
Efficient Scheduling Algorithms
for resource management

Denis Trystram
ID-IMAG

CSC, Toulouse, june 23, 2005

General Context

Recently, there was a rapid and deep
evolution of execution supports: super-
computers, clusters, grid computing, global
computing…

Need of efficient tools for resource
management for dealing with these new
systems.

This talk will investigate some of the related
problems and discuss new solutions

Parallel computing today.

Different kinds
Clusters, collection of clusters, grid, global computing
Set of temporary unused resources
Autonomous nodes (P2P)

Our view of grid computing (reasonable trade-off):
Set of computing resources under control (no hard

authentication problems, no random addition of
computers, etc.)

Content

• Goal: to illustrate the scheduling problem in grids

• A first report of experiences in Grenoble

• Intra-clusters scheduling

• On-line

• Multi-criteria

• Inter-cluster scheduling. How to deal with more
complex actual problems?

CiGri: a regional grid

It comes from the project CIMENT whose aim was
to create new meso-computing facilities (alternative
to national computing centers) in the late 90ties.

Our view of grids: collection of clusters. Equipment
of 5 clusters in different places around Grenoble,
local autonomy, but shared experiences and tools
(more than 600 connected machines!).

CiGri

Starting in november 2002 (national
programme ACI).

observatory

PhyNum

icluster

IA64

Hospital

DELL

ID

Output

Models of applications coming form the
real-life.

Synthetic workload generation

Practical tools (OAR + batch scheduling
system).

Brief example: Analysis of job
characteristics by logs of Icluster

Icluster is a 225 PCs machine from HP with a
rather slow hierarchical interconnection module
(5x45machines) – fast Ethernet. Processors are
PIII 733Mhz it was replaced in 2003 by a 104
dual-processors cluster.

Objectives of the study:
Better understanding of the behaviour
Build a Workload generator

Data (one year)

11496 submissions of all kind of jobs (interactive ones
or not, mono and multi-processors). 85 users.
About 10% of these jobs are coming from the system
team and were removed from the analysis.

Evolution du nombre de travaux par jour de la semaine

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100

Lundi Mardi Mercredi Jeudi Vendredi Samedi Dimanche

N
om

br
e

de
 tr

av
au

x

MultiBatch

MultiInter

MonoBatch

MonoInter

Evolution du nombre de travaux par heure du jour

0

200

400

600

800

1000

1200

0h
-1h

2h
-3h

4h-5
h

6h
-7h

8h
-9h

10
h-1

1h

12h
-13h

14
h-1

5h

16
h-1

7h

18h
-19

h

20
h-21

h

22h
-23h

N
om

br
e

de
 tr

av
au

x

MultiBatch

MultiInter

MonoBatch

MonoInter

Evolution du cumul de travaux par heure de la semaine

0
20
40
60
80

100

120
140
160
180
200
220
240
260
280
300

320
340
360
380
400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

10
6

11
1

11
6

12
1

12
6

13
1

13
6

14
1

14
6

15
1

15
6

16
1

16
6

N
om

br
e

de
 tr

av
au

x

Mo I Mo B Mu I Mu B

Synthetic Generation of workloads

Based on these logs, we derived the
probabilistic laws of arrivals.

Percentage of jobs using power of 2 (23) or
multiple of ten (17) processors.

Workload characterization using Dowley’s
model.

A new national french initiative:
GRID5000

Target Applications

New execution supports created new applications
(data-mining, bio-computing, coupling of codes,
interactive, virtual reality, …).

Interactive computations (human in the loop),
adaptive algorithms, etc..

J1

Users queue

time

job

J1

users

time

J1J2

users

time

J1J2J3…

users

time

representant
J1J2J3… …

…

J1J2J3… …

…

……

…

…

Scheduling: kind of jobs

Execution
time

Number of
processors

Parallelism overhead due to communications

Profitable part

moldablerigid malleable

Basics in scheduling

Central scheduling problem

• Parameters: number and types of processors,
structure of the application, criterion to optimize.

Central Scheduling Problem

P | prec, pj | Cmax is NP-hard [Ulmann75]

Thus, we are looking for good heuristics.

Analysis using Competitive ratio r:

maximum over all instances of

The schedule σ is said -competitive iff
*ω

ω

ρ ρσ ≤)(r

Formal Definition

The problem of scheduling graph G = (V,E) weighted by
function t on m processors:

(with communication delays)

Determine the pair of functions (date,proc) subject to:

•respect of precedence constraints

•Usual objective: to minimize the makespan

),())(,()()(:),(jiciprocitidatejdateEji ++≥∈∀
maxC

L

Trivial remark: allocation is important even while
scheduling on identical processors…

If L is large, the problem is very hard (no approximation)

Taking into account heterogeneity

More complicated models: LogP
Tentative of designing new computational models
closer to the actual parallel systems [Culler et al.]:

4 parameters.

•L latency

•o overhead

•g gap

•P number of processors

Alternative models: LogP

No overlap.

O + L + O

Alternative models: LogP

No overlap. g

Alternative models: LogP

No overlap.

The delay model is a LogP-system where o=g=0

g

Need to simplify the model
The game becomes too complicated

No way for finding good approximation
algorithms (more and more negative
results are available…):

Parallel tasks focus on key
optimization parameters… No need of
sophisticated analysis at the finest
grain!

Level2 …

…

……

…

…

Level1

Level1

Level1

Level0
3 processors

Intra-Cluster Scheduling

Context :

On-line scheduling

independent jobs (applications
represented as moldable – non rigid -
tasks) are submitted to the scheduler
at any time on a queue.

(strip) Packing problems

The schedule is divided into two
successive steps:

1. Allocation problem and

2. Scheduling with preallocation (NP-
hard in general [Rayward-Smith
95]).

Scheduling: on-line vs off-line
On-line: no knowledge about

the future

We take the scheduling
decision while other jobs arrive

Scheduling: on-line vs off-line
Off-line: we have a finite set of

works

We try to find a good
arrangement

Off-line scheduler

Problem:
Schedule a set of independent moldable jobs
(clairvoyant).
Penalty functions have somehow to be
estimated (using complexity analysis or any
prediction-measurement method like the one
obtained by the log analysis).

Classical approach
using combinatorial optimization

• Design fast algorithms with performance
guaranty

• On-line algorithms

• One or several objective functions

k-dual Approximation
[Shmoys, Hochbaum]

•Let us guess a value of the objective Cmax:
λ.

•Apply an algorithm, if the obtained a
guaranty worse than λk, then, refine the
value of λ (by dichotomic search).

Dual approximation

W/m
λ (=1)

Estimated a target using a lower bound

Canonical allotment

maximal number of processors for executing a task
in time lower than 1 unit (normalized).

Jobs are assumed to be monotonic.

1

m

HINT: analyze the optimal structure

Long Jobs (whose execution times are greater than
1/2) may not use more than m processors

Thus, we are looking for a schedule in two shelves

3/2

1

m

2 shelves partitioning

Knapsack problem: minimizing the global surface
under the constraint of using less than m

processors in the first shelf.

1

m

1/2

Dynamic programming

For i = 1..n // # of tasks
for j = 1..m // #proc.

Wi,j = min(
– Wi,j-minalloc(i,1) + work(i,minalloc(i,1))
– Wi,j + work(i,minalloc(i,1))
)

work Wn,m
<= work of an optimal solution
but the half-sized shelf may be overloaded

2 shelves partitioning

1

m

1/2

Drop down

1

m

1/2

1

m

1/2

Insertion of small tasks

Analysis

•These transformations donot increase the work

•If the 2nd shelf is used more than m, it is always
possible to do one of the transformations (using a
global surface argument)

•It is always possible to insert the « small » sequential
tasks (again by a surface argument)

Guaranty

•The 2-shelves algorithm has a performance
guaranty of 3/2+ε

•We will use it as a basis for an on-line
version (batch scheduling).

Batch scheduling

Principle: several jobs are treated at once using
off-line scheduling.

Principle of batch

jobs arrival time

Start
batch 1

Batch chaining

Batch i Batch i+1

Constructing a batch scheduling

Analysis: there exists a result which gives a
guaranty for an execution in batch using the
guaranty of the scheduling policy inside the
batches.

Analysis [Shmoys]

previous last batch last batch

Cmaxr
(last job)

n

previous last batch last batch

Cmaxrn

Tk

DkDK-1

Proposition

*maxmax 2 CC ρ≤

Analysis

Tk is the duration of the last batch

On another hand, and

Thus:

TrC kn+≥*maxρ

rD nk ≤
−1

TTDC kkk ++=
−− 11max

*maxmax 2 CC ρ≤

*max
, CT ii ρ≤∀

Application

Applied to the previous 3/2-approximation
algorithm, we obtain a 3-approximation on-line
batch algorithm for Cmax.

Multi criteria

The Makespan is not always the adequate
criterion.

User point of view:
Average completion time (weighted or not)
Other criteria: Stretch, Asymptotic

throughput

How to deal with this problem?

Hierachy: one after the other
(Convex) combination of criteria
Transform one criterion in a constraint

Ad hoc algorithms

A first solution

Construct a feasible schedule from two schedules
of guaranty r for minsum and r’ for makespan with
a guaranty (2r,2r’) [Stein et al.].

Instance: 7 jobs (moldable tasks) to be scheduled
on 5 processors.

Schedules s and s’

Schedule s
(minsum)

3
5

4
1 2

6
7

Schedule s’
(makespan)

7

2

1
4

6
3
5

New schedule

3
5

4
1 2

6
7

7

2

1
4

6
3
5

r’Cmax

New schedule

3
5

4
1 2

6
7

7

6
5

New schedule

3

4
1 2

7

6
5

New schedule

3

4
1 2

7

6
5

2r’Cmax

New schedule

3

4
1 2

7

6
5

2r’Cmax

Similar bound for the first criterion

Analysis

The best known schedules are:
8 [Schwiegelsohn] for minsum and 3/2 [Mounie et
al.] for makespan leading to (16;3).

Similarly for the weighted minsum (ratio 8.53).

Improvement

We can improve this result by determining the
Pareto curves (of the best compromises):
(1+λ)/ λ r and (1+ λ)r’

Idea:
take the first part of schedule s up to λ r’Cmax

Pareto curve

Another way for designing better
schedules

We proposed a new solution for a better bound
which has not to consider explicitly the schedule for
minsum (based on a dynamic framework).

Principle: recursive doubling with smart selection
(using a knapsack) inside of each interval.
Starting from the previous algorithm for Cmax, we
obtain a (6;6) approximation.

Reservations

On-going work: packing with constraints

q
m

Inter-Cluster Scheduling
Context

Load-balancing problem

independent jobs (moldable – non
rigid - tasks) are submitted to local
schedulers at any time.

Each cluster has its own managing
internal rule.

How to manage?

Need of alternative
approaches

Too many parameters…

Game theory (prisonner dilema)

Analogy with economy (auctions)

To open the discussion

New execution supports are more and
more complex, need of multi-criteria
results. Ex: quality of service, reliability,
etc..
Need of robust approaches, able to
remain efficient if the instances are
disturbed…

