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Graph & hypergraph partitioning
• Applications in scientific computing:

– Load balancing 
• minimize communication

– Sparse matrix-vector product
– Decomposition for LP
– Matrix orderings
– Parallel preconditioners

• Graph partitioning
– Commonly used, but has deficiencies

• Doesn’t accurately represent communication volume
• Not suitable for non-symmetric & rectangular matrices



Hypergraph partitioning
• Hypergraph partitioning

– More powerful than graph model
• A hyperedge connects a set of vertices

– Represents communication volume accurately
• Aykanat & Catalyurek (’95-’99)

• Problem definition:
– Given hypergraph H=(V,E’) and integer k

• where E’ is a set of hyperedges
– Partition V into k disjoint subsets

• Such that each subset has (approx.) same size and
• Number of hyperedges cut between subsets is minimized 

(scaled by number of parts)
• NP-hard

– But fast multilevel heuristics work well



Graph Partitioning vs. 
Hypergraph Partitioning

Assign equal vertex weight while 
minimizing hyperedge cut weight.

Assign equal vertex weight while 
minimizing edge cut weight. 

Hyperedge cuts accurately 
measure communication volume.

Edge cuts approximate
communication volume. 

Hyperedges: two or more vertices.Edges: two vertices.

Vertices: computation.Vertices: computation.

Hypergraph Partitioning
Kernighan, Alpert, Kahng, Hauck, Borriello, 

Aykanat, Çatalyürek, Karypis, et al.

Graph Partitioning
Kernighan, Lin, Schweikert, Fiduccia, 

Mattheyes, Pothen, Simon, Hendrickson, 
Leland, Kumar, Karypis, et al.
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Hypergraph Partitioning
• Several serial hypergraph partitioners available.

– hMETIS (Karypis) – PaToH (Çatalyürek)
– Mondriaan (Bisseling)

• Parallel partitioners needed for large and dynamic 
problems.

– Zoltan-PHG (Sandia) – ParKway (Trifunovic)

• Predicition:
– Hypergraph model and partitioning tools will eventually replace 

graph partitioning in scientific computing 
• Except when partitioning time is important and quality matters less 
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Matrix Representation
• View hypergraph as matrix (Aykanat & Çatalyürek)

– We use row-net model:
• Vertices == columns
• Edges == rows

• Ex: 1D partitioning of sparse matrix (along columns)
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Sparse Matrix-Vector Product
•Matrix-vector product

– Important in scientific computing
– Iterative methods

•Communication volume associated with edge e:
Ce = (# processors in edge e) - 1

•Total communication volume :  
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Sparse Matrix Partitioning
•1D rows or columns: 

– hypergraph partitioning 
(Aykanat & Catalyurek)

•2D Cartesian
– Multiconstraint h.g.part.

(Catalyurek & Aykanat)

•2D recursive:
– Mondriaan (Bisseling & 

Vastenhouw)
– Non-Cartesian
– Lower comm. volume

•Fine-grain model:
– Hypergraph, each nonzero 

is a vertex (Catalyurek)
– Ultimate flexibility

Courtesy: Rob 
Bisseling



Zoltan Toolkit: Suite of 
Partitioning Algorithms

Recursive Coordinate Bisection
Recursive Inertial Bisection

Space Filling Curves
Refinement-tree Partitioning

Octree Partitioning

Graph Partitioning
ParMETIS , Jostle

Hypergraph Partitioning
NEW!               



Zoltan Hypergraph Partitioner
• Parallel hypergraph partitioner

– for large-scale problems
– distributed memory (MPI)

• New package in the Zoltan toolkit 
– Available Fall 2005
– Open source; LGPL



Data Layout
•2D data layout within hypergraph
partitioner.

– Does not affect the layout returned to the 
application.

– Processors logically (not physically) 
organized as a 2D grid

– Vertex/hyperedge communication limited 
to only     processors (along 
rows/columns)

– Maintain scalable memory usage. 
• No “ghosting” of off-processor neighbor 

info.
• Differs from parallel graph partitioners and 

Parkway (1D).
– Design allows comparison of 

1D and 2D distributions.
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Recursive Bisection
• Recursive bisection approach:

– Partition data into two sets.
– Recursively subdivide each set 

into two sets.

– We allow arbitrary k (k ≠ 2n ). 
• Parallelism:

– Split both the data and processors
into two sets; 
subproblems solved independently 
in parallel
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Multilevel Scheme
• Multilevel hypergraph partitioning (Çatalyürek, Karypis)

– Analogous to multilevel graph partitioning 
(Bui&Jones, Hendrickson&Leland, Karypis&Kumar).

– Contraction:  reduce HG to smaller representative HG.
– Coarse partitioning:  assign coarse vertices to partitions.
– Refinement: improve balance and cuts at each level.

Multilevel Partitioning V-cycle



Contraction
• Merge pairs of “similar” vertices: matching

– Currently no agglomeration of more than 2 vertices 
• Greedy maximal weight matching heuristics

– Matching is on a related graph (edges = similarities)
– Maximum weight solution not necessary

• We use
– Heavy connectivity matching (Aykanat & Çatalyürek) 

• Inner-product matching (Bisseling)
• First-Choice (Karypis)

– Match columns with greatest inner product ⇒vertices 
with most shared hyperedges



Parallel Matching in 2D Data Layout
• On each processor:

– Broadcast subset of vertices (“candidates”) 
along processor row.

– Compute (partial) inner products of received 
candidates with local vertices.

– Accrue inner products in processor column.
– Identify best local matches for received 

candidates.
– Send best matches to candidates’ owners.
– Select best global match for each owned 

candidate.
– Send “match accepted” messages to 

processors owning matched vertices.
• Repeat until all unmatched vertices have 

been sent as candidates.



Coarse Partitioning
• Gather coarsest hypergraph to each 
processor.

– Gather edges to each processor in 
column.

– Gather vertices to each processor in row.
• Compute several different coarse 
partitions on each processor.

• Select best local partition.
• Compute best over all processors.
• Broadcast best partition to all.



Refinement
• For each level in V-cycle:

– Project coarse partition to finer 
hypergraph.

– Use local optimization (KL/FM) to 
improve balance and reduce cuts.

• Compute “root” processor in each processor 
column:  processor with most nonzeros.

• Root processor computes moves for 
vertices in processor column.

• All column processors provide cut 
information; receive move information.

– Approximate KL/FM
• Exact parallel version needs too much 

synchronization



Results
•Cage14: Cage model of DNA 
electrophoresis (van Heukelum)

– 1.5M rows & cols; 27M nonzeros.
– Symmetric structure
– 64 partitions.

•Hypergraph partitioning reduced 
communication volume by 10-20% 
vs. graph partitioning.
•Zoltan much faster than ParKway
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More Results
•Sensor placement – IP/LP 
model 

– 5M rows, 4M columns
– 16M nonzeros

•ParKway ran out of memory
– 1d with ghosting, not 

scalable
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Future Work
• Increase speed while maintaining quality.

– Heuristics for more local, less expensive matching
– Better load balance within our code
– K-way refinement?

• More evaluation of current design.
– 1D vs. 2D data layouts

• Incremental partitioning for dynamic applications.
– Minimize data migration.

• Multiconstraint partitioning
• Interface for 2D partitioning (sparse matrices)

• Watch for release in Zoltan later this year!




