2: Example of Tableau and Permutation

2.2 Probability Models In SMT, every English
sentence e is a translation of f . Some translations
are more likely than others. The probability of e is
Pr (e|f). In SMT literature, the distribution Pr (e|f)
is replaced by the product Pr (f |e) Pr (e) (by applying
Bayes’ rule) for technical reasons [3]. Furthermore, a
hidden alignment is assumed to exist for each pair (f , e)
with a probability Pr (f , a|e) and the translation model
(Pr (f |e)) is expressed as a sum of Pr (f , a|e) over all
alignments: Pr (f |e) =

∑

a
Pr (f , a|e).

SMT techniques model Pr (f , a|e) and Pr (e) using
simpler models which work at the level of words. [3] pro-
posed a set of 5 translation models, commonly known as
IBM 1-5. In practice, IBM-4 along with the trigram lan-
guage model is known to give better translations than
other models. Therefore, in the remainder of this paper
we describe our decoding algorithm in the context of
IBM-4 and trigram language model only, although our
methods can be applied to other IBM models as well.

2.2.1 Factorization of Models While IBM 1-5
models can be factorized in many ways, we propose
a factorization which is useful in solving the decoding
problem efficiently. Our factorization is along the words

of the translation:

Pr (f , a|e) =
l

∏

i=0

TiDiNi,

P r (e) =

l
∏

i=0

Li,

and therefore,

Pr (f , a|e) Pr (e) =

l
∏

i=0

TiDiNiLi.

Here, the terms Ti,Di,Ni, and Li are associated with
ei. The terms Ti,Di and Ni are determined by the
tableau and the permutation induced by the alignment.
Only Li is Markovian.

IBM-4 employs distributions t() (word transla-
tion model), n() (fertility model), d1() (head distortion
model) and d>1() (non-head distortion model) and the
language model employs the distribution tri() (trigram
model).

For IBM-4 and trigram language model, we have:

Ti =

φi
∏

k=1

t (τik |ei)

Ni =

{

n0

(

φ0|
∑l

i=1 φi

)

if i = 0

φi! n (φi|ei) if 1 ≤ i ≤ l

Di =

{

1 if i = 0
∏φi

k=1 pik (πik) if 1 ≤ i ≤ l

Li =

{

1 if i = 0

tri (ei|ei−2ei−1) if 1 ≤ i ≤ l

where,

n0 (φ0|m
′) =

(

m′

φ0

)

p
m′

−φ0

0 p
φ0

1

pik =

{

d1 (j − cρi
|A (eρi

) ,B (τi1)) if k = 1

d>1 (j − πik−1|B (τik)) if k > 1

ρi = max
i′<i
{i′ : φi′ > 0}

cρ =









1

φρ

φρ
∑

k=1

πρk









.

A and B are word classes, ρi is the previous fertile
English word, cρ is the center of the French words
connected to the English word eρ, p1 is the probability
of connecting a French word to the null word (e0), and
p0 = 1− p1.

Although IBM-4 is a complex model, what is impor-
tant for us in designing an efficient decoding algorithm
is the fact that it can be factorized into T ,D,Nand L.



2.3 Alternating Optimization Framework The
goal of the decoder is to solve the following search
problem:

(ê, â) = argmax
e,a

Pr (f , a|e) Pr (e)

when Pr (f , a|e) and Pr (e) have been defined as de-
scribed in the previous section.

In the alternating optimization framework, instead
of joint optimization, we alternate between optimizing
e and a:

(2.3) ê = argmax
e

Pr (f , a|e) Pr (e)

(2.4) â = argmax
a

Pr (f , a|e) Pr (e)

In the search problem specified by Equation 2.3, we
keep the length of the translation (l) and the alignment
(a) fixed while in the search problem specified by Equa-
tion 2.4, we keep the translation (e) fixed. We start
with an initial alignment, and find the best translation
for f with that alignment. Next, keeping the translation
fixed we find a new alignment which is at least as good
as the previous one. In this manner, we refine both the
alignment and the translation iteratively. The frame-
work does not require that the two problems be solved
exactly. Suboptimal solutions to the two problems in
every iteration are sufficient for the algorithm to make
progress.

Alternating optimization framework is useful in
designing fast decoding algorithms for the following
reason:

Lemma 2.1. Fixed Alignment Decoding [14]: The
solution to the search problem specified by Equation 2.3
can be found in O(m) time by Dynamic Programming.

In addition, reasonably good suboptimal solution
to the search problem specified by Equation 2.4 can be
computed in O (m) by local search [14].

3 Searching a Family of Alignments

In this section, we describe how to construct a family of
alignments starting with any alignment.

3.1 Alignment Transformation Operations Let
a, a′ be any two alignments. Let (τ, π) and (τ ′, π′)
be the tableau and permutation induced by a and a′

respectively. We define a relation R between alignments
and say that a′R a if a′ can be derived from a by
performing one of the operations COPY, GROW, SHRINK and
MERGE on each of (τi, πi), 0 ≤ i ≤ l starting with (τ1, π1).
Let i and i′ be the counters for (τ, π) and (τ ′, π′)
respectively. Initially, (τ ′

0, π
′

0) = (τ0, π0) and i′ = i =
1. The operations are as follows:

1. COPY:
(τ ′

i′ , π
′

i′ )← (τi, πi);
i← i + 1; i′ ← i′ + 1.

2. GROW:
(τ ′

i′ , π
′

i′ )← ({} , {});
(τ ′

i′+1, π
′

i′+1)← (τi, πi);
i← i + 1; i′ ← i′ + 2.

3. SHRINK:
(τ ′

0, π
′

0)← (τ ′

0 ∪ τi, π
′

0 ∪ πi);
i← i + 1.

4. MERGE:
(τ ′

i′−1, π
′

i′−1)← (τ ′

i′−1 ∪ τi, π
′

i′−1 ∪ πi);
i← i + 1.

Figure 3 illustrates the alignment transformation
operations on an alignment and the resulting alignment.

The four alignment transformation operations allow
us to generate alignments that are related to the starting
alignment but have some structural difference. The
COPY operations maintain structural similarity in some
parts between the starting alignment and the new
alignment. The GROW operations increase the size of the
alignment and therefore, the length of the translation.
The SHRINK operations reduce the size of the alignment
and therefore, the length of the translation. MERGE

operations increase the fertility of words.

3.2 A Family of Alignments Given an alignment
a, the relation R defines the following family of align-
ments: A = {a′ : a′R a}. Further, if a is one-to-one,
the size of this family of alignments is |A| = Θ (4m).
We call a the generator of the family A.

The key idea in our decoding algorithm is to find
a good family of alignments A and to compute the
optimal solution in this family:

(3.5) (ê, â) = argmax
e, a∈A

Pr (f , a|e) Pr (e)

3.3 A Dynamic Programming Algorithm We
now discuss how to compute the optimal solution in a
family of alignments.

Lemma 3.1. The solution to the search problem speci-
fied by Equation 3.5 can be computed in O

(

m2
)

time
by Dynamic Programming when A is a family of align-
ments as defined in Section 3.2.

The dynamic programming algorithm builds a set
of hypotheses and reports the hypothesis with the best
score and the corresponding translation, tableau and
permutation. The algorithm works in m phases and
in each phase it constructs a set of partial hypotheses



Figure 3: Alignment Transformation Operations

by expanding the partial hypotheses from the previous
phase. A partial hypothesis after the ith phase, h, is a
tuple (e0 . . . ei′ , τ

′

0 . . . τ ′

i′ , π
′

0 . . . π′

i′ , C) where e0 . . . ei′ is
the partial translation, τ ′

0 . . . τ ′

i′ is the partial tableau,
π′

0 . . . π′

i′ is the partial permutation, and C is the score
of the partial hypothesis. In the beginning of the first
phase, there is only one partial hypothesis (e0, τ

′

0, π
′

0, 0).
In the ith phase, we extend a hypothesis as follows:

1. Do an alignment transformation operation on the
pair (τi, πi).

2. For each pair (τ ′

i′ , π
′

i′) added by doing the operation

(a) Choose a word ei′ from the English vocabu-
lary.

(b) Include ei′ and (τ ′

i′ , π
′

i′) in the partial hypoth-
esis.

3. Update the score of the hypothesis.

As observed in Section 3.2, an alignment trans-
formation operation can result in the addition of
0 or 1 or 2 new tablets. Since each tablet corresponds
to an English word, the expansion of a partial hypoth-
esis results in appending 0 or 1 or 2 new words to the
partial sentence:

1. COPY: An English word ei′ is appended to the partial
translation (i.e. the partial translation grows from
e0 . . . ei′−1 to e0 . . . ei′). The word ei′ is chosen
from the set of candidate translations of the French
words in the tablet τi. If we assume that the
number of candidate translations a French word
can have in the English vocabulary is bounded by
NF , then the number of new partial hypotheses
resulting from the COPY operation is at most NF .

2. GROW: Two English words ei′ , ei′+1 are appended
to the partial translation as a result of which
the partial translation grows from e0 . . . ei′−1 to
e0 . . . ei′ei′+1. The word ei′ is chosen from the
set of infertile English words and ei′+1 from the
set of English translations of the French words in
the tablet τi. If the number of infertile words in
the English vocabulary is N0, then the number
of new partial hypotheses resulting from the GROW

operation is at most NF N0.

3. SHRINK, MERGE: The partial translation remains un-
changed. Only one new partial hypothesis is gen-
erated.

Figure 4 illustrates the expansion of a partial hy-
pothesis using the alignment transformation operations.



Figure 4: Partial Hypothesis Expansion

At the end of a phase of expansion, we have a set of
partial hypotheses. These hypotheses can be put into
classes based on the following:

1. The last two words in the partial translation
(ei′−1, ei′),

2. Fertility of the last word in the partial translation
(|π′

i′ |) and

3. The center of the tablet corresponding to the last
word in the partial translation.

If two partial hypotheses in the same class are
extended using the same operation, then their scores
increase by equal amount. Therefore, for each class of
hypotheses the algorithm retains only the one with the
highest score.

3.3.1 Analysis The algorithm has m phases and in
each phase a set of partial hypotheses are expanded.
The number of partial hypotheses generated in any
phase is bounded by the product of the number of hy-
pothesis classes in that phase and the number of partial
hypotheses yielded by the alignment transformation op-
erations. We first count the number of partial hypothe-
ses classes in phase i. There are at most |VE |

2 choices
for (ei′−1, ei′), at most φmax choices for the fertility of
ei′ and m choices for the center of the tablet correspond-
ing to ei′ . Therefore, the number of partial hypotheses
classes in phase i is at most φmax |VE |

2
m. The align-

ment transformation operations on a partial hypothesis
result in atmost NF (1+N0)+2 new partial hypotheses.
Therefore, the number of partial hypotheses generated
in phase i is at most φmax(NF (1 + N0) + 2) |VE |

2
m.

As there are totally m phases, the total number of par-
tial hypotheses generated by the algorithm is at most
φmax(NF (1 + N0) + 2) |VE |

2
m2. It must be noted that

φmax, NF and N0 are constants independent of the
length of the French sentence. Therefore, the number
of operations in the algorithm is O

(

m2
)

. In practice
φmax < 10, NF ≤ 10, and N0 ≤ 100.

3.4 Iterative Search Algorithm We can explore
several alignment families iteratively using the alternat-
ing optimization framework. In each iteration we solve
two problems. In the first problem, we start with a
generator alignment a, build an alignment family A for
the generator, and find the best solution in that fam-
ily using the dynamic programming algorithm. In the
second problem, we find a new generator for the next
iteration. In order to find a new generator, we swap
the tablets in the solution found in the previous step
and check if that improves the score. In fact, we find
the best swap of tablets that improves the score of the



solution. Clearly, the resulting alignment ã is not part
of the alignment family A. We use ã as the generator
in the next iteration.

3.5 Pruning Although our dynamic programming
algorithm takes O

(

m2
)

time to compute the transla-
tion, the constant in the O is prohibitively large. In
practice, the number of partial hypotheses generated by
the algorithm is substantially smaller than the bound in
Section 3.3.1, but large enough to make the algorithm
slow. In this section we describe two partial hypothesis
pruning schemes which are helpful in speeding up the
algorithm.

3.5.1 Pruning with the Geometric Mean At
each phase of the algorithm, the geometric mean of
the scores of partial hypotheses generated in that phase
is computed. Only those partial hypotheses whose
scores are at least as good as the geometric mean are
retained for the next phase and the rest are discarded.
Although conceptually very simple, pruning the partial
hypotheses with the Geometric Mean as the cutoff is a
very efficient pruning scheme as demonstrated by our
empirical results.

3.5.2 Generator Guided Pruning In this scheme,
we take the generator of the alignment family A and
find the best translation (and tableau and permutation)
using the O (m) algorithm for Fixed Alignment Decod-
ing. We then determine the score C(i), at each of the
m phases, of the hypothesis that generated the optimal
solution. These scores are used to prune the partial
hypotheses of the dynamic programming algorithm. In
the ith phase of the algorithm, only those partial hy-
potheses whose scores are at least C(i) are retained for
the next phase and the rest are discarded. This pruning
strategy incurs the overhead of running the algorithm
for Fixed Alignment Decoding for the computation of
the cutoff scores. However, this overhead is insignifi-
cant in practice.

3.6 Caching The probability distributions
(n, d1, d>, t and tri) are loaded into memory by
the algorithm before decoding. The data is large
and is organized in the C++ hash and map data
structures (STL). However, it is better to cache the
most frequently used data in smaller data structures
so that subsequent accesses are relatively faster.
It was observed by profiling the code that caching
d1, d> and tri is more beneficial than caching n and t.

3.6.1 Caching of Language Model While decod-
ing the French sentence, we know a priori the set of all

trigrams that could potentially be accessed by the algo-
rithm. This is because these trigrams are formed by the
set of all candidate English translations of the French
words in the sentence and the set of infertile words.
Therefore, we can assign a unique id for every such tri-
gram. When the trigram is accessed for the first time,
we store it in an array indexed by its id. Subsequent
accesses to the trigram make use of the cached value.

3.6.2 Caching of Distortion Model As with the
language model, the actual number of distortion prob-
ability data values accessed by the decoder while trans-
lating a sentence is relatively small compared to the
total number of distortion probability data values. Fur-
ther, distortion probabilities are not dependent on the
French words but on the position of the words in the
French sentence. Therefore, while translating a batch
of sentences of roughly the same length, the same set
of data is accessed repeatedly. We cache the distortion
probabilities required by the algorithm in a map data
structure.

4 Experiments

4.1 Experimental Setup In this section, we present
the results from our experiments. We designed our
experiments to study the following:

1. Effectiveness of the pruning techniques.

2. Effect of caching on the performance.

3. Effectiveness of the alignment transformation op-
erations.

4. Effectiveness of the iterative search scheme.

We used Fixed Alignment Decoding as the base-
line algorithm in our experiments. To compare the per-
formance of our algorithm with a state-of-the-art de-
coding algorithm, we used the implementation of the
Greedy decoder [15]. In the empirical results from our
experiments, in place of the translation score, we report
the logscore (i.e. negative logarithm) of the transla-
tion score. When reporting scores for a set of sentences,
we treat the geometric mean of their translation scores
as the statistic of importance and report the average
logscore.

4.1.1 Training of the Models We built a French-
English translation model (IBM-4) by training over a
corpus of 100 K sentence pairs from the Hansard corpus.
The translation model was built using the GIZA++
toolkit [16], [19]. There were 80 word classes which
were determined using the mkcls tool [17]. We built
an English trigram language model by training over a



corpus of 100 K English sentences. We used the CMU-
Cambridge Statistical Language Modeling Tool Kit v2
for training the language model [18]. While training the
translation and language models, we used the default
setting of the corresponding tools. The corpora used
for training the models were tokenized using an in-house
Tokenizer.

4.1.2 Test Data The data used in the experiments
consisted of 11 sets of 100 French sentences picked
randomly from the French part of the Hansard corpus.
The sets were formed based on the number of words
in the sentences. We chose 11 sets of sentences whose
length was in the range 6− 10, 11− 15, . . . , 56− 60.

4.2 Decoder Implementation We implemented
our algorithm in C++ and compiled it using gcc with
-O3 optimization setting. Methods which had less than
15 lines of code were inlined.

4.2.1 System The experiments were conducted on
an Intel Dual Processor machine (2.6 GHz CPU, 2GB
RAM) with Linux as the OS. No other job was running
on the machine when the decoder was running.

4.3 Starting Generator Alignment Our algo-
rithm requires a starting alignment to serve as the gen-
erator for the family of alignments. We used the align-
ment aj = j, i.e., l = m and a = (1, . . . , m) as the
starting alignment. This particular alignment is a nat-
ural choice for French and English as their word orders
are closely related.

4.4 Effect of Pruning The following measures are
indicative of the effectiveness of pruning:

1. Percentage of partial hypotheses retained by the
pruning technique at each phase of the dynamic
programming algorithm.

2. Time taken by the algorithm for decoding.

3. Logscores of the translations.

4.4.1 Pruning with the Geometric Mean
(PGM) Figure 5 shows the percentage of partial hy-
potheses retained at each phase of the dynamic pro-
gramming algorithm for a set of 100 French sentences
of length 25 when the geometric mean of the scores was
used for pruning. With this pruning technique, the algo-
rithm removes more than half (about 55% of the partial
hypotheses at each phase).

4.4.2 Generator Guided Pruning (GGP) Figure
6 shows the percentage of partial hypotheses retained
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Figure 5: Percentage of hypotheses retained by pruning
with geometric mean
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Figure 6: Percentage of partial hypotheses retained by
the Generator Guided Pruning technique

at each phase of the dynamic programming algorithm
for a set of 100 French sentences of length 25 by the
Generator Guided Pruning technique. This pruning
technique is very conservative and retains only a small
fraction of the partial hypotheses at each phase. All
the partial hypotheses that survive in a phase are
guaranteed to have scores at least as good as the score
of the partial hypothesis corresponding to the Fixed
Alignment Decoding solution. On an average, only 5%
of the partial hypotheses move to the next phase.

4.4.3 Performance Figure 7 shows the time taken
by the dynamic programming algorithm with each of the
pruning techniques. As hinted by the statistics shown
in Figures 6 and 5, the Generator Guided Pruning
technique speeds up the algorithm much more than
pruning with the geoemtric mean.

Figure 8 shows the logscores of the translations
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Figure 8: PGM and GGP: Logscores

found by the algorithm with each of the pruning tech-
niques. Pruning with the Geometric Mean fares better
than Generator Guided Pruning, but the difference is
not significant.

We also compared the logscores of the translations
found by PGM with those of the translations found by
the dynamic programming algorithm without pruning
and found that the logscores were identical. This means
that our pruning techniques are very effective in identi-
fying and removing inconsequential partial hypotheses.
Figure 9 shows the time taken by the decoding algo-
rithm when there is no pruning.

From Figure 7 and 8, we conclude that Generator
Guided Pruning is a very effective pruning technique.

4.5 Effect of Caching In caching, the number of
cache hits is a measure of the repeated use of the cached
data. Also of interest is the improvement in runtime due
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Figure 9: PGM vs No pruning: Time
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Figure 10: Trigram accesses: First hits, subsequent hits
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to caching.

4.5.1 Language Model Caching Figure 10 shows
the number of distinct trigrams accessed by the algo-
rithm and the number of subsequent accesses to the
cached values of these trigrams. We observe that on an
average every second trigram is accessed at least once
more. Figure 11 shows the time taken for decoding when
only the language model is cached. Caching of language
model has little effect on smaller length sentences. But
as the sentence length grows, caching of language model
improves the speed.

4.5.2 Distortion Model Caching Figure 12 shows
the counts of first hits and subsequent hits for distortion
model values accessed by the algorithm. 99.97% of the
total number of accesses are to the cached values. Thus,
cached distortion model values are used repeatedly by
the algorithm. Figure 11 shows the time taken for
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Figure 12: Distortion probability access log

decoding when only the distortion model is cached.
Improvement in speed is more significant for longer
sentences than for shorter sentences as expected.

Figure 11 shows the time taken for decoding when
both the models are cached. As can be observed
from the plots, caching of both the models is more
beneficial than caching them individually. Although the
improvement in speed due to caching is not substantial
in our implementation, our experiments do show that
cached values are accessed subsequently. We believe
that it should be possible to speed up the algorithm
further by using better data structures for the cached
data.

4.6 Alignment Transformation Operations To
understand the effect of the alignment transformation
operations on the performance of the algorithm we
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conducted experiments in which we removed each of
GROW, MERGE and SHRINK operations and ran the decoder
with Generator Guided Pruning.

Figure 14 shows the logscores when the decoder
worked with only (GROW, MERGE, COPY) operations,
(SHRINK, MERGE, COPY) operations and (GROW, SHRINK,
COPY) operations. The logscores are compared with
those of the decoder which worked with all the four op-
erations. We observe that the logscores are affected very
little by the absence of SHRINK operation. However, the
absence of MERGE operation results in poorer scores. The
absence of GROW operation also results in poorer scores
but the loss is not as significant as with MERGE.

Figure 13 shows the time taken for decoding in this
experiment. We see that the absence of MERGE does
not affect the time taken for decoding significantly. We
also see that the absence of either GROW or SHRINK has
significant affect on the time taken for decoding. This
is not very surprising because GROW operations add the
highest number of partial hypotheses at each phase of
the algorithm 3.3.1. Although a SHRINK operation adds
only one new partial hypothesis, its contribution to the
number of distinct hypothesis classes is significant.

We note that MERGE operation while not contribut-
ing significantly to the runtime of the algorithm plays
an important role in improving the scores.

4.7 Iterative Search Figures 15 and 17 show the
time taken by the iterative search algorithm with Gen-
erator Guided Pruning (IGGP) and pruning with Geo-
metric Mean (IPGM). Figures 16 and 18 show the corre-
sponding logscores. We observe that the improvement
in logscores due to iterative search is not significant.
The results highlight the need for a more effective tech-



Figure 14: Logscores a. using all the operators (All
Ops), b. not using GROW (No Grow), c. not using SHRINK
(No Shrink) and d. not using MERGE (No Merge)
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Figure 15: IGGP vs GGP: Time

nique for finding subsequent generators in the iterative
algorithm.

4.8 Comparison with the Greedy Decoder Fi-
nally, we compare the performance of our algorithm
with that of the Greedy decoder. Figure 19 compares
the time taken for decoding by our algorithm and the
Greedy decoder while Figure 20 shows the logscores. We
see that the iterated search algorithm that prunes with
the Geometric Mean (IPGM) is faster than the Greedy
decoder for sentences whose length is greater than 25.
However, the iterated search algorithm that uses Gen-
erator Guided Pruning technique (IGGP) is faster than
the Greedy decoder for sentences whose length is greater
than 10. As can be noted from the plots, IGGP is at
least 10 times faster than the greedy algorithm for most
sentence lengths.

Our logscores are better than those of the greedy
decoder with either of the pruning techniques (Figure
20).

Figure 16: IGGP vs GGP: Logscores
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Figure 17: IPGM vs PGM: Time

Figure 18: IPGM vs PGM: Logscores
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Figure 20: Comparison with the Greedy Decoder:
Logscores

5 Conclusions

Searching for a good translation in a family of align-
ments seems promising as the empirical results indicate.
It would be interesting to explore whether good gener-
ators can be determined easily from the starting gener-
ator. The result of the search in the current alignment
family may give good hints for choosing the next gener-
ator. Efficient caching of model values is another area
that needs to be explored.
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