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Scaling or equilibration of data in linear systems of equations is a topic of great importance that has
already been the subject of many scientific publications, with many different developments depending
on the properties one wants to obtain after scaling. It has given rise to several well known algorithms
(see Duff, Erisman, and Reid (1986), Schneider and Zenios (1990), for instance).

Scaling consists in pre- and post-multiplying a matrix by two diagonal matrices,D1 and D2,
respectively. Classical scalings are the well known row and column scaling. A more general purpose
scaling method is the one used in the HSL 2000 routineMC29, which aims to make the nonzeros of the
scaled matrix close to one by minimizing the sum of the squares of the logarithms of the moduli of the
nonzeros (see Curtis and Reid (1972)).MC29reduces this sum in a global sense and therefore should
be useful on a wide range of sparse matrices. Any combination of these scalings is also a possibility.

Scaling can also be combined with permutations (see Duff and Koster (1999) and the HSL 2000
routineMC64). The matrix is first permuted so that the product of absolute values of entries on the
diagonal of the permuted matrix is maximized (other measures such as maximizing the minimum
element are also options). Then the matrix is scaled so that the diagonal entries are one and the off-
diagonals are less than or equal to one. This then provides a useful tool for a good pivoting strategy for
sparse direct solvers, as well as for building good preconditioners for an iterative method.

In the 1960’s, Bauer (1963), Bauer (1969) and van der Sluis (1969), in particular, showed some
optimal properties in terms of conditions numbers for scaled matrices with all rows or all columns of
equal norm of 1.

We present an iterative procedure which asymptotically scales the infinity norm of both rows and
columns in a matrix to 1. To describe the algorithm, let us first denote byri = aT

i,: ∈ IRn×1, i =
1, . . . , m, the row-vectors from a generalm×n real matrixA, and bycj = a:,j ∈ IRn×1, j = 1, . . . , n,
the column-vectors fromA. With these notations, the idea of the algorithm holds in the following
iteration (assuming that the matrixA does not have any empty row or column):

Algorithm 1 (Simultaneous row and column iterative scaling)

Â(0) = A, D(0)
1 = Im, andD(0)

2 = In

for k = 0, 1, 2, . . . , until convergence do :

DR = diag(
√
‖r(k)

i ‖∞)i=1,...,m, andDC = diag(
√
‖c(k)

j ‖∞)j=1,...,n

Â(k+1) = D−1
R Â(k)D−1

C

D(k+1)
1 = D(k)

1 D−1
R , andD(k+1)

2 = D(k)
2 D−1

C
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Convergence is obtained when

max
1≤i≤m

{
|(1− ‖r(k)

i ‖∞)|
}
≤ ε and max

1≤j≤n

{
|(1− ‖c(k)

j ‖∞)|
}
≤ ε (1)

for a given value ofε > 0.
The purpose of this presentation is to detail the properties of this algorithm. In particular, the

convergence towards the stationary state mentioned above is at least linear, with an asymptotic rate of
convergence of12 . We highlight the case of symmetric matrices since the algorithm “naturally” preserves
such numerical structures. In that respect, we also mention the routineMC30in the HSL (2000) library,
which is a variant of the aboveMC29routine for symmetric matrices.

We also discuss possible extensions of such an algorithm when considering the one-norm or the
two norm of the rows and columns of the given matrix. Following the discussion in Parlett and
Landis (1982), we establish under which hypothesis the algorithm is also convergent in the case of
the one-norm, and we comment on the generalisation of these results with respect to what was stated in
Parlett and Landis (1982).

We plan to illustrate with some small examples the major differences between Algorithm 1 and
some of the well known scaling algorithms from the litterature. We shall also investigate possible
combinations of this scaling algorithm in the one-norm and the infinity-norm to reach situations where
the scaled matrix can easily be permuted into a matrix with dominant elements on the diagonal. This is
a favourable situation for a good pivoting strategy in Gaussian elimination, for instance, if we refer to
the motivations for scaling in Duff, Erisman, and Reid (1986).
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