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1. Objectives of iImage processing

«Sampling, compression

*Restoration, (debluring - denoising)

cAnaysis:
extraction of meaningful parts




2. Linear theory and the heat equation

Image generation = a convolution (u= k* u,) followed by a sampling
Shannon, 1948

subsampling
—

Smoothed image

Original image

subsampling

Sampling without smoothing createsaliasing



Gabor (1960) remarked that: u - u,= k* u,- u, » CDu

Gabor enhancement filter : U, o eq = Ugpserveq - € DU

observed

Thus : image deblurring means inverting the heat equation

un+1:un+ € I:]'ln
Origind Blur
>
u.,,,=u.-ebDu, u.,,,=u.-ebDu,
“Deblur”

“Enhanced”




Two directions

1. Image restoration:
 Improving inverse heat equation
2. lmage multi-scale representations
« ssmulating iterated convolution-sampling process:
wavelet theory (Burt, Adelson (1983), Morlet, Grossmann (1984), Mallat,
Meyer (1986), ...

Application: image compression - but sampling implies |oss of invariance

« smulating iterated convolution without sampling:
heat equation and other nonlinear diffusions

Application: image analysis
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Improving inverse heat equation

Rudin (1987), Asymptotic Kramer’sfilter Rudin-Osher -Fatemi
Osher, Rudin (1990) (1992)
Shock filter
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Wavelets and the Laplacian pyramid

V, = U-Uy» e Duj

u=k*u —, v.=u-u»eDu
Laplacian pyramid of u, il ° S °

( Burt, Adelson 1983 ) w=kt u, — Vv,=u,-u »eDu,

(Each vertical arrowi indicates
a subsampling) i
u

n+1:k* U, Vi1 = un+1'un»eDun
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Heat equation and feature extraction

Marr, Hildreth (1980), Canny (1983), Witkin (1983), Koenderink (1984),

|mage boundaries are defined as the points
where D?u(Du,Du) changes sign and |Du| islarge
(large extremaof |Dul|)
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3. Non Linear Diffusions

Perona-Malik equation (1987)
It aims at enhancing edges and smoothing regions

%:div(gQDu\z)Du) with quu‘z): 1+| 2\Du\2

Intrinsic coordinates : h = coordinate in the direction of Du
X = orthogonal direction

Du=u,+ U, u,, = |Du| curv(u) u.,= D2u(Du, Du)/|Duj?

fu_ [ 17|ouf)

it (1+| Z\Du\z)z o (1+I 2\Du\2) o

/ \

This equation behaves like a diffusion at points where |Dul|<I -1,
If instead, |Du[>1 -1, the first term becomes a reverse heat term.



Comparing Perona-Malik and heat equations

Heat equation and edges

Perona-Malik diffusion
and edges
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Drawbacks of Perona-Malik equation :

It mixes restoration, analysis and feature extraction
with two parameters :

- the time (scale)

- the contrast parameter | .

NO existence-uniqueness theory
(despite some partial results by Kichenassamy, Weickert 1998)




Consequence : A proliferation of nonlinear diffusions
h

.. Perona, Malik, 1987 Rudin, Osher, Al Li ” 2
Original 88 . Fatemi, 1992 varez|Du||onsae[)99O
)| LV Du X u
o ¢ 2; u_ i DU 2 "
fit g|Du| +] bl eV ot~ k= o gl

%

Sochen, Kimmel,

ﬂl}Nel ckert, 1994 Casdlles, Sbhert, 1997 th%rlljg Carmona, 1998 Malladi 1998

— = D%(d,d) fTu_ 1 — =D?%u(d,d) ae 0
Tt ” It |Du|2 ’ it flu_ dive bu -~
d = SEigen(k * (Du & Du)) d = SEigen(D%) Tt &louf+13




4. Invariant Image analysis

- Contrast invariance : u and v are equivalent
If there is a continuous increasing function g (contrast change)
such that v= g(u)

- Affine invariance : uand v are equivalent
If thereisan affinemap A, such that v(x) = u(Ax)

(Affine invariance means invariance
with respect to plane chinese perspective)

All image analysis operators snhould be defined on these equivalence classes.



Contrast invariant representations

(Wertheimer 1923, Matheron 1975)

u® X, u={x;u(x) 3| } upperlevel set, contrast invariant.

Level set 140

Matheron principle : shape information is contained in the bunch of level sets



Application: ExtremaKiller (Vincent, Serra, 1993)

Removes all connected components of upper or lower level sets

Initial Image Noisy image

75% Salt& Pepper

Scale 80
(level sets
smaller than 80
pixelsare
removed)

Original processed




Topographic Map: amore local constrast invariant representation
Casdlles, Coll 1996

u® boundaries of upper and lower level sets.
It isaset of Jordan curvesif theimageisBYV : the“level lines’.

Proposition :These Jordan curves are ordered by inclusion into an “inclusion treg’.
(Kronrod 1950 in continuous case, Monasse 1998 in semi-continuous case).

Then, image contrast invariant smoothing boils down to
- an independent smoothing of each level curve
- asmoothing that preserves curve inclusion.

Level lineswith
level 183.




Contrast invariant smoothing

Theorem (Chen, Giga, Goto 1991, Alvarez, Lions et al. 1992)
If the image analysisislocal, isotropic, contrast invariant and
satisfies an inclusion principle, then it satisfies

% =|Dul|F (curv(u),t)  Where curv(u) isthe curvature

of the leved curve.

(Alvarez, Lions et a. 1992)
If in addition it is affine invariant then the only possible equation is

fMu

1
—=D 3
- Dulcurv(u)

(AMSS)

bo

If Azgi‘ -2 and u(t,X) issolution of AMSS, then

u(det(A) t, Ax) also isasolution.

)



Curve motion

% =(curv(x))n, (curve shortening)

where n isthe normal vector to the curve

Gage, Hamilton, Grayson (1984-1987) proved existence, uniqueness and
analycity of the solution.

Angenent, Sapiro, Tannenbaum (1998) prove the same result for the affine
curve shortening X 1

— =(curvix)J)3n.
= (eurv(x)
AMSS : affineinvariant MCM : not affine invariant
Moisan's
fast affine
Invariant

algorithm
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Theorem. Evans, Spruck (1991), Chen, Giga, Goto (1991)

A continuous image moves by curvature motion flu _ IDulcurv(u)
(viscosity sense - Crandall, Lions) L

If and only If, amost al of itslevel lines x
move by curve shortening (in classical sense). it = (curv(x))n,

Thisresult justifies the Osher, Sethian level set algorithm for curvature motion
(1985)

Same result holds with affine shortening



Extension to discontinuous images is possible,
but raises the figure/background problem.

Origind
Image

Not contrast
Invariant
(Creation of new
levels)

| sc solution usc solution




Curvature Motion and AMSS

Associated level lines
(16 levels are displayed)

Wl

v _ [Dulcurv(u)

Mt
u(t)=

._‘__.-
i

u(t)=

fu_ Dulcurv(u)

1t




Curvature Motion and AMSS

Associated level lines
(16 levels are displayed)

u(0= "




Application of contrast invariance:
contour selection by geodesic snake method

Casdlles, Kimmel, Sapiro (1997), Madladi, Sethian (1997)

u, original image, 9(X) = its edge map, (vanishing on edges)

1+\Duo(x)\2

v analysing image, whose zero level set approximates some desired contour,
by moving v by the equation

b\

w0 curv(v)DV - Dv.Dg,
the zero level curve gof v, tends to minimize
0 9(x(s))ds

where x(s) is an arc length parameterization of g




Application: Massive Shape Recognition Algorithms
Image parsers

|dea: to smooth all level lines of each image by affine shortening until the
average code (given e.g. by inflexion points) of each shape is small enough

and encode them into a dictionary of shapes.
Fast and massive image comparison is possible

Example: image comparison, detection of repeated shapes.

Lisani & d
shape parser
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Conclusion

compression,
restauration

image multiscale smoothing and sampling
generation N wavelets
(Shannon)
| Edge detection
optical blur \ nonlinear diffusion contrast
¢ Perona, Malik invariance
heat ‘ \
equation all directional curvature
| tuned diffusions equations
deblurr

v

inverse heat
equation (Gabor)

nonlinear inverse
diffusions

v

total variational model
(Rudin-Osher-Fatemi)

dead end

front

/ propagation

active contour
models

!

applications to

medical imaging, ...

satelite imaging,

law inforcement, ...

affine invariance

!

affine curvature
equations (AMSS)

|

shape
recognition, ...




