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1. Objectives of image processing

•Sampling, compression

•Restoration, (debluring - denoising)

•Analysis :
extraction of meaningful parts



2. Linear theory and the heat equation

Image generation = a convolution (u= k∗ u0) followed by a sampling

Original image

Smoothed image Sampled version

Sampling without smoothing creates aliasing

smoothing

subsampling

subsampling

Shannon, 1948



Gabor (1960) remarked that: u - u0 = k∗ u0 - u0  ≈  C ∆u

Gabor enhancement filter : urestored = uobserved - ε ∆uobserved

Thus : image deblurring means inverting the heat equation

Original

un+1=un+ ε ∆un

Blur

un+1=un- ε ∆un un+1=un- ε ∆un

“Deblur”“Enhanced”



1. Image restoration:

• improving inverse heat equation

2. Image multi-scale representations

• simulating iterated convolution-sampling process:
wavelet theory (Burt, Adelson (1983), Morlet, Grossmann (1984), Mallat,
Meyer (1986), …

Application: image compression - but sampling implies loss of invariance

• simulating iterated convolution without sampling:
heat equation and other nonlinear diffusions

Application: image analysis

Two directions
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Improving inverse heat equation

Rudin (1987),
Osher, Rudin (1990)
Shock filter
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Wavelets and the Laplacian pyramid

u1 = k∗  u0      v1 = u1 - u0 ≈ ε ∆ u0

u2 = k∗  u1      v2 = u2 - u1 ≈ ε ∆ u1

       ...

un+1 = k∗  un      vn+1 = un+1 - un ≈ ε ∆ un

(Each vertical arrow    indicates
 a subsampling)

Laplacian pyramid of u0 

 ( Burt, Adelson 1983 ) 

u0 u1= k∗  u0 v1 = u1-u0 ≈ ε ∆ u0 Large coefficients



1. Image restoration:

• improving inverse heat equation

2. Image multi-scale representations

• simulating iterated convolution-sampling process:
wavelet theory (Burt, Adelson (1983), Morlet, Grossmann (1984), Mallat,
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Heat equation and feature extraction

Marr, Hildreth (1980), Canny (1983), Witkin (1983), Koenderink (1984), 

Image boundaries are defined as the points 
where D2u(Du,Du) changes sign and |Du| is large 
(large extrema of |Du|)
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3. Non Linear Diffusions
Perona-Malik equation (1987)

It aims at enhancing edges and smoothing regions
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This equation behaves like a diffusion at points where |Du|<λ-1. 
If instead, |Du|>λ-1, the first term becomes a reverse heat term.

with



Comparing Perona-Malik and heat equations

Heat equation and edges

Perona-Malik diffusion 
and edges
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Drawbacks of Perona-Malik equation :

it mixes restoration, analysis and feature extraction
with two parameters :

- the time (scale)
- the contrast parameter λ.

No existence-uniqueness theory  
(despite some partial results by Kichenassamy, Weickert 1998)



Consequence : A proliferation of nonlinear diffusions

Original

Weickert, 1994 Zhong Carmona, 1998 

Rudin, Osher,
 Fatemi, 1992

Perona, Malik, 1987
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4. Invariant Image analysis

- Contrast invariance  :    u   and  v are equivalent
    if there is a continuous increasing function g (contrast change)
    such that v= g(u)

- Affine invariance :  u and v are equivalent
    if there is an affine map A, such that  v(x) = u(Ax)

All image analysis operators should be defined on these equivalence classes.

(Affine invariance means invariance 
with respect to plane chinese perspective)



Matheron principle : shape information is contained in the bunch of level sets

 (Wertheimer 1923, Matheron 1975)

u→Xλu = {x ; u(x) ≥ λ } upper level set, contrast invariant.

Contrast invariant representations

Level set 140



Application: Extrema Killer    (Vincent, Serra, 1993)

Removes all connected components of upper or lower level sets
with area smaller than some scale.

Initial Image Noisy image
75% Salt&Pepper

Scale 80 :
(level sets
smaller than 80
pixels are
removed)

Original processed Noisy processed



Topographic Map: a more local constrast invariant representation

Caselles, Coll 1996

Level lines with
level 183. 

u → boundaries of upper and lower level sets. 
It is a set of Jordan curves if the image is BV : the “level lines”.

Proposition :These Jordan curves are ordered by inclusion into an “inclusion tree”.
(Kronrod 1950 in continuous case, Monasse 1998 in semi-continuous case).

Then, image contrast invariant smoothing boils down to 
- an independent smoothing of each level curve
- a smoothing that preserves curve inclusion.



Contrast invariant smoothing

Theorem (Chen, Giga, Goto 1991, Alvarez, Lions et al. 1992)
If the image analysis is local, isotropic, contrast invariant and

satisfies an inclusion principle, then it satisfies
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If in addition it is affine invariant then the only possible equation is
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AIf and u(t,x) is solution of AMSS, then 

u(det(A) t, Ax) also is a solution.

Where curv(u) is the curvature
of the level curve.

(AMSS)



Curve motion
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(curve shortening) 
where n is the normal vector to the curve

Gage, Hamilton, Grayson  (1984-1987) proved existence, uniqueness and
analycity of the solution.

Angenent, Sapiro, Tannenbaum (1998) prove the same result for the affine
curve shortening
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Moisan’s
fast affine
invariant
algorithm

MCM : not affine invariantAMSS : affine invariant
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Theorem. Evans, Spruck (1991), Chen, Giga, Goto (1991)

A continuous image moves by curvature motion 
(viscosity sense - Crandall, Lions)

if and only if, almost all of its level lines 
move by curve shortening (in classical sense). 

This result justifies the Osher, Sethian level set algorithm for curvature motion
(1985)

Same result holds with affine shortening
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Extension to discontinuous images is possible, 
but raises the figure/background problem.

Not contrast
 invariant

usc solutionlsc solution

Original
image

(Creation of new
levels)
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u0 original image, 2
0 )(1

1
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+
= its edge map, (vanishing on edges)

v analysing image, whose zero level set approximates some desired contour,
by moving v by the equation
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where x(s) is an arc length parameterization of γ. 

Application of contrast invariance : 
contour selection by geodesic snake method

Caselles, Kimmel, Sapiro (1997), Malladi, Sethian (1997)



Application: Massive Shape Recognition Algorithms
image parsers

Idea : to smooth all level lines of each image by affine shortening until the 
average code (given e.g. by inflexion points) of each shape is small enough
and encode them into a dictionary of shapes.

Fast and massive image comparison is possible

Example: image comparison, detection of repeated shapes.

Lisani & al
shape parser

One shape (filtered level curve)          Shapes found similar
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Application: Massive Shape Recognition Algorithmes
image parsers

Lisani & al
shape parser

all matching shapes

Idea : to smooth all level lines of each image by affine shortening until the 
average code (given e.g. by inflexion points) of each shape is small enough
and encode them into a dictionary of shapes.

Fast and massive image comparison is possible

Example: image comparison, detection of repeated shapes.



image 
generation 
(Shannon)  

optical blur 

heat 
equation 

deblurr 

inverse heat 
equation (Gabor) 

nonlinear inverse 
diffusions 

total variational model   
(Rudin-Osher-Fatemi) 

wavelets 
multiscale smoothing and sampling  

nonlinear diffusion 
Perona, Malik 

Edge detection 

all directional 
tuned diffusions  

dead end 

contrast 
invariance 

curvature 
equations 

front 
propagation 

active contour 
models 

applications to 
medical imaging, ... 

affine invariance 

affine curvature 
equations (AMSS) 

shape 
recognition, ... 

satelite imaging, 
law inforcement, ... 

compression, 
restauration 

Conclusion


