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BASIC ASSUMPTIONS

A is a large, sparse, unsymmetric, and irreducible

matrix with nonzero diagonal entries

Factorization A = LU exists, where L is unit lower

triangular and U is upper triangular

No accidental cancellation during factorization

No use of supernodes for efficiency

No pivoting for stability {will be relaxed later}
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ELIMINATION TREE FOR SYMMETRIC A [Schreiber]

Parent Function Defines T (A)

ρ(k) ≡ min{x | x > k and x L�−→ k Lt�−→ x}
{ρ(k) is the row index of the first nonzero

below the diagonal in the k-th column of L}

Property: The vertices in the subtree T [k ] rooted at k

form a connected component of the subgraph of the

undirected graph G(A) induced by {1, 2, . . . , k}

ELIMINATION TREE FOR UNSYMMETRIC A [E+L]

Parent Function Defines T (A)

ρ(k) ≡ min{x | x > k and x L=⇒k U=⇒x}
{reduces to the previous definition if A is symmetric}

Property: The vertices in T [k ] form a strongly

connected component of the subgraph of the

directed graph G(A) induced by {1, 2, . . . , k}
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CANONICAL EXAMPLE

Filled Matrix

A+ ≡ L + U − I =



1 2 3 4 5 6 7 8 9 10

1 a •
2 • b ◦ • • •
3 • c •
4 • d •
5 • e • • ◦ •
6 • ◦ ◦ ◦ f ◦ ◦ ◦
7 • g ◦
8 • • • ◦ ◦ ◦ h ◦ ◦
9 i •
10 • ◦ • ◦ ◦ j


Elimination Tree
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j L=⇒ d U=⇒ j but neither j L�−→ d nor d U�−→ j
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CANONICAL EXAMPLE (continued)



1 2 3 4 5 6 7 8 9 10

1 a •
2 • b • • •
3 • c •
4 • d •
5 • e • • •
6 • f
7 • g
8 • • • h
9 i •
10 • • j

 a�1 b�2

c�3

d�4

e�5

f�6

g�7 h�8 i�9

j�10
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Property: The vertices in T [k ] form a strongly
connected component of the subgraph of the
directed graph G(A) induced by any set of vertices
that contains T [k ] but no ancestors of k in T (A)
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POSTORDERING OF T (A)

If c1, . . . , ct are the children of k in T (A), then number

the vertices within each subtree T [ci ] consecutively

and number k immediately after its descendants

a�1 b�2

c�3

d�4

e�5

f�6
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Postordering does not preserve the filled graph

{more fill and work in practice?}
Postordering does preserve the structure of T (A); i.e.,

T (PAPt ) is isomorphic to T (A)

Postordering does preserve the values of the diagonal

elements of U; i.e., diag (U) = Pt diag (U(PAPt)) P

{impact on numerical stability?}
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UPPER BBT POSTORDERING

Postordering does not specify the order in which the

subtrees T [ci ] themselves are numbered

From the subgraph of G(A) induced by the vertices in

T [k ] \ {k} = ∪i=1,t T [ci ], form the quotient graph

Qk (A) by coalescing the vertices in each T [ci ]
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Qk (A) is acyclic {since each T [ci ] is a component}
If we use a topological sort of Qk (A) to order the T [ci ]

during the postordering, every edge in G(A) from a

vertex in T [ci ] to a vertex in T [cj ] (j �= i) goes from

the lower-numbered to the higher-numbered vertex

Thus the permuted matrix is in upper bordered block

triangular (BBT) form
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UPPER BBT POSTORDERING (continued)

a�1 b�2

c�3

d�4

e�5

f�6

g�7 h�8 i�9

j�10
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(PAPt)
+
=



g •
b • •

e • •
• ◦ f ◦
• ◦ ◦ h

•
•

◦ ◦
• • ◦

•
•
◦
◦

a •
• c •

• d •
i •

• • ◦ ◦ ◦ ◦ ◦ ◦ j


{the bordered block triangular structure is recursive}
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UPWARD-LOOKING LU FACTORIZATION

Algorithm

for k := 1 to n do

z = Ak∗
for i := 1 to k − 1 do {sparsely}

if zi �= 0 then

�ki = zi/uii ; z = z − �ki × Ui∗
end if

end for

Uk∗ = z

end for

If �ki �= 0, then the k-th row of L and U depends on the

i-th row of U (and, indirectly, the i-th row of L)

Therefore G(L) captures the data dependencies among

the rows of A+ {i.e., the potential parallelism}
Its transitive reduction G(L

o
) preserves paths and thus

is a minimal representation of these dependencies

{G(L
o
) is one of the elimination dags [Gilbert+L]}
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UPWARD-LOOKING FACTORIZATION (continued)

Filled Matrix

A+ =



1 2 3 4 5 6 7 8 9 10

1 a •
2 • b ◦ • • •
3 • c •
4 • d •
5 • e • • ◦ •
6 • ◦ ◦ ◦ f ◦ ◦ ◦
7 • g ◦
8 • • • ◦ ◦ ◦ h ◦ ◦
9 i •
10 • ◦ • ◦ ◦ j



Elimination DAG G(L
o
)
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UPWARD-LOOKING FACTORIZATION (continued)

Definition: A is upper BBT ordered if the natural
ordering is an upper BBT postordering of T (A).



1 2 3 4 5 6 7 8 9 10

1 g •
2 b • • • •
3 e • • • •
4 • ◦ f ◦ ◦ ◦ ◦
5 • ◦ ◦ h • • ◦ ◦
6 a •
7 • c •
8 • d •
9 i •
10 • • ◦ ◦ ◦ ◦ ◦ ◦ j

 a�6b�2

c�7

d�8

e�3

f�4

g�1 h�5 i�9

j�10
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Theorem: If A is upper BBT ordered, then G(L
o
) is

T (A) with edges directed from parent to child.

a�6b�2

c�7

d�8

e�3

f�4

g�1 h�5 i�9
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SYMMETRIC MULTIFRONTAL [Speelpenning]

Goal: Use dense matrices as much as possible

A+ ≡



1 2 3 4 5 6

1 a • •
2 b • •
3 • • c ◦ • ◦
4 • ◦ d • ◦
5 • • e •
6 • ◦ ◦ • f


a�1 b�2

c�3

d�4

�
��
�
��

...

F1 ≡


1 3 6

1 a • •
3 •
6 •

, U1 ≡
( 3 6

3 ◦ ◦
6 ◦ ◦

)

F2 ≡


2 3 4

2 b • •
3 •
4 •

, U2 ≡
( 3 4

3 ◦ ◦
4 ◦ ◦

)

F3 ≡


3 4 5 6

3 • ◦ • ◦
4 ◦ ◦
5 •
6 ◦ ◦

 =
( 3 5

3 c •
5 •

)
	↔ U1 	↔ U2

{ 	↔ denotes the extend-add operator}
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SYMMETRIC MULTIFRONTAL (continued)

Algorithm

for k := 1 to n do

Assemble frontal matrix F k from the nonzeros in

[aik ]
k≤i≤n

and all updates Uc with ρ(c) = k

Factor F k =

 �kk

[�ik ]
k<i≤n, �ik �=0

I

×
 1

Uk



×

 �kk [�jk ]
t

k<j≤n, �jk �=0

I


end for

Why It Works

ρ(k) is the first row/column to which U k contributes;

and (nesting property)

struct (�pk , . . . , �nk ) ⊆ struct (�pp, . . . , �np),

with p = ρ(k), so Fρ(k) can accommodate all of Uk

{entries not in row/column ρ(k) are added to Uρ(k)}
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UNSYMMETRIC MULTIFRONTAL?

Algorithm

for k := 1 to n do

Assemble frontal matrix F k from nonzeros in

[aik ]
k≤i≤n

, [akj ]k≤j≤n
, and all unassembled

updates Um that contribute to row or column k

Factor F k =

 �kk

[�ik ]
k<i≤n, �ik �=0

I

×
 1

Uk



×

 ukk [ukj ]k<j≤n, ukj �=0

I


end for

Implicit Assumptions

a) Rows (resp., columns) of F k correspond to rows i

where �ik �= 0 (resp., columns j with ukj �= 0)

b) Each update matrix Um can be assembled into a

single frontal matrix
13



EXAMPLE

A+ =



1 2 3 4 5 6 7 8 9 10

1 a •
2 • b ◦ • • •
3 • c •
4 • d •
5 • e • • ◦ •
6 • ◦ ◦ ◦ f ◦ ◦ ◦
7 • g ◦
8 • • • ◦ ◦ ◦ h ◦ ◦
9 i •
10 • ◦ • ◦ ◦ j



F1 =


1 3

1 a •
2 •
3 •
8 •

, U1 =


3

2 ◦
3 ◦
8 ◦

, F2 =


2 3 5 8 10

2 b ◦ • • •
6 •
8 •



U1 contains a contribution to row 2 but F2 cannot
accommodate the (3, 3) entry of U1

Thus conditions (a) and (b) are incompatible in general
{but both are valid when A is structurally symmetric}
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(b) BUT NOT (a) APPROACH [Duff+Reid]

Assume every nonzero entry in A + At is structurally

nonzero in A {i.e., make A structurally symmetric}
Expanded frontal matrix F̃k has the symmetric

row/column set {i | i ≥ k and �̃ik �= 0}, where

A + At = L̃L̃t

The updates come from the children of k in T (A + At )

Improvement: [Amestoy+Puglisi] Suppress the rows

and columns of F̃k that are structurally zero, e.g.,

F̃2 ≡


2 3 5 8 10

2 b ◦ • • •
3 ◦
6 •
8 • ◦

 =


2 5 8 10

2 b • • •
6 •
8 •

 	↔ U1

{rows 5 and 10 and column 6 are structurally zero}
Since the entries in row/column k can still be

structurally zero, some entries in corresponding

columns/rows of the update can also be zero

(possibly extra storage and work)
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(a) BUT NOT (b) APPROACH [Hadfield+Davis; Gupta]

Decompose U1 as

U1 ≡


3

2 ◦
3 ◦
8 ◦

 =
( 3

2 ◦
)
	↔

( 3

3 ◦
8 ◦

)
≡ U2

1 	↔ U3
1

and assemble row U2
1 into F2 and column U3

1 into F3

Decompose Uk by repeatedly removing the row/column

of lowest index i and assembling it into F i

Improvement: Stop when F i can accommodate all

entries in what remains of U k , i.e., (nesting property)

struct (�ik , . . . , �nk ) ⊆ struct (�ii , . . . , �ni )

struct (uki, . . . , ukn) ⊆ struct (uii , . . . , uin)

Theorem: [E+L]

struct (�pk , . . . , �nk ) ⊆ struct (�pp, . . . , �np)

struct (ukp, . . . , ukn) ⊆ struct (upp, . . . , upn)

if p = ρ(k) ≡ min{x | x > k and x L=⇒k U=⇒x}.
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EXAMPLE



1 2 3 4 5 6 7 8 9 10

1 a •
2 • b ◦ • • •
3 • c •
4 • d •
5 • e • • ◦ •
6 • ◦ ◦ ◦ f ◦ ◦ ◦
7 • g ◦
8 • • • ◦ ◦ ◦ h ◦ ◦
9 i •
10 • ◦ • ◦ ◦ j

 a�1 b�2

c�3

d�4

e�5

f�6

g�7 h�8 i�9

j�10

�
��
�
��

�
�
��

�
��
�
��

�
�
��

F2 ≡


2 3 5 8 10

2 b ◦ • • •
6 •
8 •

 =


2 5 8 10

2 b • • •
6 •
8 •

 	↔ U2
1

U2 ≡
( 3 5 8 10

6 ◦ ◦ ◦ ◦
8 ◦ ◦ ◦ ◦

)
=

( 3

6 ◦
8 ◦

)
	↔

( 5

6 ◦
8 ◦

)
	↔

( 8 10

6 ◦ ◦
8 ◦ ◦

)

≡ U3
2 	↔ U5

2 	↔ Uρ(2)
2
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EXAMPLE (continued)

F3 ≡


3 4

3 • •
4 •
6 ◦
8 •

 =


3 4

3 c •
4 •
8 •

 	↔ U3
1 	↔ U3

2

U3 =


4

4 ◦
6 ◦
8 ◦

 ≡ Uρ(3)
3

F4 ≡



4 9

4 • •
5 •
6 ◦
7 •
8 ◦

 =


4 9

4 d •
5 •
7 •

 	↔ U4
3

U4 ≡


9

5 ◦
6 ◦
7 ◦
8 ◦

 =
( 9

5 ◦) 	↔ ( 9

6 ◦) 	↔ ( 9

7 ◦) 	↔ ( 9

8 ◦)

≡ U5
4 	↔ U6

4 	↔ U7
4 	↔ U8

4

{Uρ(4)
4 is the null matrix}
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EXAMPLE (continued)

F5 ≡


5 6 8 9 10

5 e • • ◦ •
6 ◦
8 ◦
10 •

 =
( 5 6 8 10

5 e • • •
10 •

)
	↔ U5

2 	↔U5
4

U5 =


6 8 9 10

6 ◦ ◦ ◦ ◦
8 ◦ ◦ ◦ ◦
10 ◦ ◦ ◦ ◦

 ≡ Uρ(5)
5

F6 ≡


6 8 9 10

6 f ◦ ◦ ◦
8 ◦ ◦ ◦ ◦
10 ◦ ◦ ◦ ◦

 =
( 6

6 f
) 	↔ U6

2 	↔ U6
4 	↔ U6

5

U6 =
( 8 9 10

8 ◦ ◦ ◦
10 ◦ ◦ ◦

)
≡ Uρ(6)

6

{nonzeros in U6
2 and U6

5 are not limited to the leftmost
column and topmost row of F6}
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DATAFLOW GRAPH D(A)

Each vertex k corresponds to a frontal matrix / update

Each solid edge is a tree edge and corresponds to a

{possibly null} update Uρ(k)
k to frontal matrix Fρ(k)

Each dotted cross edge corresponds to a nonnull

update Us
k to frontal matrix F s with k < s < ρ(k)

a�1 b�2

c�3

d�4

e�5

f�6

g�7 h�8 i�9

j�10
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� �

�
���

�
���

�
�
���

�
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�
���

�
�
�� 

� �

� �

!

"

#

� �

The dataflow graph for the “(b) but not (a)” approach is

T (A + At ) {a chain for the example above}

Theorem: If x �→ y is an edge in D(A), then y is an

ancestor of x in T (A + At ).

{possibly more exploitable parallelism}
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UPPER BBT POSTORDERING REVISITED

a�6b�2

c�7

d�8

e�3

f�4

g�1 h�5 i�9

j�10

�

�

�
���
�
���

�

�
�
���

�
���

�
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�
�
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� �
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Theorem: When A is upper BBT ordered,

ρ(k) = min{x | x > k and x L�−→k U=⇒ x};

the decomposition of U k is by columns; and all cross

edges lead to older siblings and their descendants.

Advantages

• simplifies the implementation

• enables a stack-based approach that reduces the

storage required for updates

Disadvantages

• increased work and fill?
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PIVOTING FOR STABILITY

SuperLU Approach {= No Pivoting} [Demmel+Li]:

Replace any pivot of magnitude less than
√

ε ‖A‖1

by
√

ε ‖A‖1 and use an extra stage of iterative

refinement to compensate for the perturbation

Unrestricted Pivoting
A single row or column interchange can completely

destroy the structure of T (A) and D(A)

(PA)+ =



1 2 3 4 5 6 7 8 9 10

1 • b • • •
2 a ◦ • ◦ ◦ ◦
3 • ◦ c • ◦ ◦ ◦
4 • d ◦ ◦ • ◦
5 • e • • ◦ •
6 • ◦ f ◦ ◦ ◦
7 • ◦ ◦ g ◦ ◦ ◦
8 • • • ◦ ◦ ◦ h ◦ ◦
9 i •
10 • ◦ • ◦ ◦ j


•�1

◦�2

c�3

d�4

e�5

f�6

g�7 h�8 i�9

j�10

$$ %%
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PIVOTING FOR STABILITY (continued)

Delayed elimination: Symmetrically permute A so that

row/column k immediately follows row/column m;

e.g., delaying e after i ,



1 2 3 4 5 6 7 8 9 10

1 a •
2 • b ◦ • • •
3 • c •
4 • d •
5 • ◦ ◦ f ◦ ◦ ◦ ◦
6 • g ◦
7 • • • ◦ h ◦ ◦ ◦
8 i •
9 • • • ◦ e •
10 • ◦ • j

 a�1 b�2

c�3

d�4 e�9

f�5

g�6

h�7

i�8

j�10

�
��
�
��

�
�
��

�
��
�
��

�
�
��

Theorem: Let

S = {k} ∪ {x | k < x ≤ m and x ancestor of k}.
If x �∈ S and ρ(x) �∈ S, then x has the same parent

in T (PAPt).

{Local effect on T (A); insufficient alone in general}
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PIVOTING FOR STABILITY (continued)

Pivoting within diagonal blocks (e.g., supernodes):
Exchange rows within a diagonal block; e.g.,

A =



1 2 3 4 5 6 7

1 a •
2 b •
3 c •
4 • d •
5 e • •
6 • • f g
7 • • • h i


, QA =



1 2 3 4 5 6 7

1 a •
2 b •
3 c •
4 • d •
5 e • •
6 • • • h i
7 • • f g



a�1

b�2

c�3

d�4

e�5f�6

i�7

��

�� ��

��

a�1

b�2

c�3

d�4

e�5

h�6

g�7

�
�

�
�

�
�

Theorem: Let S = {k, k + 1, . . . , m} and let Q be the
permutation matrix that exchanges rows k and m. If
aij �= 0 for i, j ∈ S, then T (QA) is the same as T (A),
except that the parent of each child s /∈ S in T (A) of
a vertex in S can now be any vertex in S.

{Local effect on T (A); insufficient alone in general}
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PIVOTING FOR STABILITY (continued)

Combined Approach [Duff+Reid]

If pivot k is unacceptable, delay that step of elimination

until after the parent p = ρ(k) of k is eliminated

{there is no change to the pivot value until then}
If pivot p is also unacceptable, then treat {p, k} as a

“supernode” and pivot within the supernodal block

{any extra fill is restricted to rows/columns p and k}
The effect on the elimination tree of each delayed

elimination or row exchange is local

PIVOTING IN UNSYMMETRIC MULTIFRONTAL

Problem: F k has already been assembled when pivot

k is evaluated and deemed unacceptable so the

dataflow graph D(PAPt) or D(QA) of the permuted

matrix does not capture all flows
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PIVOTING IN MULTIFRONTAL (continued)

Solution: Keep the original dataflow graph D(A) but

make k an assembly-only vertex at which we

• Assemble all updates contributing to row/column

k into frontal matrix F k

• Permute row k immediately after row p = ρ(k)

{p L�−→ k since A is upper BBT ordered}
• Permute column k either immediately after

column p (if present) or to where column p would

be (otherwise)

• Treat the entire F k as the update; that is,

decompose it in the usual way with the pieces

sent along edges in the dataflow graph to vertices

between k and p in the original order

{approach works when A is upper BBT ordered}
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PIVOTING IN MULTIFRONTAL (continued)

(PAPt)
+
=



1 2 3 4 5 6 7 8 9 10

1 g •
2 b • • • •
3 e • • • •
4 • ◦ f ◦ ◦ ◦ ◦
5 • ◦ ◦ h • • ◦ ◦
6 a •
7 • c •
8 • d •
9 i •
10 • • ◦ ◦ ◦ ◦ ◦ ◦ j


Delaying elimination of vertex 5 until after its parent 10,

U5 ≡
( 6 7 8 10 5

10 ◦ · ◦ ◦ ◦
5 • • ◦ ◦ h

)
= U6

5 	↔ U7
5 	↔ U8

5 	↔ U10
5

where · denotes an entry that would have filled in and

Us
5 =

( s

10 ◦
5 •

)
, 6 ≤ s ≤ 8; U10

5 =
( 10 5

10 ◦ ◦
5 ◦ h

)

The recipient of U s
5 expects an update to row 10; and

vertex 10 (= supernode {10, 5}) can accommodate
an update to column 5
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WHAT IF A IS NOT BBT ORDERED?



1 2 3 4 5

1 a • •
2 b •
3 • ◦ c ◦ ◦
4 • d ◦
5 • e


a�1

b�2

c�3

d�4

e�5

�
���
�
���

�
���
�
���

�

� �



2 3 4 1 5

2 b •
3 c •
4 • d ◦
1 • • a ◦
5 • ◦ e



Delaying elimination of vertex 1 until after its parent 4,

U1 ≡
( 2 4 1

3 · · •
1 • • a

)
=

( 2

3 ·
1 •

)
	↔ ( 4 1

3 · •) 	↔ ( 4 1

1 • a
)

≡ U2
1 	↔ U3

1 	↔ U4
1

F2 ≡


2 5

2 b •
3 ·
1 •

 =
( 2 5

2 b •) 	↔ U2
1

U2 ≡
( 5

3 ◦
1 ◦

)
=

( 5

3 ◦) 	↔ ( 5

1 •) ≡ U3
2 	↔ U4

2,

There is no edge from vertex 2 to vertex 4 (into which
vertex 1 was coalesced) over which to send U 4

2
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FINDING THE ELIMINATION TREE T (A)

Theorem: k is the parent of c if and only if k is the first

vertex after c such that k and c belong to the same

strongly connected component of the subgraph

Gk (A) of G(A) induced by {1, 2, . . . , k}.

a�
b�
c� d�

e�
f�

g�

h�
i�
j�

�

�
���

��
��	


 �
 �
���

�

�
��	









�

�



�

�
���

�
�
�
�
���

��
��
���

�
��� ��
���

�
�
�
�
���

a�1 b�2

c�3

d�4

e�5

f�6

g�7 h�8 i�9

j�10

�
��
�
��

�
�
��

�
��
�
��

�
�
��

Algorithm eTree {computes ρ(k) ≡ fpnz(k)}
for k = 1 to n do

Find the component X of Gk (A) that contains k

for each x ∈ X \ {k} do
if fpnz(x) = ∞ then fpnz(x) = k

end for
fpnz(k) = ∞

end for
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FINDING THE ELIMINATION TREE (continued)

Time = O(ne), where e = the number of edges in G(A)

{Finding the strongly connected components of

Gk (A) takes time O(ek ), where ek is the number of

vertices and edges in Gk (A) reachable from k

[Tarjan; Gabow; . . . ]}

REDUCING THE EFFECTIVE SIZE

The strongly connected components of Gk (A) induce

an acyclic quotient graph G(Qk ) that succinctly

represents its connectivity [Pagallo+Maulino]:

Let x and y belong to components X and Y ;

then x ⇒ y if and only if X = Y or X ⇒ Y

Theorem: If X is a component of Gk (A), and m is the

highest-numbered vertex in X , then X = T [m].
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REDUCING THE EFFECTIVE SIZE (continued)

Gk (A) can be obtained from Gk−1(A) by

• adding vertex k ;

• adding all edges u A�−→ k with u < k

• adding all edges k A�−→ v with v < k

G(Qk ) can be obtained from G(Qk−1) in two steps:

1. Form intermediate graph G(Q′
k ) from G(Qk−1) by

• adding vertex k ;

• for each vertex T [u], adding edge T [u] �→ k if

x A�−→ k for some x ∈ T [u]; and

• for each vertex T [v ], adding edge k �→ T [v ] if

k A�−→ y for some y ∈ T [v ]

2. Form G(Qk ) from G(Q′
k ) by coalescing k and all

vertices in the strongly connected component of

G(Q′
k ) that contains it into the new vertex T [k ]
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

1 2 3 4 5 6 7 8 9 10

1 a •
2 • b • • •
3 • c •
4 • d •
5 • e • • •
6 • f
7 • g
8 • • • h
9 i •
10 • • j

 a�1 b�2

c�3

d�4

e�5

f�6

g�7 h�8 i�9

j�10

�
��
�
��

�
�
��

�
��
�
��

�
�
��

Q′
8 =


T [d ]

• T [f ] •
• T [g]

• • h


T [d ]��
�	

T [f ]��
�	�

�

T [g]��
�	




h�









�




Q′
9 =


T [d ] •
• T [g]

• T [h]

i


T [d ]��
�	








#T [h]��
�	�

T [g]��
�	




i�

Q′
10 =



T [d ] •
• T [g]

• T [h] •
T [i] •

• • j


T [d ]��
�	







#
T [h]��
�	�

�

T [g]��
�	




T [i]��
�	


j��
���
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FINDING THE ELIMINATION TREE (continued)

Theorem: If T [c] is a vertex of G(Q′
k ) that is coalesced

into T [k ], then c is a child of k .

Algorithm eTreeQ {computes ρ(k) ≡ fpnz(k)}
G(Q0) = empty graph

for k = 1 to n do

Create G(Q′
k ) from G(Qk−1) by adding k and

its incident edges

Find the component X of G(Q′
k ) that contains k

for each T [c] ∈ X \ {k} do

fpnz(c) = k

end for

Create G(Qk ) from G(Q′
k ) by coalescing

the vertices in X into the new vertex T [k ]

fpnz(k) = ∞
end for

{We can take advantage of the fact that G(Qk−1) is an

acyclic subgraph of G(Q′
k ) to find the component X of

G(Q′
k ) that contains k}
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FINDING THE ELIMINATION TREE (continued)

{Initialization prior to first call to scc (k)}
for each v in G(A) do

visited [v ] = inSC[v ] = 0

end for

Algorithm scc (k)

inSC[k ] = k

SC = {k}
dfs(k)

return SC {= component of G(Q′
k ) containing k}

procedure dfs (v )

visited [v ] = k

for each w adjacent to v in G(Q′
k ) do

if visited [w ] �= k then dfs(w)

if inSC[w ] = k then inSC[v ] = k

{inSC[w ] = k if and only if w ⇒ k in G(Q′
k )}

end for

if inSC[v ] = k then SC = SC ∪ {v}
end procedure
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FINDING AN UPPER BBT ORDERING (continued)

Name n
nz(A)

n
symm

ts(A)

(ms)

tt (A)

ts(A)

Averous/epb1 14734 6.45 72.94 15.7 .47

Bai/rw5151 5146 3.92 0.01 5.5 .49

Goodwin/goodwin 7319 44.37 26.68 37.8 .48

Graham/graham1 8398 36.59 29.47 38.3 .49

Grund/bayer02 11710 4.63 7.44 7.2 1.24

Grund/bayer10 10803 5.76 8.86 6.2 1.24

HB/gemat11 4578 6.86 70.96 1.4 1.50

Hamrle/Hamrle2 5952 3.72 12.18 1.5 1.87

Hohn/fd12 6787 3.90 2.98 5.7 .74

Hohn/fd15 10645 3.92 3.03 10.5 .67

Hohn/fd18 15367 3.94 2.51 17.2 .66

Hohn/sinc12 6974 38.43 22.65 262.8 .07

Hollinger/g7jac040 11194 9.36 8.81 63.0 .85

Lucifora/cell1 7055 4.26 79.63 4.1 .71

Lucifora/cell2 7055 4.26 79.63 4.3 .67

Nasa/barth 5711 3.49 13.66 1.8 1.56

Nasa/barth4 5826 3.90 11.11 2.4 1.58

Nasa/barth5 12960 3.93 7.61 6.2 1.90

Shen/e40r0100 17281 32.03 88.69 39.3 .68

Shen/shermanACd 6042 6.99 61.65 3.2 .88

TOKAMAK/utm5940 5794 14.35 28.94 17.0 .31
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FINDING AN UPPER BBT ORDERING

Let c1, . . . , ct be the children of k in T (A)

The subtrees T [c1], . . . , T [ct ] are the vertices of

G(Qk−1) that are coalesced into T [k ] during the

formation of G(Qk )

For an upper BBT postordering ci must be numbered

before cj if x �→ y for some x ∈ T [ci ] and y ∈ T [cj ];

i.e., T [ci ] �→ T [cj ]

In Algorithm scc, vertices are added to SC in the

following order:

• Add vertex k first

• If T [ci ] �→ T [cj ] in G(Q′
k ) and T [cj ] ∈ SC, then

add T [ci ] to SC {i.e., after T [cj ]}
That is, ignoring vertex k , the reverse of this order

satisfies the condition for an upper BBT postordering

{The additional runtime is negligible}
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OTHER APPLICATIONS

Diagonal Markowitz Ordering [Amestoy+Li+Ng]

The algorithm for finding T (A) can be extended to

maintain a compact and efficient representation of

the nonzero structure of the reduced matrix, which

can be used to select diagonal pivots that locally

minimize the work

Finding Supernodes

Supernodes (i.e., dense diagonal blocks) form chains

in T (A), which suggests both how to find them (via

postordering) and how to relax their definition

(cf. [Ashcraft+Grimes])

Symbolic Factorization

Using ρ(k) and the nesting property, more edges

can be pruned, making the algorithm more efficient

{path-symmetric symbolic factorization [E+L]}
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SUMMARY

• The elimination tree T (A) of an unsymmetric matrix

• Properties of upper BBT postorderings of T (A)

• A dataflow graph for unsymmetric multifrontal

• The impact of pivoting for stability

• Algorithms for finding T (A)

• Other applications

CONCLUSION

ρ(k) ≡ min{x | x > k and x L=⇒ k U=⇒ x}
is the right generalization of elimination tree to

unsymmetric matrices
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