
Partial Quicksort ∗

Conrado Mart́ınez†

Abstract

This short note considers the following common prob-
lem: rearrange a given array with n elements, so that
the first m places contain the m smallest elements in
ascending order. We propose here a simple variation of
quicksort that efficiently solves the problem, and show
and quantify how it outperforms other common alter-
natives.

1 Introduction

In many applications, we need to obtain a sorted list of
the m smallest elements of a given set of n elements.
This problem is known as partial sorting. Sorting the
whole array is an obvious solution, but it clearly does
more work than necessary.

A usual solution to this problem is to make a heap
with the n given elements (in linear time) and then
perform m successive extractions of the minimum el-
ement. Historically, this has been the way in which
C++ STL’s partial sort function has been imple-
mented [5]. Its most prominent feature is that it guar-
antees Θ(n + m log n) worst-case performance.

Another solution, begins by building a max-heap
with the first m elements of the given array, then
scanning the remaining n − m elements and updating
the heap as necessary, so that at any given moment
the heap contains the m smallest elements seen so
far. Finally, the heap is sorted. Its worst-case cost is
Θ((m+n) log m) and it is not an interesting alternative
unless m is quite small or we have to process the input
on-line.

Last but not least, we can solve the problem by
first using a selection algorithm to find the mth small-
est element. Most selection algorithms also rearrange
the array so that the elements which are smaller than
the sought element are to its left, the sought element
is at the mth component, and the elements which are

∗The research of the author was supported by the Future and

Emergent Technologies programme of the EU under contract IST-

1999-14186 (ALCOM-FT) and the Spanish Min. of Science and
Technology project TIC2002-00190 (AEDRI II).

†Departament de Llenguatges i Sistemes Informàtics, Universi-
tat Politècnica de Catalunya, E-08034 Barcelona, Spain. Email:
conrado@lsi.upc.es.

larger are to the right. Then, after the mth smallest
element has been found, we finish the algorithm sorting
the subarray to the left of the mth element. Using effi-
cient algorithms for both tasks (selection and sort) the
total cost is Θ(n + m log m). The obvious choice is to
use Hoare’s quickselect and quicksort algorithms [3, 4].
Then, the cost stated above is only guaranteed on aver-
age, but in practice this combination should outperform
most other choices. The Copenhagen STL group imple-
ments partial sort that way—actually, using finely
tuned, highly optimized variants of these algorithms
(http://www.cphstl.dk). For convenience, we call this
combination of the two algorithms quickselsort.

In this paper we propose partial quicksort, a simple
and elegant variant of quicksort that solves the partial
sorting problem, by combining selection and sorting into
a single algorithm. To the best of the author’s knowl-
edge the algorithm has not been formally proposed be-
fore. However, because of its simplicity, it may have
been around for many years.

Partial quicksort has the same asymptotic average
complexity as quickselsort, namely, Θ(n + m log m),
but does less work. In particular, if we consider the
standard variants of quickselsort and partial quicksort,
the latter saves 2m − 4 ln m + O(1) comparisons and
m/3− 5/6 ln m +O(1) exchanges.

The rest of this short note is devoted to present
the algorithm and to analyze the average number of
comparisons and exchanges of the basic variant. Finally,
we compare them with the corresponding values for the
quickselsort algorithm.

2 The algorithm

Partial quicksort works as follows. In a given recursive
call we receive the value m and a subarray A[i..j] such
that i ≤ m. We must rearrange the subarray so that
A[i..m] contains the m − i + 1 smallest elements of
A[i..j] in ascending order; if m > j that means that
we must fully sort A[i..j]. The initial recursive call is
with A[1..n].

If the array contains one or no elements, then we
are done. Otherwise, one of its elements is chosen as
the pivot, say p, and the array A[i..j] is partitioned so
that A[i..k − 1] contains the elements that are smaller

mailto:conrado@lsi.upc.es
mailto:conrado@lsi.upc.es
http://www.cphstl.dk

than p, A[k] contains the pivot and A[k + 1..j] contains
the elements which are larger than the pivot1. We
will assume that exactly n− 1 element comparisons are
necessary to carry out the partitioning of the array and
that partitioning preserves randomness [16]. If k ≥ m
then all the sought elements are in the left subarray, so
we only need to make a recursive call on that subarray.
Otherwise, if k < m then we have to make a recursive
call on both subarrays. Notice that when k ≤ m the
function will behave exactly as quicksort in the left
subarray and fully sort those elements, whereas the
recursive call on the right subarray has still the job to
put the mth element into its final place.

Algorithm 1 depicts the basic or standard variant
of the algorithm. Usual optimizations like recursion
cutoff, sampling for pivot selection, recursion removal,
optimized partition loops [1, 14, 15, 16], etc. can
be applied here and presumably yield benefits similar
to those for the quicksort and quickselect algorithms.
However, we do not analyze these refined variants in
this paper and we stick to the simpler case.

void partial_quicksort(vector<Elem>& A,
int i, int j, int m) {

if (i < j) {
int pidx = select_pivot(A, i, j);
int k;
partition(A, pidx, i, j, k);
// A[i..k-1] < A[k] < A[k+1..j]
partial_quicksort(A, i, k - 1, m);
if (k < m - 1) // ’A’ starts at index 0

partial_quicksort(A, k + 1, j, m);
}

Algorithm 1: Partial quicksort

3 The average number of comparisons

Let Pn,m denote the average number of (key) compar-
isons made by partial quicksort to sort the m smallest
elements out of n. Let πn,k denote the probability that
the chosen pivot is the kth element among the n given
elements. We assume, as it is usual in the analysis of
comparison-based sorting algorithms, that any permu-
tation of the given distinct n elements is equally likely.

1We assume for simplicity that all the elements in the array

are distinct. Only minor modifications are necessary to cope with
duplicate elements.

Then

(3.1) Pn,m = n− 1 +
m∑

k=1

πn,k (Pk−1,k−1 + Pn−k,m−k)

+
n∑

k=m+1

πn,kPk−1,m, if n > 0,

and P0,m = 0, otherwise.
As we have already mentioned, partial quicksort be-

haves exactly as quicksort when m = n, so that Pn,n =
qn = 2(n + 1)Hn − 4n, where Hn =

∑
1≤k≤n 1/k =

lnn+O(1) denotes the nth harmonic number [9, 10, 14].
Let

tn,m = n− 1 +
m−1∑
k=0

πn,k+1 qk.

Hence, we get the recurrence

(3.2) Pn,m = tn,m +
m∑

k=1

πn,kPn−k,m−k

+
n∑

k=m+1

πn,kPk−1,m,

which, except for the toll function tn,m, has the same
form as the recurrence for the average number of com-
parisons made by quickselect (see [7, 10]). The recur-
rence above holds for whatever pivot selection scheme
we use: for instance, median-of-three [6, 18], median-of-
(2t+1) [13], proportion-from-s [12], pseudomedian-of-9
(also called ninther) [1],. . . . However, as we have al-
ready pointed out, we will only consider the basic vari-
ant, hence, for the rest of this paper we take πn,k = 1/n,
for 1 ≤ k ≤ n.

The techniques that we use to solve recurrence (3.2)
(i.e., to find a closed form for Pn,m) are fairly standard
and rely heavily on the use of generating function as
the main tool. Sedgewick and Flajolet’s book [17] and
Knuth’s The Art of Computer Programming [8, 9] are
excellent starting points which describe in great detail
these techniques.

First, we introduce the bivariate generating func-
tions (BGFs) associated to the quantities Pn,m and tn,m:

P (z, u) =
∑
n≥0

∑
1≤m≤n

Pn,mznum,

T (z, u) =
∑
n≥0

∑
1≤m≤n

tn,mznum.

We can then translate (3.2) into a functional relation
over the BGFs, namely,

(3.3)
∂P (z, u)

∂z
=

P (z, u)
1− z

+
u

1− uz
P (z, u)+

∂T (z, u)
∂z

,

whose solution is

P (z, u) =
1

(1− z)(1− uz)

×

{∫
(1− z)(1− uz)

∂T (z, u)
∂z

dz + K

}
,

subject to P (0, u) = 0, as P0,m = 0 for any m (see for
instance [11]).

Since tn,m = n − 1 + 1
n

∑
0≤k<m qk, we can de-

compose P (z, u) as P (z, u) = F (z, u) + S(z, u), where
F (z, u) accounts for the selection part of the toll func-
tion (n − 1) and S(z, u) for the sorting part of the toll
function ((1/n) ·

∑
0≤k<m qk). That is, with T (z, u) =

TF (z, u) + TS(z, u), we have

TF (z, u) =
∑
n≥0

∑
1≤m≤n

(n− 1)znum,

TS(z, u) =
∑
n≥0

∑
1≤m≤n

 1
n

∑
0≤k<m

qk

 znum,

and because of linearity,

F (z, u) =
1

(1− z)(1− uz)

×

{∫
(1− z)(1− uz)

∂TF (z, u)
∂z

dz + KF

}
,

S(z, u) =
1

(1− z)(1− uz)

×

{∫
(1− z)(1− uz)

∂TS(z, u)
∂z

dz + KS

}
.

Also, from the combinatorics of the problem, we have
F (0, u) = 0 and S(0, u) = 0, since [z0um]F (z, u) =
F0,m = 0 and [z0um]S(z, u) = S0,m = 0. This means
that KF = −4 and therefore F (z, u) is exactly the same
BGF as the one for the average number of comparisons
made by standard quickselect to find the mth element
out of n elements. Namely,

F (z, u) =
4u− 2

(1− u)(1− z)(1− uz)
ln

1
1− z

+
2u− 4

(1− u)(1− z)(1− uz)
ln

1
1− uz

+
2

(1− u)(1− z)2(1− uz)
+

2
(1− u)(1− z)(1− uz)2

.

Extracting the coefficients Fn,m = [znum]F (z, u), we
get the well-known result [7]

Fn,m = 2
(
n + 3 + (n + 1)Hn − (m + 2)Hm(3.4)

− (n + 3−m)Hn+1−m

)
, if 1 ≤ m ≤ n,

and Fn,m = 0 otherwise.
On the other hand,

∂TS

∂z
=

∑
n>0

zn−1
∑

0≤m<n

um+1
m∑

k=0

qk

= u
∑
m≥0

um
m∑

k=0

qk

∑
n≥m

zn =
u

1− z

∑
m≥0

(uz)m
m∑

k=0

qk

=
u

1− z

Q(uz)
1− uz

,

with Q(z) =
∑

n≥0 qnzn. It is not difficult to show that

Q(z) =
2

(1− z)2

(
ln

1
1− z

− z

)
,

and thus

S(z, u) =
1

(1− z)(1− uz)

{∫
u Q(uz) dz + KS

}
=

2
(1− uz)2(1− z)

ln
1

1− uz

+
2

(1− z)(1− uz)
ln

1
1− uz

− 4
(1− uz)2(1− z)

+
4

(1− uz)(1− z)
,

since S(0, u) = 0 and hence KS = 4.
Extracting the coefficients Sn,m from S(z, u) is

straightforward from

[znum]
ln 1

1−uz

(1− uz)2(1− z)
={

(m + 1)Hm −m, if 1 ≤ m ≤ n,

0, otherwise.

[znum]
ln 1

1−uz

(1− uz)(1− z)
= {

Hm, if 1 ≤ m ≤ n,

0, otherwise.

We have then

(3.5) Sn,m = [znum]S(z, u) = 2(m+1)Hm−6m+2Hm,

whenever 1 ≤ m ≤ n, and Sn,m = 0 otherwise. Finally,
adding (3.4) and (3.5) we get

(3.6)
Pn,m = 2n + 2(n + 1)Hn − 2(n + 3−m)Hn+1−m

− 6m + 6,

if 1 ≤ m ≤ n, and Pm,n = 0 otherwise. As a further
check, the reader can easily verify that Pn,n = qn.

Now we can compare the average number of com-
parisons of partial quicksort Pn,m with that of quicksel-
sort, that is, Fn,m +qm−1. And it turns out that partial
quicksort makes

2m− 4Hm + 2

comparisons less than its alternative; this is probably
irrelevant for small m, but significative enough when m
is large, say m = Ω(

√
n).

4 The average number of exchanges

In order to investigate the average number of exchanges
and other quantities of interest, we generalize our
analysis from the previous section to cope with toll
functions of the form

tn,m = an + b +
m−1∑
k=0

πn,kq′k,

where a and b are arbitrary constants and q′n is the
solution of

q′n = an + b + 2
∑

0≤k<n

πn,kq′k,

q′0 = 0.

Observe that we assume now that the cost of the non-
recursive part (selecting the pivot, partitioning, etc.) is
given by an+b; hence the average cost of “quicksorting”
the left subarray when k ≤ m must be calculated using
the same toll function.

If we only wish to compare partial quicksort with
quickselsort, it is now quite clear that we have only to
compute the coefficients of S(z, u), but now we have to
use the generating function of the sequence {q′n}n≥0:

Q(z) =
1

(1− z)2

(
2a ln

1
1− z

+ (b− a)z
)

.

Hence,

S(z, u) =
1

(1− z)(1− uz)

{∫
u Q(uz) dz + KS

}
=

2a

(1− uz)2(1− z)
ln

1
1− uz

+
a− b

(1− z)(1− uz)
ln

1
1− uz

− b− 3a

(1− uz)2(1− z)
+

3a− b

(1− uz)(1− z)
,

since KS = 3a− b.

The quantity of interest is then

[znum]S(z, u) = 2amHm + (3a− b)Hm

+ (b− 5a)m, if 1 ≤ m ≤ n,

and if we compare q′m−1 with the result above, we get
that partial quicksort makes

(4.7) 2am + (b− 3a)Hm + a− b

operations less than quickselsort. For instance, for the
partitioning method given in [14], the average number
of exchanges made during a single partitioning stage
is n/6 − 1/3. Substituting these values (a = 1/6,
b = −1/3) in (4.7), we find that we save 1

3m− 5
6Hm + 1

2
exchanges by using partial quicksort.

5 Conclusions

In this short research note we have presented a prelimi-
nary analysis of partial quicksort which exhibits its com-
petitive advantage over common, straightforward alter-
natives for the partial sort problem. It also shows that
partial quicksort can be a rich source of new and ap-
pealing mathematical problems. Sections 3 and 4 are
witness of the power of the standard and by now classic
tools of the analysis of algorithms.

Partial quicksort can be subject to standard opti-
mization techniques like sampling, recursion removal,
recursion cutoff on small subfiles, and so on. Also, the
idea behind partial quicksort applies to similar algo-
rithms like radix sort [9] or quicksort for strings [2].

In the author’s opinion, a challenging open problem
on partial quicksort is to find a combinatorial, intuitive
explanation for the difference between partial quicksort
and quickselsort. It is not self-evident that partial
quicksort does significantly (Θ(m)) less work on the
average than quickselsort, even though it is more or less
clear that partial quicksort would not do more work.

Partial quicksort sorts the m elements incremen-
tally, in chunks, while it looks for the mth element,
whereas quickselsort makes the initial recursive call to
quicksort on the chunk of m− 1 elements smaller than
the mth. That means that the pivots used to find the
mth element and that are to its left (Θ(log m) on aver-
age) will be again compared, exchanged, etc. by the
quicksort call while this is not the case with partial
quicksort. Also, it seems that by “breaking” the sort-
ing of the m − 1 smallest elements in the way partial
quicksort does, it makes bad partitions at early stages
more unlikely and thus reduces somewhat the average
complexity.

Acknowledgements

I thank A. Viola and R.M. Jiménez for their useful
comments and remarks.

References

[1] J.L. Bentley and M.D. McIlroy. Engineering a sort
function. Software—Practice and Experience, 23:1249–
1265, 1993.

[2] J.L. Bentley and R. Sedgewick. Fast algorithms for
sorting and searching strings. In Proc. of the 8th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 360–369, 1997.

[3] C.A.R. Hoare. Find (Algorithm 65). Comm. ACM,
4:321–322, 1961.

[4] C.A.R. Hoare. Quicksort. Computer Journal, 5:10–15,
1962.

[5] N.M. Josuttis. The C++ Standard Library: A Tutorial
and Reference Guide. Addison-Wesley, 1999.

[6] P. Kirschenhofer, H. Prodinger, and C. Mart́ınez.
Analysis of Hoare’s Find algorithm with median-of-
three partition. Random Structures & Algorithms,
10(1):143–156, 1997.

[7] D.E. Knuth. Mathematical analysis of algorithms. In
Information Processing ’71, Proc. of the 1971 IFIP
Congress, pages 19–27, Amsterdam, 1972. North-
Holland.

[8] D.E. Knuth. The Art of Computer Programming:
Fundamental Algorithms, volume 1. Addison-Wesley,
Reading, Mass., 3rd edition, 1997.

[9] D.E. Knuth. The Art of Computer Programming:
Sorting and Searching, volume 3. Addison-Wesley,
Reading, Mass., 2nd edition, 1998.

[10] H.M. Mahmoud. Sorting: A Distribution Theory.
John Wiley & Sons, New York, 2000.

[11] C. Mart́ınez, D. Panario, and A. Viola. Analysis of
quickfind with small subfiles. In B. Chauvin, Ph.
Flajolet, D. Gardy, and A. Mokkadem, editors, Proc.
of the 2nd Col. on Mathematics and Computer Science:
Algorithms, Trees, Combinatorics and Probabilities,
Trends in Mathematics, pages 329–340. Birkhäuser
Verlag, 2002.

[12] C. Mart́ınez, D. Panario, and A. Viola. Adaptive
sampling for quickselect. In Proc. of the 15th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2004. Accepted for publication.

[13] C. Mart́ınez and S. Roura. Optimal sampling strate-
gies in quicksort and quickselect. SIAM J. Comput.,
31(3):683–705, 2001.

[14] R. Sedgewick. The analysis of quicksort programs.
Acta Informatica, 7:327–355, 1976.

[15] R. Sedgewick. Implementing quicksort programs.
Comm. ACM, 21:847–856, 1978.

[16] R. Sedgewick. Quicksort. Garland, New York, 1978.
[17] R. Sedgewick and Ph. Flajolet. An Introduction to

the Analysis of Algorithms. Addison-Wesley, Reading,
Mass., 1996.

[18] R.C. Singleton. Algorithm 347: An efficient algo-
rithm for sorting with minimal storage. Comm. ACM,
12:185–187, 1969.

	1 Introduction
	2 The algorithm
	3 The average number of comparisons
	4 The average number of exchanges
	5 Conclusions

