
CSC14: The Sixth SIAM Workshop on 
Combinatorial Scientific Computing

École Normale Supérieure de Lyon 

July 21-23, 2014

Book of abstracts
Edited by: Bora Uçar, CNRS and LIP ENS Lyon, France

 

 



CSC14: the Sixth SIAM Workshop on Combinatorial Scientific Computing

The Sixth SIAM Workshop on Combinatorial Scientific Computing, CSC14, was organized at the 
Ecole Normale Supérieure de Lyon, France on 21st to 23rd July, 2014. This two and a half day event 
marked the sixth in a series that started ten years ago in San Francisco, USA.

The CSC14 Workshop's focus was on combinatorial mathematics and algorithms in high perfor-
mance computing, broadly interpreted. The workshop featured three invited talks, 27 contributed 
talks and eight poster presentations. All three invited talks were focused on two interesting fields of 
research specifically:  randomized algorithms for numerical linear algebra and network analysis. 
The contributed talks and the posters targeted modeling, analysis, bisection, clustering, and parti-
tioning of graphs, applied in the context of networks, sparse matrix factorizations, iterative solvers, 
fast  multi-pole methods,  automatic differentiation,  high-performance computing,  and linear  pro-
gramming.

The workshop was held at the premises of the LIP laboratory of ENS Lyon and was generously 
supported by the LABEX MILYON (ANR-10-LABX-0070, Université de Lyon, within the program 
``Investissements  d'Avenir''  ANR-11-IDEX-0007  operated  by  the  French  National  Research 
Agency), and by SIAM.

Program Committee

Organizing committee co-chairs
Paul Hovland, Argonne National Laboratory, USA
Bora Uçar, CNRS and ENS Lyon, France

Local organization
Evelyne Blesle, INRIA and ENS Lyon, France
Bora Uçar, CNRS and ENS Lyon, France

Organizing committee
Sanjukta Bhowmick, University of Nebraska Omaha, USA
Rob Bisseling, Utrecht University, the Netherlands
Erik Boman, Sandia National Laboratories, USA
Martin Bücker, University of Jena, Germany
Ümit V. Çatalyürek, The Ohio State University, USA
Assefaw Gebremedhin, Purdue University, USA
John Gilbert, University of California, Santa Barbara, USA
Laura Grigori, INRIA, France
Jean-Yves L'Excellent, INRIA, France
Sven Leyffer, Argonne National Laboratory, USA
X. Sherry Li, Lawrence Berkeley National Laboratory, USA
Lek-Heng Lim, University of Chicago, USA
Padma Raghavan, Pennsylvania State University, USA
Jennifer Scott, Rutherford Appleton Laboratory, UK
Blair Sullivan, North Carolina State University, USA
Miroslav Tůma, Academy of Sciences, Czech Republic

Steering Committee
Patrick R. Amestoy, INPT(ENSEEIHT)-IRIT, France
Rob Bisseling, Utrecht University, the Netherlands
Bruce Hendrickson, Sandia National Laboratories, USA 
Paul Hovland, Argonne National Laboratory, USA 
Alex Pothen, Purdue University, USA 

i



Table of Contents

Invited Talks

Analytical and algorithmic challenges in network analysis, 
Tamara G. Kolda ............................................................................................................... 1

Randomized algorithms in numerical linear algebra (RandNLA) and 
applications in data analysis, 
Petros Drineas .................................................................................................................. 2

Graphs and linear algebra: The new randomized Kaczmarz linear solver, 
Sivan Toledo ..................................................................................................................... 3

Contributed Talks

Fast implementation of the minimum local fill ordering heuristic, 
Esmond Ng and Barry Peyton ........................................................................................... 4

Improving coarsening for multilevel partitioning of complex networks, Roland Glantz, 
Henning Meyerhenke, Peter Sanders, and Christian Schulz ............................................ 6

Partitioning hypergraphs for multiple communication metrics, 
Mehmet Deveci, Kamer Kaya, Bora Uçar, and Ümit V. Çatalyürek ................................... 8

Comparison of one-phase and two-phase approaches for 
replicated hypergraph partitioning, 
R. Oguz Selvitopi, Volkan Yazici, Ata Turk, and Cevdet Aykanat ...................................... 10

An efficient automatic differentiation algorithm for Hessians: Working with live variables, 
Mu Wang, Assefaw Gebremedhin, and Alex Pothen ........................................................ 12

Hierarchical seeding for efficient sparsity pattern recovery in automatic differentiation, 
Joris Gillis and Moritz Diehl ............................................................................................... 14

Compressed threshold pivoting for sparse symmetric indefinite systems, 
Jonathan Hogg and Jennifer Scott .................................................................................... 16

Max flow, min cuts and multisectors, 
Cleve Ashcraft and Iain Duff ….......................................................................................... 17

Nested dissection with balanced halo, 
Astrid Casadei, Pierre Ramet, and Jean Roman .............................................................. 20

Adaptive FMM for fractal sets, 
Hadi Pouransari and Eric Darve ........................................................................................ 22

Multicenter method, 
Julie Anton, Pierre L'Eplattenier, and Cleve Ashcraft ........................................................ 24

Computing an estimate of Trace(A^(-1)) using 
hierarchical probing and matrix sparsification, 
Jesse Laeuchli and Andreas Stathopoulos ....................................................................... 26

A distributed parallel dual revised simplex solver for 
large scale stochastic MIP problems, 
Julian Hall and Miles Lubin ............................................................................................... 28

Contention bounds for combinations of computation graphs and network topologies, 
Grey Ballard, James Demmel, Andrew Gearhart, Benjamin Lipshitz, Oded Schwartz, 
and Sivan Toledo ............................................................................................................... 30

ii



Generalised vectorisation for sparse matrix-vector multiplication, 
Albert-Jan Yzelman ........................................................................................................... 33

Efficient sparse matrix-matrix multiplication on multicore architectures,
Adam Lugowski and John R. Gilbert ................................................................................. 35

Scaling iterative solvers by avoiding latency overhead of 
parallel sparse matrix vector multiplication, 
R. Oguz Selvitopi, Mustafa Ozdal, and Cevdet Aykanat ................................................... 37

Scalable large scale graph analytics, 
Yves Ineichen, Costas Bekas, and Alessandro Curioni .................................................... 39

NetworKit: An interactive tool for high-performance network analysis, 
Christian Staudt and Henning Meyerhenke ...................................................................... 41

Detecting anomalies in very large graphs, 
Michael Wolf and Benjamin Miller ..................................................................................... 43

Finding high betweenness centrality vertices in large networks, 
Vladimir Ufimtsev and Sanjukta Bhowmick ....................................................................... 45

Partitioning RGG's into disjoint (1-ε) dominant bipartite subgraphs, 
Zizhen Chen and David Matula ......................................................................................... 48

Characterizing asynchronous broadcast trees for multifrontal factorizations, 
Patrick R. Amestoy, Jean-Yves L'Excellent, and Wissam M. Sid-Lakhdar ….................... 51

Comparing different cycle bases for a Laplacian solver, 
Erik Boman, Kevin Deweese, and John Gilbert ................................................................ 54

An efficient graph coloring algorithm for stencil-based Jacobian computations, 
Michael Luelfesmann and Martin Buecker ........................................................................ 56

Computing approximate b-matchings in parallel, 
Arif Khan, Mahantesh Halappanavar, Fredrik Manne, and Alex Pothen …....................... 58

Performance analysis of single-source shortest path algorithms on 
distributed-memory systems, 
Thap Panitanarak and Kamesh Madduri .......................................................................... 60

Poster Presentations

Improving the runtime efficiency and solution quality of 
independent task assignment heuristics, 
E. Kartal Tabak, B. Barla Cambazoglu, and Cevdet Aykanat …........................................ 64

Towards the parallel resolution of the Langford problem on a cluster of GPU devices, 
Hervé Deleau, Julien Loiseau, Christophe Jaillet, Michaël Krajecki, Luiz Angelo 
Steffenel, and François Alin .............................................................................................. 66

Linear programming for mesh partitioning under memory constraint: Theoretical 
formulations and experimentations, 
Sébastien Morais, Eric Angel, Cédric Chevalier, Franck Ledoux and Damien Regnault... 68

Optimizing the inexact Newton Krylov method using combinatorial approaches, 
Marcelo Carrion, Brenno Lugon, Maria Cristina Rangel, Lucia Catabriga and Maria 
Claudia Boeres ….............................................................................................................. 70

Large sparse matrix reordering schemes applied to a finite element analysis, 
Brenno Lugon and Lucia Catabriga .................................................................................. 72

iii



Network partitioning in scientific simulations : A case study, 
Hélène Coullon and Rob Bisseling .................................................................................... 74

Reducing elimination tree height for unsymmetric matrices, 
Enver Kayaaslan and Bora Uçar ....................................................................................... 75

On Newton's method for an inverse first passage problem, 
Yingjun Deng, Anne Barros, and Antoine Grall ................................................................. 77

iv



ANALYTICAL AND ALGORITHMIC CHALLENGES IN
NETWORK ANALYSIS

TAMARA G. KOLDA†

Large-scale graphs and networks are used to model interactions in a variety of contexts. We

discuss the modeling choices in a graph representation of data, and the types of questions that are

typically answered by studying networks. We then focus on measuring specific characteristics (e.g.,

triangles and 4-vertex patterns) of graphs and building generative models. In the undirected case, we

discuss the Block Two-level Erdös-Rényi (BTER) model that reproduces a given degree distribution

and clustering coefficient profile. We discuss various implementations of available methods and how

they fit into the larger theme of graph processing. We conclude by discussing challenges such as how

to characterize time-evolving networks.

†Sandia National Laboratories
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RANDOMIZED ALGORITHMS IN
NUMERICAL LINEAR ALGEBRA (RANDNLA) AND

APPLICATIONS IN DATA ANALYSIS

PETROS DRINEAS†

The introduction of randomization in the design and analysis of algorithms for matrix compu-

tations (such as matrix multiplication, least-squares regression, the Singular Value Decomposition

(SVD), etc.) over the last decade provided a new paradigm and a complementary perspective to

traditional numerical linear algebra approaches. These novel approaches were motivated by tech-

nological developments in many areas of scientific research that permit the automatic generation of

large data sets, which are often modeled as matrices.

In this talk we will outline how such approaches can be used to approximate problems ranging

from matrix multiplication and the Singular Value Decomposition (SVD) of matrices to the Column

Subset Selection Problem and the CX decomposition. Application of the proposed algorithms to

data analysis tasks in population genetics will also be discussed.

†Rensselaer Polytechnic Institute
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GRAPHS AND LINEAR ALGEBRA:
THE NEW RANDOMIZED KACZMARZ LINEAR SOLVER

SIVAN TOLEDO†

Algorithms that solve symmetric diagonally-dominant linear systems in nearly linear time have
been proposed in the theoretical-computer science literature for about a decade now. In this talk, I
will describe a promising member of this class of algorithms, called the Randomized Combinatorial
Kaczmarz, which was proposed recently by Kelner, Orecchia, Sidford, and Zhu [1]. This algorithm
is relatively simple to understand and implement. I will describe the algorithm, relate it to older
combinatorial solvers that were based on preconditioning, and I will discuss remaining challenges in
this exciting area.

REFERENCES

[1] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu, A simple, combina-

torial algorithm for solving SDD systems in nearly-linear time, CoRR,abs/1301.6628, 2013.

†Tel-Aviv University
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Fast Implementation of the Minimum Local Fill Ordering Heuristic

Esmond G. Ng and Barry W. Peyton

Abstract

It is well known that sparse matrix factorizations suffer fill. That is, some of the zero entries in a
sparse matrix will become nonzero during factorization. To reduce factorization time and storage,
it is important to arrange the computation so that the amount of fill is kept small. It is also well
known that the amount of fill is often influenced greatly by how the rows and columns of the sparse
matrix are permuted (or ordered). We focus on the Cholesky factorization of a sparse symmetric
positive definite matrix, in which case the fill depends solely on the sparsity of the given matrix
and on the choice of the permutation (or ordering).

We use the following notation. Let A be an n× n symmetric positive definite matrix and P be an
n× n permutation matrix. Let m be the number of nonzero entries in the lower triangle of A. We
denote the factorization of PAP T by LLT , where L is lower triangular. We use L∗k to denote the
k-th column of L. The number of nonzero entries in a vector v is represented by nnz(v).

It is well known that finding an ordering to minimize fill in sparse Cholesky factorization is an
NP-complete problem [7]. Thus, we rely on heuristics. Two greedy, bottom-up heuristics are the
minimum degree (MD) algorithm and the minimum local fill (MF) algorithm. The MD algorithm,
introduced by Tinney and Walker [5], is probably the best-known and most widely-used greedy
heuristic. It reduces fill by finding a permutation P so that nnz(L∗k) is minimized locally at step k

of the factorization. A great deal of work has been done to reduce the runtime of the MD algorithm.
The MF algorithm, also introduced by Tinney and Walker [5], is not as well known or widely used
as MD. In the MF algorithm, the permutation is chosen so that the number of zero entries in the
reduced matrix that become nonzero is as small as possible at each step of the factorization.

There are a number of reasons why the MF algorithm has not been as popular as the MD algorithm.
The metric nnz(L∗k) is easy and inexpensive to compute. By contrast, the metric required by the
MF algorithm is more difficult and expensive to compute. Consequently, the general experience
has been that the MF algorithm requires far greater time than the MD algorithm. For example,
Rothberg and Eisenstat [4] report that “while many of the enhancements described above for
minimum degree are applicable to minimum local fill (particularly supernodes), runtimes are still
prohibitive”. Also, Ng and Raghavan [3] report that their implementation of MF was on average
slower than MD by “two orders of magnitude”.

Another reason for the lack of popularity of the MF algorithm is the belief that MF orderings are
often just marginally better than MD orderings [1]. It has been shown, however, that MF orderings
are often considerably better than MD orderings. For example, in an early version of [3], Ng and
Raghavan reported that their MF orderings, on average, resulted in 9% less fill and 21% fewer
operations than their MD orderings. On a different set of test matrices, Rothberg and Eisenstat [4]
similarly reported that their MF orderings, on average, resulted in 16% less fill and 31% fewer
operations than their MD orderings. Consequently, a truly efficient way to compute MF orderings
would prove valuable, and that is the focus of our talk.

The reason for the high runtimes of standard implementations of MF is that whenever a column’s
fill count may have changed, it is set to zero and recomputed from scratch. In [6], Wing and
Huang described an elegant way to update the deficiencies rather than recomputing them from
scratch. Their updating scheme was mentioned a few times in the circuit simulation literature, but
it apparently was not widely used and it certainly was not adopted by the sparse matrix community.

Bora Ucar
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We will describe in this talk our recent work on the Wing-Huang updating scheme. In particular,
we will show that the worst-case time complexity of the MF algorithm with Wing-Huang updates is
the same as that of the MD algorithm, namely O(n2m). We will also demonstrate that techniques
for reducing the runtime of the MD algorithm, such as mass elimination and indistinguishable
nodes, are equally applicable in the efficient implementation of the MF algorithm with Wing-Huang
updates. It is particularly important that we can adapt the Wing-Huang updating technique so
that it can be used efficiently when quotient graphs are used to represent the elimination graphs.

Results from our preliminary implementation of the MF algorithm with Wing-Huang updates are
encouraging. Over a collection of 48 sparse matrices from the Florida Sparse Matrix Collection,
our MF algorithm with Wing-Huang updates is just 4.6 times more expensive than the minimum
degree (MMD) algorithm with multiple eliminations [2] on average. Our MF orderings, on the
average, produce 17% less fill and require 31% fewer operations than the MMD algorithm. On one
large test matrix (3dtube), MF produces 29% less fill and requires 55% fewer operations.

In the future, we hope to look into ways to further reduce runtimes for our implementation of the
MF algorithm using Wing-Huang updating.

References
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IMPROVING COARSENING FOR MULTILEVEL PARTITIONING OF COMPLEX NETWORKS

Roland Glantz, Henning Meyerhenke, Peter Sanders, and Christian Schulz

Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT)

Introduction

Complex networks such as web graphs or social networks

have become a research focus [1]. Such networks have

many low-degree nodes and few high-degree nodes. They

also have a small diameter, so that the whole network is

discovered within a few hops. Various emerging applica-

tions produce massive complex networks whose analysis

would benefit greatly from parallel processing. Parallel

graph algorithms, in turn, often require a suitable network

partition, motivating graph partitioning (GP).

Given a graph G = (V,E) with (optional) edge weight

function ! and a number of blocks k > 0, the GP prob-

lem asks for a partition of V into blocks V1, . . . , Vk such

that no block is larger than (1 + ") · d |V |
k e, where " � 0

is the allowed imbalance. When GP is used for parallel

processing, each processing element (PE) usually receives

one block, and edges running between two blocks model

communication between PEs. The most widely used ob-

jective function is the edge cut, the total weight of the

edges between di↵erent blocks. To model the commu-

nication cost of parallel iterative graph algorithms, the

maximum communication volume (MCV) can be more

accurate [4]. MCV considers the worst communication

volume taken over all blocks Vp (1  p  k) and thus pe-

nalizes imbalanced communication: MCV (V1, . . . , Vk) :=

maxp
P

v2Vp
|{Vi | 9{u, v} 2 E with u 2 Vi 6= Vp}|.

For solving optimization tasks such as GP on large net-

works, multilevel methods (consisting of recursive coarsen-

ing, initial partitioning, successive prolongation and local

improvement) are preferred in practice. Partitioning static

meshes this way is fairly mature. Yet, the structure of

complex networks challenges current tools. One key issue

for most multilevel graph partitioners is coarsening.

Here we present two independent improvements to coars-

ening. The first one uses the established framework of

contracting edges computed as matching. Yet, it defines

a new edge rating which indicates with non-local informa-

tion how much sense it makes to contract an edge and

thus guides the matching algorithm. The second approach

uses cluster-based coarsening and contracts larger sets of

nodes into a supernode, yielding fewer levels.

New Coarsening Approaches

Conductance-based Edge Rating. Let the terms cut

and cut-set refer to a 2-partition (C,C) of a graph

and to the set S(C) of edges running between C and

C, respectively. The graph clustering measure conduc-

tance [5] relates the size (or weight) of the cut-set to

the volumes of C and C. More precisely, cond(G) :=

minC⇢V
|S(C)|

min{vol(C),vol(C)} , where the volume vol(X) of a

set X sums over the (weighted) degrees of the nodes in X.

An edge rating in a multilevel graph partitioner should

yield a low rating for an edge e if e is likely to be contained

in the cut-set of a “good” cut. In our approach a good

cut is one that has low conductance and is thus at least

moderately balanced. A loose connection between conduc-

tance and MCV can be established via isoperimetric graph

partitioning [3]. Our approach to coarsen a graph with a

new edge rating is as follows. (i) Generate a collection C
of moderately balanced cuts of G with a low conductance

value. (ii) Define a measure Cond(·) such that Cond(e)

is low [high] if e is [not] contained in the cut-set of a cut

in C with low conductance. (iii) Use the new edge rat-

ing ex cond({u, v}) = !({u, v}) Cond({u, v})/(c(u)c(v))
as weights for an approximate maximum weight matching

algorithm A, where c(x) refers to the weight of node x.

The higher ex cond(e), the higher the chances for e to be

contracted. (iv) Run A and contract the edges returned

in the matching.

We arrive at a collection C of |V |�1 moderately balanced

cuts of G by (i) computing connectivity-based “contrast”

values for the edges of G, (ii) computing a minimum span-

ning tree T

m of G w. r. t. these values, and (iii) letting

C consist of G’s fundamental cuts w. r. t. Tm. We want

the contrast value �(e) of an edge e to be high if e is part

of “many” connections via shortest paths in G. Based on

a collection T of rooted spanning trees of G, this means

that (i) e is contained in many trees from T and (ii) e is

not involved in small cuts that separate a small subgraph

of G from G’s “main body”. We achieve this by setting

�({u, v}) = min{nT (u, v), nT (v, u)}, where nT (u, v) de-

notes the number of trees in T containing e such that

u is closer to the tree’s root than v. Cond(·) is finally

Bora Ucar
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defined such that Cond(e) is low [high] if e is [not] con-

tained in the cut-set of a cut in C with low conductance:

Cond(e) = minC2C,e2S(C)(cond(C)).

Cluster-based Coarsening. As an alternative approach

to coarsening networks with a highly irregular structure,

we propose a more aggressive coarsening algorithm that

contracts size-constrained clusterings computed by a label

propagation algorithm (LPA). LPA was originally pro-

posed by Raghavan et al. [7] for graph clustering. It is

a fast, near-linear time algorithm that locally optimizes

the number of edges cut. Initially, each node is in its own

cluster/block. In each of the subsequent rounds, the nodes

of the graph are traversed in a random order. When a

node v is visited, it is moved to the block that has the

strongest connection to v (with some tie-breaking mecha-

nism). The original process is repeated until convergence,

each round takes O(n + m) time. Here, we perform at

most ` iterations of the algorithm, where ` is a tuning

parameter, and stop the algorithm if less then 5% of the

nodes changed its cluster during one round. Hence, we do

not face the occasional instabilities of the original algo-

rithm. Most importantly, we adapt LPA such that clusters

cannot grow beyond a certain size. This is done to respect

the imbalance criterion of GP.

We integrate further algorithmic extensions such as

modified iterations over the node set within LPA, ensemble

clusterings, and iterated multilevel schemes. They are

described in more detail in the corresponding full paper.

To compute a graph hierarchy, the clustering is con-

tracted by replacing each cluster with a single node, and

the process is repeated recursively until the graph is small.

Here we aim at partitioning for low edge cuts with this

method. The intuition for achieving this goal is that a

good clustering contains only few edges between clusters.

Implementation and Experimental Results

Experimental results have been obtained by implementing

our new methods within the framework of the state-of-

the-art graph partitioner KaHIP [9].

Conductance-based Edge Rating. KaHIP contains a

reference implementation of the edge rating ex alg(·),
which yielded the best quality for complex networks so

far [8]. In addition to our new edge rating ex cond(·), we
have integrated a greedy postprocessing step that trades

in small edge cuts for small MCVs into KaHIP. Our ex-

periments show that greedy MCV postprocessing alone

improves the partitions of our complex network benchmark

set in terms of MCV by about 11% with a comparable run-

ning time for both ex alg(·) and ex cond(·). Additional

bipartitioning experiments (MCV postprocessing included)

show that, compared to ex alg(·), the fastest variant of

our new edge rating further improves the MCVs by 10.3%,

at the expense of an increase in running time by a factor of

1.8. Altogether, compared to previous work on partition-

ing complex networks with state-of-the-art methods [8],

the total reduction of MCV amounts to 20.4%.

Cluster-based Coarsening. For the second set of experi-

ments, KaHIP uses the hierarchy computed by cluster-

based coarsening and its own initial partitioning as well

as existing local search algorithms for refinement on each

level, respectively. Some algorithm configurations also use

the size-constrained LPA as local search procedure. We

compare against the established tools kMetis, hMetis, and

Scotch, all in graph partitioning mode.

Depending on the algorithm’s configuration, we are able

to compute the best solutions in terms of edge cut or

partitions that are comparable to the best competitor in

terms of quality, hMetis, while being nearly an order of

magnitude faster on average. The fastest configuration

partitions a web graph with 3.3 billion edges using a single

machine in about ten minutes while cutting less than half

of the edges than the fastest competitor, kMetis.

Accompanying Publications. Details can be found in

the respective papers [2, 6] and their full arXiv versions.
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Partitioning hypergraphs for multiple communication metrics

Mehmet Deveci 1, Kamer Kaya 1, Bora Uçar 2, Ümit V. Çatalyürek 1

1 Dept. Biomedical Informatics, The Ohio State University
2 CNRS and LIP, ENS Lyon, France

The datasets in many fields of science and engineering are growing rapidly with the recent ad-
vances that enable generating and storing big data. These datasets usually have irregular patterns,
and there exist complex interactions between their elements. These interactions make it di�cult
to develop simple and e�cient load-balancing mechanisms for the data analysis kernels, forcing
researchers to study more complex partitioning methods. Thus, a good partitioning of the data,
which is necessary to obtain a scalable performance, a shorter makespan, a minimized energy usage,
and a better resource utilization, is more important and harder to obtain.

In scientific computing, computational tasks are usually modeled using connectivity-based topo-
logical models, such as graphs and hypergraphs [1, 2, 3]. These models transform the problem
at hand to a balanced vertex partitioning problem. The balance restriction on part weights in
conventional partitioning corresponds to the load balance in a parallel environment, and the mini-
mization objective for a given metric relates to the minimization of the communication cost among
the processing units. A good partitioning should minimize the inter-processor communication
while distributing the computation load evenly to the processors. In this work, we study these
connectivity-based models and methods, specifically hypergraph models and methods, designed to
partition the communicating tasks for an e�cient parallelization.

Most of the existing state-of-the-art hypergraph partitioners aim to minimize the total commu-
nication volume while balancing the load for e�cient parallelization [1, 4, 5]. However, the other
communication metrics, such as the total number of messages, the maximum amount of data trans-
ferred by a single processor, or combinations of multiple metrics, are equally, if not more, important.
For example, the latency-based metrics, which model the communication by using the number of
messages sent/received throughout the execution, become more and more important as the number
of processors increases [6]. Ideal partitions yield perfect computational load balance and minimize
the communication requirements by minimizing the communication overhead. On the other hand,
most of the existing hypergraph partitioning methods aim to minimize only the traditional total
communication volume metric, with the hope that it improves the other communication metrics as
a side e↵ect.

In this work, we argue that the general hypergraph model used by the state-of-art hypergraph
partitioners is not su�cient to model and capture other communication metrics than the total vol-
ume of communication. We propose a directed hypergraph model that can simultaneously capture
multiple communication metrics. Given an application, our main objective is to partition the tasks
evenly among processing units and to minimize the communication overhead by minimizing several
communication cost metrics by using the proposed directed hypergraph model. Previous studies
addressing multiple metrics [7, 8] with the traditional hypergraph model work in two phases where
the phases are concerned with disjoint subsets of communication metrics. Generally, the first phase
tries to obtain a proper partitioning of data for which the total communication volume is reduced.
Starting from this partitioning, the second phase tries to optimize another communication met-
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ric. Even though such two-phase approaches allow the use of state-of-the-art techniques in one or
both phases, since the solutions sought in one phase are oblivious of the metric used in the other,
the search can stuck in a local optima that cannot be improved in the other phase. Instead, we
present a novel approach to treat the minimization of multiple communication metrics as a multi-
objective minimization problem which is solved in a single phase with the help of the proposed
directed hypergraph model. Addressing all the metrics in a single-phase allows a trade-o↵ between
the cost associated with one metric and the cost associated with another one. Inherently, the
standard hypergraph model cannot see the communication metrics that are defined per-processor
basis. Therefore, the balance on the communication loads of the processors cannot be modeled
and formulated in a natural way. Furthermore, since almost all the state-of-the-art partitioners use
iterative-improvement-based heuristics for the refinement, a single-phase approach increases the
explored search space by avoiding local optima for a single metric.

We have materialized our approach in UMPa [9], which is a multi-level partitioner employing
a directed hypergraph model and novel K-way refinement heuristics, since balancing per-processor
communication cost metrics requires a global view of the partition. We present methods for min-
imizing the maximum communication volume, the total and maximum number of messages per
processor, as well as the traditional total communication volume in a generalized framework that
simultaneously minimizes multiple prioritized communication overhead metrics at the same time.
Compared to the state-of-art hypergraph partitioners, we show on a large number of problem in-
stances that UMPa produces much better partitions in terms of several communication metrics with
128, 256, 512, and 1024 processing units; UMPa reduces the maximum communication volume, the
total number of messages, and the maximum number of messages sent by a single part up to %85,
%45, and %43, respectively.
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Hypergraphs find their applications in wide range of domains that include VLSI circuit design,
scientific computing [1], information retrieval and database systems. They are successfully adopted
and used in these domains to model problems with di↵erent types of relations. These relations can
broadly be categorized as directed or undirected according to the requirements of the application
being modeled. In undirected relations, the relation among data items is equally shared, whereas
in directed relations, there exists an input/output relation among data items being modeled. In
information retrieval and database systems, replication is a useful method to provide fault toler-
ance, enhance parallelization and improve processing performance. In this study, we target vertex
replication to further improve the objective of hypergraph partitioning for hypergraphs that em-
ploy undirected relations. The applications that benefit from hypergraph models and replication
can utilize the methods and techniques that are proposed for replicating vertices of undirected
hypergraphs.

There are two possible approaches to solve the replicated hypergraph partitioning problem: one-
phase and two-phase. In [2], we propose a one-phase approach where replication of vertices in the
hypergraph is performed during the partitioning process. This is achieved during the uncoarsening
phase of the multilevel methodology by proposing a novel iterative-improvement-based heuristic
which extends the Fiduccia-Mattheyses (FM) algorithm [3] by also allowing vertex replication and
unreplication. In [4], we describe a two-phase approach in which replication of vertices is performed
after partitioning is completed. The replication phase of this two-phase approach utilizes a unified
approach of coarsening and integer linear programming (ILP) schemes. The one-phase approach
has the possibility of generating high quality solutions since it achieves replication during the
partitioning process and it considers unreplication of vertices as well. The advantages of using
two-phase approach are the flexibility of using any of the hypergraph partitioning tools available
and being able to work on the partitions that already contain replicated vertices.

In the one-phase approach, to perform replication of vertices during the partitioning process,
the FM heuristic is extended to allow replication and unreplication of vertices as well as move
operations. This extended heuristic has the same linear complexity as the original FM heuristic
and is able to replicate vertices in a two-way partition by new vertex states and gain definitions.
This heuristic is later utilized in a recursive bipartitioning framework to enable K-way replicated
partitioning of the hypergraph and it supports the two widely used cut-net and connectivity cutsize
metrics. It is integrated into the successful hypergraph partitioning tool PaToH as the refinement
algorithm in the uncoarsening phase.

The two-phase approach utilizes Dulmage-Mendelsohn [5] decomposition to find replication
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sets for each part by only considering boundary vertices. The replication sets are bounded by a
maximum replication capacity, and they are arranged in such a way that the imbalance of the
given original partition is not disturbed, or even is sometimes improved. The balancing constraint
is enforced by proposing a part-oriented method to determine the amount of replication to be
performed on each part in a particular order.

We compare the mentioned one-phase and two-phase approaches for achieving vertex replication
in undirected hypergraphs. We present the results of the quality of the partitions on hypergraphs
from di↵erent domains with varying setups.
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An E�cient Automatic Di↵erentiation Algorithm for Hessians:

Working With Live Variables⇤

Mu Wang Assefaw Gebremedhin Alex Pothen

Introduction. Gower and Mello [3] recently introduced a graph model for computing Hessians using
Automatic Di↵erentiation (AD) [1, 2]. In the model, which is based solely on Reverse Mode AD, the compu-
tational graph of the input function is augmented with minimal information—additional edges correspond-
ing precisely with nonlinear interactions—and the symmetry available in Hessian computation is exploited.
Using the model, they developed an algorithm, called Edge Pushing, where edges representing nonlinear
interactions are ‘created’ and their contributions to descendants are ‘pushed’ as the algorithm proceeds. The
approach represents an important progress in AD for Hessians, but it unfortunately has several shortcomings.
First, the authors’ derivation of the algorithm is rather complicated and hard to understand. Second, their
implementation in ADOL-C relies on an indexing assumption not necessarily supported by ADOL-C so that
their code gives incorrect results in some cases. In this work, we provide a new, intuitive derivation of the
Edge Pushing algorithm from a completely di↵erent perspective and a robust implementation (built on top
of ADOL-C) that works correctly in all cases. At the heart of our approach lies this: we identify an invariant
in the first order incremental reverse mode of AD, which we arrive at by taking a data-flow perspective.
We obtain the Hessian algorithm by extending the invariant to second order. Additionally, we incorporate
preaccumulation in the Hessian algorithm to further enhance performance.

Reverse Mode AD. In data-flow analysis in compiler theory, a variable is said to be live if it holds a
value that might be read in the future. We find a similar notion useful in our context. Since in reverse mode
AD all information about the execution sequence of the objective function is recorded on an evaluation trace,
we can in fact work with a more restricted definition for a live variable. In particular, we say a variable is
live if it holds a value that will be read in the future. And we call the set made up of all live variables at
each step of the execution sequence a live variable set in that sequence.

Following the notations of Griewank and Walther [1], the first order incremental reverse mode of AD can
be written using a sequence of Single Assignment Code (SAC) as:

Algorithm: First Order Incremental Reverse Mode (FOIRM)
Initialization: v̄l = 1.0, v̄1�n = · · · = v̄0 = v̄1 = · · · = v̄l�1 = 0
for i = l, · · · , 1 do

for all vj � vi do (� denotes precedence)
v̄j+ = @'i

@vj
v̄i

We observe the following invariant in this mode of computing adjoints:

Observation 1 The set of adjoints computed in each step i of the FOIRM algorithm involve partial deriva-

tives with respect to only the current live variable set, not the entire set of variables.

Hessian Algorithm. We extend the invariant formulated in Observation 1 to second order derivatives.
Let S denote the set of live variables in a given step. Then, the first order derivatives (adjoints), denoted in
the code in FOIRM by v̄, for each v 2 S, can be viewed as a mapping a : S ! R, a(v) = v̄. Analogously, the
second order derivatives (Hessian) can be viewed as a symmetric mapping h : S ⇥ S ! R, h(v, u) = h(u, v).
Our target algorithm is then precisely a prescription of how S, a(S) and h(S, S) should be changed as the
associated SAC is processed such that the invariant is maintained.

Let Ŝ, â(Ŝ) and ĥ(Ŝ, Ŝ) denote the live variable set, the adjoint mapping, and the Hessian mapping,
respectively, after a SAC vi = 'i(vj)vj�vi is processed. Because the sequence proceeds in the reverse order,

⇤
A full report on this work is being submitted elsewhere. Authors’ emails: {wang970, agebreme, apothen}@purdue.edu

Bora Ucar
12



we have Ŝ = {S \ {vi}} [ {vj |vj � vi}. Considering the adjoints equation, and noting that @'i

@vj
= 0 when

vj ⌃ vi, and a(vj) = 0 when vj /2 S:

8vj 2 Ŝ, â(vj) = a(vj) +
@'i

@vj
a(vi).

For the second order rule, noting that h(vj , vk) = 0 when vj /2 S or vk /2 S, and applying the chain rule of
calculus, analogous to the adjoint case, we have 8vj , vk 2 Ŝ:

ĥ(vj , vk) = h(vj , vk) +
@'i

@vj
h(vi, vk) +

@'i

@vk
h(vi, vj) +

@'i

@vj

@'i

@vk
h(vi, vi)

+ a(vi)
@2'i

@vj@vk
. (1)

Equation (1) corresponds to the Edge Pushing algorithm of [3], in which the last three terms on the
first line represent the pushing part, and the sole term in the second line represents the creating part in the
component-wise form of their algorithm.

Implementation and Evaluation. We implemented this data flow-based Hessian algorithm in ADOL-C.
We observe that in order to take advantage of the symmetry available in Hessian computation, the result
variables in the SAC sequence need to have monotonic indices. However, the location scheme for variables
currently used in ADOL-C does not satisfy this property, which is one reason why the Gower-Mello imple-
mentation of the Edge Pushing algorithm fails. We implemented a fix in ADOL-C where we appropriately
translate indices of variables before starting the reverse Hessian algorithm.

To further improve e�ciency, we incorporate a statement-level preaccumulation technique to the Hessian
algorithm. Preaccumulation splits the reverse Hessian algorithm into a local and a global level. In the local
level, each SAC is processed to compute the first and second order derivatives of local functions defined
by assign-statements in the execution path. In the global level, the derivatives of each local function is
accumulated to compute the entire Hessian of the objective function.

The table below shows sample results comparing the runtime (sec.) of the new approach (EPwithPreacc
and EPwithoutPreacc) with two related approaches: (i) a full Hessian algorithm in which sparsity is
not exploited (Full-Hessian) and (ii) two compression-based sparse Hessian algorithms involving spar-
sity structure detection, graph coloring, compressed evaluation and recovery (SparseHess-direct and
SparseHess-indirect). Results are shown for synthetic test functions from [5] and mesh optimization
problems in the FeasNewt benchmark [4]. Details will be discussed in the upcoming full report.

Synthetic Mesh Optimization
Matrix order n: 10, 000 10, 000 10, 000 10, 000 2, 598 11, 597 39, 579
Number of nonzeros: 19, 999 59, 985 44, 997 59, 985 46, 488 253, 029 828, 129
Full-Hessian 31.78 573.16 28.91 33.83 129.36 > 2 hours > 2 hours

SparseHess-direct† 0.04 0.30 0.12 16.05 5.17 37.35 129.35

SparseHess-indirect† 0.20 0.31 0.33 25.72 4.14 28.94 111.97

EPwithoutPreacc 0.05 0.27 0.12 0.12 0.53 3.63 12.80

EPwithPreacc 0.06 0.23 0.08 0.10 0.48 3.27 11.10

† The times are a total of the four steps, whose contributions vary greatly. As an example, the breakdown for the largest mesh

optimization problem (nnz=828,129) is:

Pattern Coloring Compressed H. Recovery
SparseHess-direct 54.1% 1.02% 44.8% 0.03%
SparseHess-indirec 61.1% 0.96% 24.8% 13.1%
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Hierarchical seeding for e�cient sparsity pattern recovery in
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Obtaining the Jacobian J = @f

@x

of a vector valued function f(x) : Rn ! Rm is central to applications
such as gradient-based constrained optimization and sensitivity analysis. When the function is not a
black box, but instead an interpretable algorithm with run-time T , automatic di↵erentiation o↵ers a
mechanistic way to derive two algorithms from the original f(x) that accurately evaluate the following
sensitivities:

Forward sensitivity ADfwd
f

(x, sfwd) = J(x)sfwd, sfwd 2 Rn

Adjoint/reverse sensitivity ADadj
f

(x, sadj) = JT (x)sadj, sadj 2 Rm,

with the run-time of either of the algorithms AD
f

a small multiple of T .
A straightforward approach to recover all Jacobian entries is to seed with columns of an identity matrix.
In this way, the forward and reverse sensitivities correspond directly to respectively columns and rows
of the sought-after Jacobian. For m ⌧ n, the obvious choice is to use m adjoint sensitivities, while in
the n ⌧ m case, using n is cheapest. With this strategy, the cost for a total Jacobian is in the order of
min(n,m)T .

If one knows the sparsity of J beforehand, the number of required sensitivities can potentially be drasti-
cally reduced. For example, when n = m and J is known to be diagonal, a single sensitivity evaluation
with seed [1, 1, . . .]T su�ces. More generally, a coloring of the column intersection graph of the sparsity
pattern of J provides a small set of seeds usable to obtain the full Jacobian. We denote such coloring as
col(J) and use an existing distance-2 unidirectional algorithm[2].
The potentially dramatic speed-up requires first the sparsity pattern to be obtained. We will assume
for the remainder of this work that we can derive the following bitvector-valued dependency functions[3]
from the original algorithm f :

Forward dependency depfwd
f

(dfwd) 2 Bm, dfwd 2 Bn

Adjoint/reverse dependency depadj
f

(dadj) 2 Bn, dadj 2 Bm,

with B the Boolean set {0, 1}. A zero in the dependency function output means that any seed s with
sparsity as in the input d, when supplied to the corresponding sensitivity function, would result in a zero
sensitivity output in that same location.
A straightforward technique to recover the full sparsity pattern is to seed the dependency functions
with slices of a unit matrix. The run-time ⌧ of the dependency functions is typically orders of magni-
tude smaller than T . However, for large sparse matrices, the sparsity calculation run-time ⌧min(n,m)
could dominate the calculation of the Jacobian. In this work, we propose a hierarchical bitvector-based
technique to recover the sparsity pattern faster for highly sparse cases, as would be the case in e.g.
multiple-shooting based optimal control problem transcriptions.

⇤joris.gillis@esat.kuleuven.be; Joris Gillis is a Doctoral Fellow of the Fund for Scientific Research – Flanders (F.W.O.)
in Belgium.
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The coloring of a sparse Jacobian allows to recover more information from a single sensitivity sweep. A
crucial observation is that it can do exactly the same for dependency sweeps. The proposed algorithm
starts with obtaining the sparsity pattern in a coarse resolution, performing a coloring of this coarse
resolution, and hence potentially reducing the number of fine-grained dependency sweeps needed to
obtain a fine-grained image of the sparsity. The algorithm performs this refinement in a recursive way
until the full sparsity is recovered:

Input : � 2 N,� > 1 subdivision factor
Input : Dimensions n and m of Jacobian
Init : (N,M) (n,m); r  [1]; /* Initialize with a scalar */

while N > 1 and M > 1 do
fwd col(r); adj col(rT ) ; /* Coloring of the coarse pattern */

if adj is cheaper then seed adj ; (N,M,n,m, r) (M,N,m, n, rT ); mode ’adj’;
else seed fwd; mode ’fwd’;
(⌫, µ) dimensions of r; (N,M) (dN/�e, dM/�e);
S  block matrix with ⌫-by-µ empty cells of shape n/(N⌫)-by-m/(Mµ);
foreach s 2 seed do

d block dep
�
mode; s⌦ 1m/(Mµ) ⌦ vM

�
; /* Block sparsity seeding */

d max
�
(1n/N ⌦ hN )d, 1

�
; /* Block sparsity aggregate */

foreach j in nonzero locations of s do
foreach i in nonzero locations of column j of r do

S
i,j

 rows ni/(N⌫) to n(i+ 1)/(N⌫) of d; /* Store result */

end

end

end

if mode = ’adj’ then S  ST ; (N,M,n,m) (M,N,m, n);
r  S;

end
Output: Jacobian sparsity r,

with ⌦ the Kronecker product, 1n a unit matrix of dimension n, vn a column vector of dimension n
with all entries 1, and hn its transpose. block dep splits up its bitmatrix argument into columns, feeds
these to depfwd

f

or depadj
f

depending on the mode, and lumps the results back together to form a new
bitmatrix. For ease of presentation, the above algorithm is restricted for n and m integer powers of �.
The extension for general dimensions, together with a variant for star-coloring for symmetric Jacobians,
was implemented in the CasADi framework[1]. In that framework, 64 dependency sweeps are evaluated
concurrently and hence a subdivision factor of � = 64 was chosen.

The asymptotic run-time is a factor �/(�� 1) worse than the straightforward approach for a fully dense
Jacobian (i.e. worst-case). However, for a block-diagonal n-by-n matrix with a blocksize �, the run-time
is ⌧� log

�

(n), amounting to a change in complexity from O(n) to O(log(n)).
The following table lists run-time results for block-diagonal matrices with blocksize 4-by-4 and shows a
clear benefit for the proposed algorithm in practice:

⌧ Run-time, straightforward approach Run-time, proposed algorithm
n = 256 0.11ms 0.6ms ( 6⌧) 0.9ms ( 8⌧)
n = 16384 328ms 84.0s ( 256⌧) 1.02s ( 3⌧).

[1] Andersson, J., Åkesson, J., and Diehl, M. CasADi – A symbolic package for automatic
di↵erentiation and optimal control. In Recent Advances in Algorithmic Di↵erentiation (Berlin, 2012),
S. Forth, P. Hovland, E. Phipps, J. Utke, and A. Walther, Eds., Lecture Notes in Computational
Science and Engineering, Springer.

[2] Gebremedhin, A. H., Manne, F., and Pothen, A. What color is your Jacobian? Graph coloring
for computing derivatives. SIAM Review 47 (2005), 629–705.

[3] Giering, R., and Kaminski, T. Automatic sparsity detection implemented as a source-to-source
transformation. In Lecture Notes in Computer Science, vol. 3994. Springer Berlin Heidelberg, 2006,
pp. 591–598.
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Compressed threshold pivoting for sparse symmetric indefinite

systems
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Abstract

We are interested in the e�cient and stable factorization of large sparse symmetric indefinite

matrices of full rank. In this talk, we propose two new pivoting strategies that are designed

to significantly reduce the amount of communication required when selecting pivots.

Most algorithms for the factorization of large sparse symmetric indefinite matrices employ

supernodes, that is, a set of consecutive columns having the same (or similar) sparsity pattern

in the factor. By storing only those rows that contain nonzeros, each supernode may be held

as a dense n⇥p trapezoidal matrix. At each stage, a search is made for a pivot from the p⇥p
leading block. If a candidate pivot is found to be unsuitable, its elimination is delayed to a

later supernode, with a guarantee that all pivots will be eliminated in the final supernode.

Such delayed pivots generate additional floating-point operations and storage requirements.

Good scalings and orderings can reduce the number of delayed pivots but not remove the

need for testing pivots for numerical stability.

With the advent of manycore processors and the growing gap between the speed of

communication and computation, many algorithms need to be rewritten to reflect the

changing balance in resource. As pivoting decisions must be taken in a serial fashion, they

are highly sensitive to the latency and speed of any communication or bandwidth costs

incurred. With current algorithms that take into account the entire candidate pivot column

below the diagonal, all threads working on a supernode must endure stop-start parallelism

for every column of the supernode.

We seek to develop e↵ective pivoting strategies that significantly reduce the amount of

communication required by compressing the necessary data into a much smaller matrix

that is then used to select pivots. A provably stable algorithm and a heuristic algorithm

are presented; we refer to these algorithms as compressed threshold pivoting algorithms.

The heuristic algorithm is faster than the provably stable alternative and it more accurately

approximates the behaviour of traditional threshold partial pivoting in terms of modifications

to the pivot sequence. While it can demonstrably fail to control the growth factor for some

pathological examples, in practice, provided it is combined with appropriate scaling and

ordering, it achieves numerical robustness even on the most di�cult practical problems.

Further details are given in [1].

This work was funded by EPSRC grant EP/I013067/1.

[1] J. D. Hogg and J. A. Scott. Compressed threshold pivoting for sparse symmetric indefinite
systems. Technical Report RAL-TR-2013-P-007, Rutherford Appleton Laboratory, 2013.
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Maxflow, min-cuts and multisectors of graphs

Cleve Ashcraft ⇤ Iain Du↵ †

July 7, 2014

Abstract

The vertex bisection problem can be addressed with matching and network flow
techniques. Pothen and Fan [2] and Ashcraft and Liu [1] showed how matching, the
Dulmage-Mendelsohn decomposition, and maxflow allowed one to find one or more
minimal weight vertex separators chosen from a subset of vertices that form a wide
separator.

For unit weight bipartite graphs, we can use matching and Dulmage-Mendelsohn.
When the vertices do not have constant weight, or when the subgraph is not bipartite,
we must solve maxflow over a network to find minimal weight separators.

Here are the mechanics for vertex bisection. The set of candidate vertices form
a wide separator, shown as black vertices in the leftmost figure below. There are
two subdomains, shown as red and green. We associate a source node with the red
subdomain and a sink node with the green subdomain and use these together with the
vertices of the wide separator to construct a network on which we will run our maxflow
algorithms.
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CIRC1330 : w = 8, (S,B,W) = (275,444,611)
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CIRC1330 : B membrane, 
<B,S,W> = <40,460,830>, imb = 0.55, cost = 45.56

Membrane B
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CIRC1330 : W membrane, 
<B,S,W> = <40,607,683>, imb = 0.89, cost = 41.14

Membrane W

Each vertex in the wide separator is identified with two nodes of the network that
are joined by an arc in the network that has finite capacity. Other arcs, representing
edges between wide separator vertices, or connecting the source and sink to vertices,

⇤Livermore Software Technology Corporation, 7374 Las Positas Road, Livermore, CA 94550.
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†STFC Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX UK and CERFACS, Toulouse,
France. iain.duff@stfc.ac.uk
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have infinite capacity. When we have found a maxflow through the network, any arc in
a min-cut must have finite flow and will correspond to a vertex in the wide separator.

We conduct a search from the source to find a min-cut (middle figure above), and
also from the sink (right figure above) to find a possibly di↵erent min-cut. Both induce
a minimal weight vertex separator chosen from vertices in the wide separator. Each
cut induces a partition, and we can choose the better of the two based on the partition
with better balance.

When the two min-cuts are identical the partition is unique. When the min-cuts
are not identical, they trim the wide separator and we call these sets “membrane
separators” each associated with a single subdomain. These membrane separators are
minimal. If we move vertices from the wide separators to the domains, we have a
reduced partition, where the new wide separator is smaller (or no larger) than the
original. The left plot below shows the reduced wide separator where the vertices in
grey will move into the two subdomains.
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CIRC1330 : reduced partition, 
<B,S,W> = <187,460,683>, imb = 0.67, cost = 202.68

Reduced partition
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CIRC1330 : block trim, 
<B,S,W> = <42,634,654>, imb = 0.97, cost = 42.32

Block trimming
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CIRC1330 : max flow augmented capacities, 
<B,S,W> = <41,627,662>, imb = 0.947, cost = 41.54

Augmented capacities

We cannot use our maxflow algorithm again, there is no new information to be given
by the two membrane separators. But we can use other algorithms. Here are two
examples.

• Block trimming creates a minimal separator. Its run time is linear in the width
of the wide separator.

• We augment the capacities to take into account the balance of the partition.
Using these augmented capacities we solve maxflow and generate a second, further
reduced partition. On the right we see that the reduced partition is actually
minimal.

The issues become more interesting and the solutions less satisfactory when we
consider three or more subdomains, where the separator is a multisector, not a bisector.

• Maxflow generates a membrane bisector around each subdomain.

• The union of the membrane bisectors may be a strict subset of the multisector,
i.e., there may be vertices in the multisector adjacent to no domain.

• Maxflow followed by block trimming produces a minimal multisector.

• Maxflow with augmented capacities is also a good alternative, given a proper
definition of augmenting for balance.

This is work in progress.
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Nested dissection with balanced halo

Astrid Casadei1,3, Pierre Ramet1,3, and Jean Roman1,2
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Nested Dissection (ND) has been introduced by A. George in 1973 [2] and is a well-known and very
popular heuristic for sparse matrix ordering to reduce both fill-in and operation count during Cholesky fac-
torization. This method is based on graph partitioning and the basic idea is to build a ”small separator C”
associated with the original matrix in order to split the remaining vertices in two parts A and B of ”almost
equal sizes”. The vertices of the separator C are ordered with the largest indices, and then, the same method
is applied recursively on the two subgraphs induced by A and B. Good separators can be built for classes
of graphs occurring in finite element problems based on meshes which are special cases of bounded density
graphs or more generally of overlap graphs. In d-dimension, such n-node graphs have separators whose size
grows as O(n(d�1)/d). In this presentation, we focus on the cases d = 2 and d = 3 which correspond to the
most interesting practical cases for numerical scientific applications. ND has been implemented by graph
partitioners such as MeTiS or Scotch[6].

Moreover, ND is based on a divide and conquer approach and is also very well suited to maximize the
number of independent computation tasks for parallel implementations of direct solvers. Then, by using the
block data structure induced by the partition of separators in the original graph, very e�cient parallel block
solvers have been designed and implemented according to supernodal or multifrontal approaches. To name
a few, one can cite MUMPS, PaStiX and SuperLU. However, if we examine precisely the complexity
analysis for the estimation of asymptotic bounds for fill-in or operation count when using ND ordering[5],
we can notice that the size of the halo of the separated subgraphs (set of external vertices adjacent to the
subgraphs and previously ordered) play a crucial role in the asymptotic behavior achieved. The minimization
of the halo is in fact never considered in the context of standard graph partitioning and therefore in sparse
direct factorization studies.

In this presentation, we will focus on hybrid solvers combining direct and iterative methods and based on
domain decomposition and Schur complement approaches. The goal is to provide robustness similar to sparse
direct solvers, but memory usage more similar to preconditioned iterative solvers. Several sparse solvers like
HIPS, MaPHyS, PDSLIN and ShyLU implement di↵erent versions of this hybridification principle.

In this context, the computational cost associated to each subdomain for which a sparse direct elimi-
nation based on ND ordering is carried out, as well as the computational cost of the iterative part of the
hybrid solver, critically depend on the halo size of the subdomains. However, to our knowledge, there does
not exist a domain decomposition tool leading to a good balancing of both the internal node set size and the
halo node size. Standard partitioning techniques, even by using k-way partitioning approach, which intends
to construct directly a domain decomposition of a graph in k sets of independent vertices[4], do not lead in
general to good results for the two coupled criteria, and for general irregular graphs coming from real-life
scientific applications.
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For this purpose, we revisit the original algorithm introduced by Lipton, Rose and Tarjan [5] in 1979
which performed the recursion for nested dissection in a di↵erent manner: at each level, we apply recursively
the method to the subgraphs induced by A[C on one hand, and B[C on the other hand. In these subgraphs,
vertices already ordered (and belonging to previous separators) are the halo vertices. The partition of these
subgraphs will be performed with three objectives: balancing of the two new parts A0 and B0, balancing of
the halo vertices in these parts A0 and B0 and minimizing the size of the separator C 0.

We implement this strategy in the Scotch partitioner. Scotch strategy is based on the multilevel
method[3] which consists in three main steps: the (sub)graph is coarsened multiple times until it becomes
small enough, then an algorithm called greedy graph growing is applied on the coarsest graph to find a good
separator, and finally the graph is uncoarsened, projecting at each level the coarse separator on a finer graph
and refining it using the Fiduccia-Mattheyses algorithm[1].

We have adapted the multilevel framework of Scotch in order to take into account the halo vertices from
orginal to coarsest graph. Moreover, we have worked on two variants of greedy graph growing. The first one
is called double greedy graph growing (DG). Its principle is to pick two seed vertices as far as possible among
the halo, and to make parts A and B grow from them, with attention paid to keep halo balanced among
the growing parts. The second approach, called halo-first greedy graph growing (HF), works in a first stage
on the sole halo graph, finding a separator of it. Once it is done, it defines the two halo parts Ah and Bh

as two sets of seeds and make these sets grow in the whole graph to build A and B. Finally, we have also
changed the Fiduccia-Mattheyses refinement algorithm (FM) in order to preserve the good balancing in the
finer graphs. Our algorithms will be explained more deeply during the presentation.

We made tests on a pool of 30 graphs from 140,000 to over 10 millions vertices. We measured both halo
and domain interior imbalance. On 16 domains, our algorithms achieve an average gain of 39% on the halo
imbalance, while not degrading interior imbalance. We increased the number of domains up to 512 on our
biggest graphs and still got very good gains, in particular with HF. More detailed results will be given in
the presentation.
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Adaptive FMM for fractal sets

key words: adaptive fast multipole method, fractal set, fractal dimension, linear complexity

Hadi Pouransari AND Eric Darve

In the realm of scientific computing there are variety of situations where calculation of pairwise
interaction among N points is of interest. Consider N particles (e.g., N masses) are located
at positions {xi} in some metric space M, and the net contribution of these particles at some
observation point y is calculated by a sum of the form:

f(y) =
NX

i=1

K(xi, y)�i (1)

where K is some M⇥M ! R function called kernel, and �i is the intensity of the i’th particle.
This well-studied problem has broad application in various fields such as molecular dynamics,

fluid dynamics, celestial mechanics, and plasma physics. More broadly, the problem of computing
N

2 interactions amongN points orN variables appears in the boundary element methods, problems
involving radial basis functions or in probability theory to describe dense covariance matrices.

The fast multipole formulation introduced by Greengard and Rokhlin approximates a matrix-
vector multiplication of the above form with desired accuracy in O(N) time. Several works have
extended the algorithm by studying di↵erent kernels, analyzing the approximation error, introduc-
ing parallel implementation techniques, etc. [1]

The adaptive FMM refers to the case where the particle distribution, and the corresponding
hierarchical tree, are not uniform. The adaptive FMM and various aspects of its parallel imple-
mentation on di↵erent machines are an ongoing topic of research. [2]

It is known that the adaptive FMM algorithm maintains the O(N) complexity irrespective of
the point distribution [3]. This requires a modification to the original FMM. We will present a
new proof for the linear complexity of the adaptive FMM for any distribution of the points. This
also will make it apparent what modifications to the original FMM are required to ensure O(N)
complexity for general particle distributions.

Previous works have limited their analysis to very specific point distributions. The key point
essentially is the manner in which points are distributed, in a non-uniform adaptive setting, as N
goes to infinity. In the uniform case, the issue of increasing N presents no particular di�culty. We
can simply increase the density of points uniformly, and study how accuracy and parameters in
the FMM are adjusted as a function of N . However, the non-uniform case is more di�cult. One
essential point is describing the process of adding points so that N ! 1. The adaptive test cases
considered by most previous works fall broadly into the following categories:

1. A small number of subregions are picked (e.g., n spheres) and points are progressively added to
each subregion by distributing them with some smooth distribution (e.g., uniform, Gaussian,
etc.) inside each region. Then the diameter and distance between regions are varied. [2]

2. Manifolds are considered, that is surfaces or lines. Then points are added on these manifolds
again using a randomly uniform distribution.

3. Points are chosen such that they accumulate at some location (e.g., xi = 1/i2).

Complex non-adaptive cases have also been considered, but in those particular cases N was fixed.
All these cases represent only a small set of possible situations. There are many more ways to

create non-uniform distribution of points. We focused on the third case, in which points accumulate.
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However we extended this situation to points that essentially accumulate at an infinite number of
locations. This naturally leads to fractal sets.

There are several practical problems involving fractal sets. Notoriously models of the universe,
and antennas with fractal geometries that take advantage of the space-filling properties of fractal
curves. In our numerical benchmarks we have considered the generalized Cantor sets that are
constructed based on a recursive definition. The points xi are generated by going through k

iterations of this recursive process. As k ! 1, N goes to infinity in a well-defined manner.
Fractal sets are often characterized in terms of their dimension, for example the fractal dimen-

sion, box-counting dimension, or Hausdor↵ dimension. We studied how parameters in the FMM
such as the optimum total number of levels or the maximum number of points per leaf cells can be
optimized as a function of the dimension of the set. We considered dimensions ranging continuously
from 1 to 3, and exponential dependence of cost on the dimension is presented. Other details of
the distribution appear to be less important. Our analysis is based both on mathematical bounds
and estimates, as well as numerical benchmarks and investigations.

Theoretical estimates for optimal parameters can be found for uniform distributions, while, for
a generic adaptive distribution, not much is known. Most implementations, if not all, manually
or heuristically tune parameters to get the optimum values of parameters. In order to analyze
arbitrary point distributions, we have characterized and categorized di↵erent distributions. We
organized all possible fractal point distributions in terms of the fractal dimension of the set. We
focused on sets for which the box-counting dimension is defined, which is the case for self-similar
fractal sets for example. Note that the box-counting dimension cannot be defined for all sets. The
Hausdor↵ dimension always exists but it cannot be directly related to the FMM (because of the
oct-tree decomposition of the FMM) so that the Hausdor↵ dimension is in general not a good
parameter to consider when optimizing FMM parameters. We will discuss these technical points in
more details. Specifically in our numerical benchmarks, one of our main examples is a triple tensor
product of generalized Cantor sets, which provide all range of box-counting dimensions varying
continuously from 1 to 3 (in this case box counting is the same as Hausdor↵).

We also present a new strategy to build the adaptive tree. We focused on the criterion used to
determine whether a cell needs to be further subdivided or not. The original bisection algorithm
uses one threshold value for subdivision, which is the maximum number of particles per leaf node.
However, we used two threshold values simultaneously, namely, the maximum level of the tree, and
the maximum number of particles per leaf nodes. Essentially, by tuning parameters in the dual
threshold method we can transform some expensive operations such as M2P (multipole to particle)
and P2L (particle to local) to a cheaper operation M2L (multipole to local). Better performance
of the proposed scheme is demonstrated.

The aforementioned particle distributions were studied along with a detailed counting of the
number of floating point operations. The calculation begins with some standard cases (e.g., uniform,
spiral, etc.), and then extends to general fractal sets.
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In this abstract, we present a new method, called the multicenter method, that computes e�ciently a long range
force in a N body problem. Being kernel-independent, it is more general than the well known multipole method. The
multicenter method is based upon the idea of defining a subset of sources which we call “centers” and computing a
weighted contribution of these centers only. Unlike the multipole method, we have several centers and we compute
a polynomial of degree 1 (the number of selected sources depends on the expected accuracy). In this abstract, we
will present some of the linear algebra issues raised by the multicenter method : how the centers and the associated
weights are defined. We will also present some results on the computation of the electromagnetic field lines which was
one of the physical contexts for this work.

1 Define the centers

Let us define a set of n sources K such that the sources lie inside a ball Bc,r (c being the center and r the radius of
the ball) and a set T of n target points distributed on a sphere Sc,↵r with ↵ 2 R, ↵ > 1, ↵ is the separation criterion
between the sets K and T . The number of target points should be greater than the number of source points.

The idea is to compute the matrix of the kernels between the source points and some target points far away enough
from the source. More precisely, we compute the matrix AT ,K of the kernel between the 2 sets of points AT ,K(i, j) =
k(xTi , xKj ) and evaluate its rank in order to determine the leading source points i.e. the centers. When the distance
between the sets K and T increases, the rank of AT ,K decreases, therefore, we need fewer source points to get a good
representation of the entire source set. In order to find those points, we perform a QR factorization with column
pivoting of AT ,K :

AT ,K = QT ,T


RK,K

0T \K,K

�
⇧T
K,K (1)

where Q is orthogonal, R is upper triangular and ⇧ is a permutation matrix such that :

|r1,1| � |r2,2| � · · · � |rnK ,nK | and8i |ri,i| � ||Ri:j,j ||2 j = i + 1, . . . , nK (2)

Let us define a low-rank threshold ✏, the rank of AT ,K is given by :

r(✏) = min(r 2 N : kRr,r:nKk2 < ✏ max(kRi,i:nKk2)i=1,...,nK ) (3)

The leading r columns of AT ,K⇧K,K approximate AT ,K to an accuracy O(�r+1(A)). Let’s define the matrix re-
stricted to the leading columns r, AT ,C : AT ,K⇧K,K = [AT ,CAT ,K\C ]. The r first points of K define the r centers.
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Figure 1: Singular values of AT ,K

As a first simple example, we consider a set of source
points K homogeneously distributed inside a ball and a
set of target points T homogeneously distributed on a
sphere such that Rsphere = ↵Rball (↵ = 1, 10, 100, 1000
for the blue lines, the red ones, the green ones and the
black ones respectively). Figure (1) shows the singular
values of the kernel matrix AT ,K (represented by ⌥) as
well as the values |rii| resulting from the RRQR of AT ,K
(represented by .), see equation (1).
The singular values are well separated as long as the set
of points T is far enough from the source points set. De-
pending on the tolerance ✏, we obtain either 1, 4, 9, 16...

centers. The values |rii| provided by (1) follow the same behaviour than the singular values except from the clustering
which is not as good.
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2 Define the weights

As seen before, the rank of AT ,K allows to define a subset of the source points : the centers. Once the centers are
defined, the correlation between them and the other source points are defined by a ”barycentric matrix”. In order to
minimize the error, the barycentric BC,K matrix is defined as follows :

AT ,K⇧K,K =
⇥
QT ,C QT ,K\C

⇤ 
RC,C RC,K\C

0K\C,C RK\C,K\C

�
(4)

⇡
⇥
QT ,CRC,C QT ,CRC,K\C

⇤
(5)

= QT ,CRC,C
⇥
IC,C R�1

C,CRC,K\C
⇤

(6)

= AT ,CBC,K (7)

where BC,K =
h
IC,C bRC,K\C

i
⌘

⇥
IC,C R�1

C,CRC,K\C
⇤

By summing up the row entries of BC,K, we obtain the weight associated to each center. If the matrix AT ,K were full
rank, then there would be as many centers as source points in set K and the barycentric matrix BC,K would be the
identity matrix. To compute the resulting long-range force at one point P far away from the sources, we only need to
compute the sum of the weighted interactions between P and the centers.

3 Results

In this section, we compare 3 methods : the multipole method, the multicenter method and the direct method which
consists in taking into account the contributions of each source. Unlike the multipole and the multicenter methods,
the direct method does not do any approximation and, therefore, constitues our reference.
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Figure 2: Direct method: �, multipole method:
⌥, multicenter method: ⇤

Let’s consider a conductor formed by 3 rods and a plate. An electric
current circulates into the 3 tubes which induces a current in the
plate. An electromagnetic field is generated around the 3 tubes. We
want to visualize a magnetic field line close to the rods. To do that,
we need to solve the magnetic field line equations which requires to
compute the magnetic field ~B. ~B is the sum of the contributions of
each source point which can be computed either directly or by an
approximation method (FMM or multicenter). Figure (2) shows one
of the magnetic field lines generated around the rods on the left hand
side. On the right hand side, only the magnetic field line is repre-
sented, the results given by the three methods are placed on top of
each other. Both multipole and multicenter methods ensure a rela-
tively good accuracy, the results are comparable to those obtained
with the direct method.
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Figure 3: Multicenter versus FMM

For the next problem, we want to study the interaction
between two sets of points instead of one set of points
and one point only. It is of importance when it comes to
build the BEM-FEM system to solve for the electromag-
netic fields for example. The BEM system is dense and
solved through an iterative method such as GMRES or
PCG, therefore using either the FMM or the multicenter
method can be useful to accelerate the assembly of the
matrix as well as the operations for the matrix-vector
product.
Here, we consider 2 cubes of 1000 points each. We want
to compute the kernel matrix between those cubes with
both methods and compare their cost in terms of matrix-
vector product. Figure (3) shows the relative error induced on the kernel matrix against the number of entries in the
matrix for di↵erent separations (12, 20, 50, 200 for the blues lines, the red ones, the green ones and the pink ones
respectively). The dashed lines correspond to the multicenter method whereas the solid lines represent the FMM.
For a given distance between the cubes, the multicenter method requires less entries than the FMM to reach the
same accuracy on the kernel matrix therefore the low rank representation obtained is better and the operation for the
matrix-vector multiply will be more e�cient.
In order to improve the e�ciency of the matrix-vector product, following the example of the FMM, we intend to add
the multilevel aspect to the multicenter method. Work is in progress.
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Title: Computing an estimate of Trace(𝐴−1) using matrix sparsification and hierarchical probing. 

Jesse Laeuchli and Andreas Stathopoulos  

 One problem that occurs frequently in numerical linear algebra is the computation of the 

functional of matrices that are too large to calculate directly. One such functional is the trace of the 

inverse of A, which occurs frequently in scientific computation.  Several approaches have been proposed 

for this problem before.  In the case of small matrices, a factorization approach can solve the problem 

exactly, but this becomes impractical for many matrices of interest, due to size. Another approach that 

can be taken is probing. Many matrices exhibit a relationship between the non-zero structure of 𝐴𝑘  and 

𝐴−1 after a dropping of some tolerance has been applied. As k increases, the values that must be 

dropped in 𝐴−1 for the non-zero structures to match decrease as well.  Probing takes advantage of this 

structure by coloring 𝐴𝑘 . By permuting 𝐴𝑘  so that nodes that share a color are adjacent, a block diagonal 

structure consisting of zeros surrounding the nodes sharing the same color is created. The value of these 

nodes can then be recovered by probing, that is, by creating a probing vector consisting of all ones for 

nodes sharing the same color, and zeros everywhere else. Because of the block diagonal structure 

created by the permutation, the value of the diagonals can be recovered using only n vectors, where n is 

the number of colors used to color 𝐴𝑘 . Since the structure of 𝐴−1 approximates the structure of 𝐴𝑘 , if an 

iterative solver is used, these probing vectors can also be used to recover the trace of 𝐴−1. 

 This approach has two major shortcomings. First, since the non-zero structure of 𝐴−1 only 

approximates that of 𝐴𝑘 , applying the coloring of 𝐴𝑘  to 𝐴−1 will likely yield a coloring that is not exactly 

correct for 𝐴−1, leading to errors in the computed value of the trace, since the block surrounding the 

diagonals being probed in 𝐴−1 will not be all zero. Further, is not clear how large k must be in order to 

obtain a desired level of accuracy for the trace estimation.  However, if after computing a trace 

approximation with a given k the accuracy of the trace computation is too low, a higher k must be 

selected, and the approximation recomputed. With classical probing, this means that the results of all 

the previously preformed solves must be discarded, since the intersection between sets of probing 

vectors for the two levels of colors is likely to be empty. The other major shortcoming of this method is 

that for matrices with an associated graph which is highly connected, 𝐴𝑘  is likely to become dense very 

quickly. This means that 𝐴𝑘  will contain many colors, which will require too many probing vectors to be 

practical. 

 Our research addresses both these issues.  First, we attempt to deal with the problem of having 

to throw out all previously computed probing vector results when proceeding to a higher value of k. This 

can be addressed by using probing using vectors that span the same space as the original probing 

vectors, but are subsets of each other.  One such basis is the kronecker product of DFTs.  Using these 

matrices as building blocks, it is possible to create a set of probing vectors that work for two different 

coloring levels, and are nested subsets of each other. The drawback to this method is that in order for 

this set of probing vectors to be applicable, the generated colors must have two properties. First, they 

must be hierarchical, that is, if a pair of colors did not share a color at a previous level k, they cannot 

later share a color at level k+1. Secondly, each color at the k-th level must split into the same number of 

colors at the k+1th level.  In general, two colors independently generated colorings for levels k and k+1, 

will not have either of these properties.  
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Since this property does not in general hold for two arbitrary colorings, we modify the colorings   
created for two different levels, k and k+1, in a post processing stage.  This is done in two steps, first by 
examining where every color block ends for the coloring at level k, and then splitting any blocks that 
cross that boundary in the k+1th coloring. This ensures that no nodes that had a different color at level 
k, share a color at the next level. After this, each block of color in the k level coloring is iterated over in 
order to compute the maximum number of colors that block is split into. Then additional colors are 
created in the k+1th level coloring by splitting colors apart, until the number of colors each block from 
the kth level is split into are the same. This approach fixes the problem of not being able to reuse any of 
the previous probing vectors, but it creates more colors then the minimum needed. If the number of 
colors is already too large, as in the case of a strongly connected matrix, this algorithm makes the 
problem worse.  

To combat this problem, we apply matrix sparsifcation.  While we are still experimenting with 
which sparsification approach is best, we have developed one method that yields useful results. For 
each block at the k-th level, we examine all connections between nodes that appear at the k+1th level, 
and sort them by weight. Each edge is added into our sparse representation of the block until a limit is 
reached. The resultant coloring is then forced to be hierarchical in the manner previously described. The 
trace approximation computed using this coloring will not be as good as if the actual 𝐴𝑘+1 coloring were 
used, but will be better than the approximation for 𝐴𝑘 , and require fewer uses of the solver, since there 
are fewer probing vectors.  Further, as the number of colors that are allowed in each block is increased, 
the results begin to approximate 𝐴𝑘+1 better, allowing for control over the tradeoff between sparsity 
and accuracy.  
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Parallel distributed-memory simplex for large-scale

stochastic LP problems

J. A. J. Hall M. Lubin

19 June 2014

Abstract

Although parallel e�ciency using the revised simplex method has
not been achieved for general large sparse LP problems, this talk will
show how the particular structure of stochastic LP problems gives
scope for e�cient data parallelism. Issues relating to algorithmic de-
sign and data distribution will be discussed. Results obtained on a
large cluster and supercomputer using a distributed-memory imple-
mentation are presented for stochastic LP problems with up to 108

variables and constraints.
Keywords: Simplex method; Parallel computing; Stochastic opti-

mization; Block-angular
ACM Classification: 90C05; 90C15; 68W10

1 Introduction

In this talk, we present a parallel solution procedure based on the revised
simplex method for linear programming (LP) problems with a special struc-
ture of the form

minimize c

T
0 x0 + c

T
1 x1 + c

T
2 x2 + . . . + c

T
NxN

subject to Ax0 = b0,
T1x0 + W1x1 = b1,
T2x0 + W2x2 = b2,

...
. . .

...
TNx0 + WNxN = bN ,
x0 � 0, x1 � 0, x2 � 0, . . . , xN � 0.

Very large instances of such problems have been considered to be too
big to solve with the simplex method; instead, decomposition approaches
based on Benders decomposition or, more recently, interior-point methods
are generally used. However, these approaches do not provide optimal ba-
sic solutions which allow for the e�cient hot-starts required, for example,
in a branch-and-bound context, and can provide important sensitivity in-
formation. Our approach exploits the dual block-angular structure of these
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problems inside the linear algebra of the revised simplex method in a manner
suitable for high-performance distributed-memory clusters or supercomput-
ers. While the focus is on stochastic LPs, the work is applicable to all
problems with a dual block-angular structure. Our implementation is com-
petitive in serial with highly e�cient sparsity-exploiting simplex codes and
achieves parallel e�ciency when using up to 128 cores and runs up to 100
times faster than the leading open-source serial solver. Additionally, very
large problems with hundreds of millions of variables have been successfully
solved to optimality.

2 Data parallel linear algebra

The structure of the basis matrix B and matrix N corresponding to the
nonbasic variables permits distribution of the data and computation relating
to solution of systems of equations involving B and products involving N .
Minimal duplicated computation leads to relatively little data transfer being
required. The numerical linear algebra is was developed from the COIN-OR
utilities and is e�cient with respect to the hyper-sparsity present in the
problems. Thus the implementation is comparable with world-class open
source revised simplex solvers.

3 Test problems, results and conclusions

The principal source of test problems are deterministic LP problems of sce-
narios resulting from sampling a minimum expected cost stochastic model
of wind power generation in the state of Illinois. Increasing the number of
scenarios yields ever larger deterministic LP problems, allowing a range of
experiments to be performed on two distributed-memory machines: a 320-
node cluster of dual quad-core Xeon processors with an InfiniBand QDR
interconnect and a Blue Gene/P (BG/P) supercomputer with 40,960 nodes
of quad-core 850 MHz PowerPC processors. The nature of the scenario sam-
pling allows a bootstrapping approach to be used to deduce an advanced ini-
tial basis, considerably reducing the solution time which would be required
otherwise. The largest instance had 463,113,276 variables and 486,899,712
constraints and was solved to optimality: possibly the largest LP ever solved
using the simplex method.

This is the largest-scale parallel sparsity-exploiting revised simplex im-
plementation that has been developed to date and the first truly distributed
solver. It is built on novel analysis of the linear algebra for dual block-
angular LP problems when solved by using the revised simplex method and
a novel parallel scheme for applying product-form updates.

This work was awarded the COIN-OR INFORMS 2013 Cup.
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Good connectivity of the inter-processor network is nec-
essary for e�cient parallel algorithms. Insu�cient graph-
expansion of the network provably slows down specific par-
allel algorithms that are communication intensive. While
parallel algorithms that ignore network topology can suf-
fer from contention along network links, for particular com-
binations of computations and network topologies, costly
network contention may be inevitable, even for optimally
designed algorithms. In this paper we obtain novel lower
bounds on this contention cost.

Most previous communication cost lower bounds for par-
allel algorithms utilize per-processor analysis. That is, the
lower bounds establish that some processor must communi-
cate a given amount of data. These include classical ma-
trix multiply, direct and iterative linear algebra algorithms,
FFT, Strassen and Strassen-like fast algorithms, graph re-
lated algorithms, N -body, sorting, and others (cf. [1, 14, 12,
18, 15, 5, 3, 8, 11, 2, 16, 20, 10, 19]). By considering the
network graphs, we introduce communication lower bounds
for certain computations and networks that are tighter than
those previously known. We translate per-processor band-
width cost lower bounds to contention cost lower bounds by
bounding the communication needs between a subset of pro-
cessors and the rest of the processors for a given parallel algo-
rithm (defined by a computation graph and work assignment
to the processors), and divide by the available bandwidth,
namely the words that the network allows to communicate
simultaneously between the subset and the rest of the graph.

Contention Lower Bound. Consider a parallel algo-
rithm run on a distributed-memory machine with P pro-
cessors and connected via network graph G

Net

. The per-

processor bandwidth cost W
proc

is the maximum over pro-
cessors 1  p  P of the number of words sent or received
by processor p. Further, the contention cost W

link

is the
maximum over edges e of G

Net

of the number of words com-
municated along e.

We prove the lower bound using graph expansion analysis.
Recall that the small set expansion h

s

(G) of a graph G =
(V,E) is the minimum normalized number of edges leaving

⇤Current a�liation: Google Inc.
†This work was done while at UC Berkeley.

a set of vertices of size at most s. For s  |V (G)|/2, we have

h
s

(G) = min
S✓V (G),|S|s

|E(S, V \ S)|
|E(S)|

where E(S) is the set of edges that have at least one end-
point in vertex subset S and E(S, V \ S) is the set of edges
with only one endpoint in S. In this note, we provide the
contention cost lower bound for regular networks:

Theorem 1. Consider a distributed-memory machine with

P processors, each with local memory of size M , and a d-
regular inter-processor network graph G

Net

. Given a compu-

tation with input and output data size N , and lower bound on

the per-processor bandwidth cost W
proc

= W
proc

(P,M,N),
for all algorithms that distribute the workload so that ev-

ery processor performs ⌦(1/P ) of the computation, and dis-

tributing the input and output data such that every proces-

sor stores O(1/P ) of the data, the contention cost W
link

=
W

link

(P,M,N) is bounded below by

W
link

(P,M,N) � max
t2T

W
proc

(P/t,M · t,N)
d · t · h

t

(G
Net

)
, where

T = {t : 1  t  P/2, 9S ✓ V s.t. |S| = t and

|E(S, V \ S)| = ⇥(h
t

(G
Net

) · |E(S)|)}.
Proof. Partition the P processors into P/t subsets of

size t 2 T (w.l.o.g., P is divisible by t), where at least one of
the subsets s

t

is connected to the rest of the graph with at
most d · t · h

t

(G
Net

) edges. The existence of such a set s
t

is
guaranteed by the definition of h

s

(G
Net

) and T . Then s
t

has
a total of M · t local memory. By the workload distribution
assumption, the processors in s

t

perform a fraction ⌦(t/P )
of the flops, and by the data distribution assumption, s

t

has
local access to fraction O(t/P ) of the input/output. Hence
we can emulate this computation by a parallel machine with
P/t processors, each with M · t local memory, and apply the
corresponding per-processor lower bound deducing that the
processors in s

t

require at least W
proc

(P/t,M ·t,N) words to
be sent/received to the processors outside s

t

throughout the
running of the algorithm. At most O(d · t · h

t

(G
Net

)) edges
connect s

t

to the rest of the graph. Hence at least one edge

communicates at least ⌦
⇣

W

proc

(P/t,M·t,N)

d·t·ht(GNet)

⌘
words. As t is a

free parameter, we can pick it to maximize W
link

(P,M,N),
and the theorem follows.

Note that the memory-independent contention lower bound,
W

link

= W
link

(P,N), follows.
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Applications. We next demonstrate our bounds for di-
rect dense linear algebra algorithms (including classical ma-
trix multiplication) and fast matrix multiplication algorithms
(such as Strassen’s algorithm) on D-dimensional tori net-
works. Table 1 summarizes the contention bounds obtained
by plugging in memory-dependent and memory-independent
lower bounds for matrix multiplication and other linear alge-
bra computations from [15, 6, 3] into Theorem 1 and using
the properties of D-dimensional tori. The D-dimensional
torus graph G

Net

has degree d = 2D and small set expan-

sion guarantee of h
s

(G
Net

) = ⇥
⇣
s�1/D

⌘
, see [9]. We treat

D here as a constant. Table 1 summarizes the bounds.

Mem. Dep. Mem. Indep.

Direct W
proc

⌦
⇣

n

3

PM

1/2

⌘
⌦
⇣

n

2

P

2/3

⌘

Linear
Algebra W

link

⌦
⇣

n

3

P

3/2�1/D
M

1/2

⌘
⌦
⇣

n

2

P

1�1/D

⌘

Strassen
W

proc

⌦
⇣

n

!
0

PM

!
0

/2�1

⌘
⌦
⇣

n

2

P

2/!
0

⌘
and

Strassen
W

link

⌦
⇣

n

!
0

P

!
0

/2�1/D
M

!
0

/2�1

⌘
⌦
⇣

n

2

P

1�1/D

⌘
-like

Table 1: Per-processor bounds (W
proc

) ([15, 5, 3,

6]) vs. the new contention bounds (W
link

) on a D-

dimensional torus for classical linear algebra and fast

matrix multiplication (where !
0

is the exponent of

the computational cost).

Note that of the two contention bounds, the memory-
independent one always dominates in these cases:

W = ⌦

✓
n!

0

P!

0

/2�1/DM!

0

/2�1

+
n2

P 1�1/D

◆
= ⌦

✓
n2

P 1�1/D

◆
,

by the fact that P � P
min

� n2/M , where !
0

is the expo-
nent of the computational cost.

Depending on the dimension of the torus D and number of
processors, the tightest bound may be one of the previously
known per-processor bounds or the memory-independent con-
tention bound. See Figure 1 for the case of Strassen bounds
on torus networks of various dimensions. For example, D =
3 is enough for perfect strong scaling of classical matmul but
Strassen may need D = 4. Recall that perfect strong scaling
is when, for a constant problem size, doubling the number
of processors halves the runtime. Note that (see Figure 1) a
contention-dominated range has a smaller region of perfect
strong scaling.

Future Research. In this work, we exclusively address
link contention bounds for a subset of direct network topolo-
gies (the analysis of tori extends to meshes, and can be ex-
tended to hypercubes). We believe results for certain indi-
rect network topologies (e.g. fat trees) should follow, though
this requires integrating router nodes into the model.

We focus here on a subset of linear algebraic computa-
tions. Our results extend to further computations such as
the O(n2) n-body problem, FFT/sorting and programs that
access arrays with a�ne expressions.

A network may have expansion su�ciently large to pre-
clude the use of our contention bound on a given computa-
tion, yet the contention may still dominate the communica-
tion cost. This calls for further study on how well computa-
tions and networks match each other. Similar questions have
been addressed by Leiserson and others [7, 13, 17], and had
a large impact on the design of supercomputer networks.

Figure 1: Communication bounds for Strassen’s al-

gorithm on D-dim. tori. Both plots share a log-scale

x-axis in P . The upper plot illustrates the dominat-

ing bound, and is linear on the y-axis. The y-axis

of the lower plot is log-scale, and horizontal lines

represent perfect strong scaling.

Some parallel algorithms are network aware, and attain
the per-processor communication lower bounds, when net-
work graphs allow it (cf. [21] for classical matrix multipli-
cation on 3D torus). Many algorithms are communication
optimal when all-to-all connectivity is assumed, but their
performance on other topologies has not yet been studied.
Are there algorithms that attain the communication lower
bounds for any realistic network graph (either by auto tun-
ing, or by network-topology-oblivious tools)?
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GENERALISED VECTORISATION FOR SPARSE MATRIX–VECTOR

MULTIPLICATION

A. N. YZELMAN

This work explores the various ways in which a sparse matrix–vector (SpMV) multiplication may
be vectorised. It arrives at a generalised data structure for sparse matrices that supports e�cient
vectorisation. This novel data structure generalises three earlier well-known data structures for
sparse computations: the Blocked CRS format, the (sliced) ELLPACK format, and formats relying
on segmented scans. All three formats were first explored in the 1990s, with Blocked CRS being
used for CPU-based calculations, while ELLPACK and formats using segmented scans have seen
renewed interest within GPU computing.

The new data structure generalises all three formats, and is relevant for sparse computations on
modern architectures, since most new hardware supports vectorisation for increasingly wide vector
registers. Normally, the use of vectorisation for sparse computations is limited due to bandwidth
constraints. In cases where computations are limited by memory latencies instead of memory
bandwidth, however, vectorisation can still help performance. Such an e↵ort is made possible by
a pair of vector instructions newly introduced with the Intel Xeon Phi instruction set: the gather
and the scatter instructions.

The resulting strategy is consistent with the high-level requirements of sparse matrix compu-
tations on modern CPU-based hardware [YR14], and still allows for additional optimisation such
as segmented scans and bitmasking.

Parallelisation. To illustrate the new approach, the vectorised SpMV is used within the one-
dimensional method of Yzelman and Roose [YR14]. This parallel scheme uses a load-balanced row
distribution so that the matrix rows of A are split in p contiguous parts, where p is the number of
available hardware threads, such that each part contains roughly the same amount of nonzeroes.
The output vector is divided in p parts as well, corresponding to the distribution of A. Local parts
of A and y are stored separately in memory so to explicitly control data locality, while the input
vector is stored in a single contiguous chunk.

Thread-local versions of A are subdivided into relatively small blocks. Blocks are ordered ac-
cording to the Hilbert curve, while nonzeroes within each block retain a row-major order. This
ensures a cache-oblivious traversal that benefits data reuse on the high-level caches, while min-
imising the amount of memory required for data storage.

The parallelisation is easily prototyped using MulticoreBSP for C. By nature of the 1D row-wise
distribution, this parallel implementation of the SpMV multiplication does not require any explicit
communication or synchronisation.

Generalised vectorisation. To use vector instructions, l elements must be loaded from main
memory into vector registers first. Streaming loads, where l contiguous values are loaded into a
register from a cache-aligned memory location, are the most e�cient in terms of throughput and
latency hiding. Streaming loads cannot be used in case of indirect addressing, however; this while
indirect addressing is the norm for unstructured sparse computations.

The new gather operation provides a middle way: given a vector v and an index array i =
(i0, . . . , il�1), a gather on v and i loads (vi0 , . . . , vil�1) into a vector register. The scatter operates
on an input register and an index array to perform the inverse of the gather operation.

These gather/scatters are employed within the following vectorised SpMV multiplication kernel,
which operates on p⇥ q blocks of nonzeroes, with pq = l:

• for each block do
• load the relative position (i, j) of the current block within A;
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Figure 1. The results of the proposed 2D vectorisation of the SpMV multipli-
cation using various matrices on the Intel Xeon Phi architecture.

• stream the l nonzeroes corresponding to this block into a vector register V , stream the
row-wise o↵set array I of size p, and stream the column-wise o↵set array J of size q;

• gather the (possibly non-disjoint) elements from the output vector y using I into a
vector register Y , and gather elements from x using J into a vector register X;

• do a vectorised Y = Y + V ·X, scatter Y according to I.

When p > 1 and q > 1, this multiplication scheme is, like Blocked CRS, a 2D vectorisation
method. Otherwise, the resulting scheme is 1D and is equivalent to (sliced) ELLPACK (for q = 1)
or SpMVs using segmented reductions (for p = 1). Unlike Blocked CRS and ELLPACK, the
indices in I and J need not be contiguous thanks to the use of the gather and scatter primitives.
Segmented scans do allow for non-contiguous J but require processing of an additional bitmasking
array, which the proposed vectorised scheme does not require. The proposed vectorisation strategy
hence generalises all three prior sparse matrix data structures.

The newly proposed method requires fill-in to ensure that the input nonzeroes in the given order
fit precisely into successive p⇥ q blocks; this was also required for Blocked CRS and ELLPACK,
but was not required for methods based on segmented reductions. There, instead of filling in
explicit zeroes, a bitmasking array in e↵ect notes which nonzeroes are contained in a single block.
Such bitmasking, however, was observed to be e↵ective only on specific well-structured matrices;
the proposed strategy avoids this issue entirely.

Results. The proposed 2D vectorised method for SpMV multiplication is highly e↵ective on the
Intel Xeon Phi. This relatively new architecture relies heavily on the use of many threads as
well as the use of wide vector registers, supporting 240 hardware threads (p = 240) and storing 8
double-precision floating point values in a single register (l = 8). Figure 1 shows of the attained
performance of the new SpMV strategy for di↵erent matrices and di↵erent block sizes, while the
1x1 category corresponds to same parallel SpMV method but without using vectorisation (l = 1).

The use of the proposed data structure is compared to the state-of-the-art performance on
other architectures as well. Its use with other sparse matrix operations, such as the sparse matrix
powers kernel, is also discussed.
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Abstract

We describe a new parallel sparse matrix-matrix

multiplication algorithm in shared memory using a

quadtree decomposition. Our implementation is nearly as

fast as the best sequential method on one core, and scales

quite well to multiple cores.

1 Introduction

Sparse matrix-matrix multiplication (or SpGEMM ) is a
key primitive in some graph algorithms (using various
semirings) [5] and numeric problems such as algebraic
multigrid [9]. Multicore shared memory systems can
solve very large problems [10], or can be part of a
hybrid shared/distributed memory high-performance
architecture.

Two-dimensional decompositions are broadly used
in state-of-the-art methods for both dense [11] and
sparse [1] [2] matrices. Quadtree matrix decompositions
have a long history [8].

We propose a new sparse matrix data structure and
the first highly-parallel sparse matrix-matrix multiplica-
tion algorithm designed specifically for shared memory.

2 Quadtree Representation

Our basic data structure is a 2D quadtree matrix
decomposition. Unlike previous work that continues the
quadtree until elements become leaves, we instead only
divide a block if its nonzero count is above a threshold.
Elements are stored in column-sorted triples form inside
leaf blocks. Quadtree subdivisions occur on powers of 2;
hence, position in the quadtree implies the high-order
bits of row and column indices. This saves memory in
the triples. We do not assume a balanced quadtree.

3 Pair-List Matrix Multiplication Algorithm

The algorithm consists of two phases, a symbolic phase

that generates an execution strategy, and a computa-

tional phase that carries out that strategy. Each phase
is itself a set of parallel tasks. Our algorithm does not
schedule these tasks to threads; rather we use a standard
scheduling framework such as TBB, Cilk, or OpenMP.

3.1 Symbolic Phase We wish to divide computa-
tion of C = A⇥B into e�ciently composed tasks with
su�cient parallelism. The quadtree structure gives a

⇤Supported by Contract #618442525-57661 from Intel Corp.
and Contract #8-482526701 from the DOE O�ce of Science.

†CS Dept., UC Santa Barbara, alugowski@cs.ucsb.edu
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Figure 1: Computation of a result block using a list of
pairwise block multiplications.

natural decomposition into tasks, but the resulting tree
of sparse matrix additions is ine�cient. Instead we form
a list of additions for every result block, and build the
additions into the multiply step. We let C

own

represent
a leaf block in C, and pairs the list of pairs of leaf blocks
from A and B whose block inner product is C

own

.

(3.1) C
own

=
X|pairs|

i=1
A

i

⇥B
i

The symbolic phase recursively determines all the
C

own

and corresponding pairs.
We begin with C

own

 C, and pairs  (A,B). If
pairs only consists of leaf blocks, spawn a compute task
with C

own

and pairs. If pairs includes both divided
blocks and leaf blocks, we temporarily divide the leaves
until all blocks in pairs are equally divided. This
temporary division lets each computational task operate
on equal-sized blocks; it persists only until the end of
the SpGEMM.

Once the blocks in pairs are divided, we divide
C

own

into four children with one quadrant each and
recurse, rephrasing divided C = A⇥B using (3.1):

(3.2)

C1 = [(A1, B1), (A2, B3)]
C2 = [(A1, B2), (A2, B4)]
C3 = [(A3, B1), (A4, B3)]
C4 = [(A3, B2), (A4, B4)]

For every pair in pairs, insert two pairs into each
child’s pairs according to the respective line in (3.2).
Each child’s pairs is twice as long as pairs, but totals
only 4 sub-blocks to the parent’s 8.

3.2 Computational Phase This phase consists of
tasks that each compute one block inner product (3.1).
Each task is lock-free because it only reads from the
blocks in pairs and only writes to C

own

. We extend
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Gustavson’s sequential algorithm [4] in Algorithm 1.
Our addition to Gustavson is a mechanism that

combines columns j from all blocks B
i

in pairs to
present a view of the entire column j from B. We then
compute the inner product of column j and all blocks
A

i

using a “sparse accumulator”, or SPA. The SPA can
be thought of as a dense auxiliary vector, or hash map,
that e�ciently accumulates sparse updates to a single
column of C

own

.
A and B are accessed di↵erently, so we organize

their column-sorted triples di↵erently. For constant-
time lookup of a particular column i in A, we use a hash
map with a i ! (o↵set

i

, length
i

) entry for each non-
empty column i. A CSC-like structure is acceptable, but
requires O(m) space. We iterate over B’s non-empty
columns, so generate a list of (j, o↵set

j

, length
j

). Both
organizers take O(nnz) time to generate. A structure
that merges all B

i

organizers enables iteration over
logical columns that span all B

i

.

Algorithm 1 Compute Task’s Multi-Leaf Multiply

Require: C
own

and pairs
Ensure: Complete C

own

for all (A
b

, B
b

) in pairs do

organize A
b

columns with hash map or CSC
organize B

b

columns into list
end for

merge all B organizers into combined B org
for all (column j, PairList

j

) in combined B org do

SPA {}
for all (A

b

, B
b

) in PairList
j

do

for all non-null k in column j in B
b

do

accumulate B
b

[k, j]⇥A
b

[:, k] into SPA
end for

end for

copy contents of SPA to C
own

[:, j]
end for

4 Experiments

We implemented our algorithm in TBB [7] and com-
pared it with the fastest serial and parallel codes avail-
able, on a 40-core Intel Nehalem machine. We test by
squaring Kronecker product (RMAT) matrices [6] and
Erdős-Rényi matrices.

Observe from Table 1 that QuadMat only has a
small speed penalty on one core compared to CSparse,
but gains with two or more cores.

5 Conclusion

Our algorithm has excellent performance, and has the
potential to be extended in several ways. Our next
steps include a triple product primitive that does not

Table 1: SpGEMM results on E7-8870 @ 2.40GHz - 40
cores over 4 sockets, 256 GB RAM. Note: CombBLAS is
an MPI code that requires a square number of processes.

Squared Matrix R16 R18 ER18 ER20

Each Input nnz 1.8M 7.6M 8.39M 33.6M
Output nnz 365M 2.96G 268M 1.07G

CSparse [3] 1p 14s 122s 9s 58s

CombBLAS [2]
1p 154s 1597s 64s 248s
9p 19s 155s 8s 34s
36p 8s 49s 3s 12s

QuadMat

1p 19s 150s 13s 111s
2p 10s 87s 8s 66s
9p 3s 21s 3s 18s
36p 2s 11s 2s 9s

materialize the entire intermediate product at any one
time, and computing AT ⇥ B with similar complexity
to A⇥B.
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[1] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert,
and C. E. Leiserson. Parallel sparse matrix-vector
and matrix-transpose-vector multiplication using com-
pressed sparse blocks. In Proc. 21st Symp. on Paral-
lelism in Algorithms and Arch., 2009.
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Scaling Iterative Solvers by Avoiding
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Parallel iterative solvers are the most widely used methods for solving sparse linear systems
of equations on parallel architectures. There are two basic types of kernels that are repeatedly
computed in these solvers: Sparse-matrix vector multiply (SpMV) and linear vector operations.
Since linear vector operations are performed on dense vectors, they are regular in nature and are
easy to parallelize. Conversely, SpMV operations generally require specific methods and techniques
for e�cient parallelization due to irregular sparsity pattern of the coe�cient matrix. In literature,
several partitioning models and methods are proposed for e�cient parallel computation of SpMV
operations.

In a single iteration of the solver, SpMV operations cause irregular point-to-point (P2P) commu-
nication and inner product computations cause regular collective communication. The partitioning
techniques proposed in the literature generally aim at reducing communication volume incurred in
P2P communications, which loosely relates to latency overhead incurred in parallel SpMV opera-
tions. On current large-scale systems, the message latency overhead is at least as important as the
message volume overhead, especially in the case of strong scaling in which average message sizes
decrease with increasing number of processors. Our preliminary experiments on two large-scale
systems (an IBM BlueGene/Q and a Cray XE6) demonstrate that the startup time is as high as
transmitting four-to-eight kilobytes of data.

On the contrary to the studies that aim at hiding latency of collective communication opera-
tions [1] (by using nonblocking collective primitives and overlapping with computation), we propose
a methodology to directly avoid all latency overhead associated with P2P messages of SpMV op-
erations. Our methods rely on the observation that in most of the Krylov subspace methods, each
SpMV computation is followed by an inner product computation which involves output vector
of the SpMV. This introduces a write/read dependency on this vector between SpMV and inner
product computational phases.

In [2], we propose a novel computational rearrangement method to resolve the above-mentioned
computational dependency between these two computational phases. By doing so, we remove
the communication dependencies between these two phases and enable P2P communications of
SpMV and collective communications of inner products to be performed in a single communication
phase. The computational rearrangement reduces the number of synchronization points for each
SpMV and inner product computation pair by one, that is, the proposed scheme requires a single
synchronization point in a typical CG implementation. Then, we realize this opportunity to propose
a communication rearrangement method to avoid all latency overhead of P2P messages of SpMV
operations. This is achieved by embedding P2P communications into collective communication
operations. The proposed embedding scheme reduces both the average and the maximum number
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of messages handled by a single processor to lgK in an iterative solver withK processors, regardless
of the coe�cient matrix being solved.

The downside, however, is that the embedding scheme causes extra communication volume
due to forwarding of certain vector elements. To address this increase in message volume, two
iterative-improvement-based algorithms are proposed. The basic idea of these heuristics is to place
the processors that exchange high volume of data close to each other so that the store-and-forward
scheme required by the embedding method causes less forwarding overhead. This is a preprocessing
step as the partitioning itself and the running time of the described faster heuristic is lower than
the partitioning time up to 2048 processors.

The mentioned methods and techniques are validated on Conjugate Gradient method. The 1D
row-parallel algorithm is used for SpMV. We tested our methods on two large-scale high perfor-
mance computing systems Cray XE6 and IBM BlueGene/Q up to 2048 processors with 16 test
matrices from University of Florida Sparse Matrix Collection. With using proposed computational
and communication rearrangement, we show that we obtain superior scalability performance on
both architectures. Our findings indicate that the crucial factor to scale an iterative solver is to
keep the message latency overhead low, which dominate the message volume overhead at high
processor counts.
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In recent years, graph analytics has become one of the most important and ubiquitous tools
for a wide variety of research areas and applications. Indeed, modern applications such as ad
hoc wireless telecommunication networks, or social networks, have dramatically increased the
number of nodes of the involved graphs, which now routinely range in the tens of millions and
out-reaching to the billions in notable cases.

We developed novel near linear (O(N)) methods for sparse graphs with N nodes estimating
the most important nodes in a graph, the subgraph centralities, and spectrograms, that is the
density of eigenvalues of the adjacency matrix of the graph in a certain unit of space.

Figure 1: Most central intersections in the European street network.

The method to compute subgraph centralities employs stochastic diagonal estimation [2]
and Krylov subspace techniques to drastically reduce the complexity which, using standard
methods, is typically O(N3). With this technique we can approximate the centralities in
a fast, highly scalable and accurate fashion, and thereby open the way for centrality based
big data graph analytics that would have been nearly impossible with standard techniques.
Subgraph centralities provide a wealth of information in many situations. For example, the
subgraph centralities can be used to identify possible bottlenecks in huge networks. Figure 1
visualizes the most central nodes in the European street network1 (part of the 10th DIMACS
challenge [1]) with 51 million nodes. Our e�cient parallel implementation only required 800
seconds to compute the centralities on 16 threads.

Figure 2: It is almost impossible to determine if the graphs (left and middle column) are the
same for a human observer.

In the age of big data it becomes increasingly di�cult to compare and visualize graphs.
The spectrogram helps to visually interpret and compare data, for example the two leftmost

1
https://www.cise.ufl.edu/research/sparse/matrices/DIMACS10/europe_osm.html
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graphs in Fig. 2. For humans it is impossible to compare the two graphs. In fact, both graphs
are exactly the same and one of the graphs can be transformed into the other by a set of
simple permutations. The spectrogram shown on the right in Fig. 2 captures the essential
characteristic of the graphs immediately and graphically. It transforms complex graphs into a
1-dimensional vector - a simple picture that fosters convenient interpretation.

Spectrograms are powerful in capturing the essential structure of graphs and provide a natu-
ral and human readable (low dimensional) representation for comparison. How about compar-
ing graphs that are almost similar (see Figure 3)? Of course, this is a massive dimensionality
reduction, however at the same time the shape of the spectrogram yields a tremendous wealth
of information.

Figure 3: Almost similar graphs and spectrograms

Solving the underlaying eigenvalue problem is getting much harder to master in the era of
big data. The cubic complexity of dense methods and the limitation of iterative techniques to
look deep into the interior of the spectrum at an acceptable cost, call for a new approach. Our
approach starts by estimating �

min

and �
max

of the adjacency matrix by a few steps of Lanczos,
in order to shift and scale the adjacency matrix to have its spectrum in the interval [�1, 1].
Next, we divide the range [�1, 1] in the number of requested bins µ, known as inflection points.
Subsequently, we estimate the number of eigenvalues below µ, using trace estimation techniques
(similar to [3, 2]) of the Fermi-Dirac distribution function, to compute the spectrogram.

In order to tackle arising big data challenges an e�cient utilization of available HPC resources
is key. Both developed methods exhibit an e�cient parallelization on multiple hierarchical
levels. For example, computing the spectrogram can be parallelized on three levels: bins and
matrix-vector products can be computed independently, and each matrix-vector product can
be computed in parallel. The combination of a highly scalable implementation and algorithmic
improvements enable us to tackle big data analytics problems that are nearly impossible to
solve with standard techniques. A broad spectrum of applications in industrial and societal
challenges can profit from fast graph analytics.

Acknowledgments Yves Ineichen and Costas Bekas acknowledge the support from XDATA
program of the Defense Advanced Research Projects Agency (DARPA), administered through
Air Force Research Laboratory contract FA8750-12-C-0323.
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NETWORKIT: AN INTERACTIVE TOOL FOR HIGH-PERFORMANCE NETWORK ANALYSIS
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Summary

We introduce NetworKit, an open-source package for high-

performance analysis of large complex networks. Complex

networks are equally attractive and challenging targets

for data mining, and novel algorithmic solutions as well

as parallelism are required to handle data sets containing

billions of connections [4, 5]. Our goal is to package results

of our algorithm engineering e↵orts and put them into the

hands of domain experts.

The package is a hybrid combining the performance of

kernels – written in C++ and parallelized with OpenMP –

with a convenient interactive interface written in Python.

The package supports general multicore platforms and

scales from notebooks to workstations to compute servers.

In comparison with related software for network analysis,

we propose NetworKit as the package which satisfies all

of three important criteria: High performance enabled

by parallelism, interactive workflows and integration into

an ecosystem of tested tools for data analysis and sci-

entific computation. The feature set includes standard

network analytics kernels such as connected components,

clustering coe�cients, community detection, core decom-

position, assortativity and centrality. Applying these to

massive networks is enabled by e�cient algorithm design,

parallelism and approximation. Furthermore, the package

comes with a collection of graph generators and has basic

support for visualization and dynamic networks. With

the current release, we aim to present and open up the

project to a community of both algorithm engineers and

domain experts.

Features

NetworKit has a growing feature set and is built for exten-

sibility. Current features include:

Community detection is the task of identifying groups

of nodes which are significantly more densely con-

nected among each other than to the rest of the net-

work. NetworKit includes state-of-the-art heuristics

with e�cient parallel implementations for partitioning

the network into natural modules [7].

Clustering coe�cients quantify the tendency of rela-

tions in a network to become transitive by looking at

the frequency of closed triangles. NetworKit supports

both exact calculation and approximation.

Degree distribution and assortativity play an im-

portant role in characterizing a network: Complex

networks tend to show a heavy tailed degree distribu-

tion which follow a power-law with a characteristic

exponent [1]. Degree assortativity is the correlation

of degrees for connected nodes. NetworKit makes it

easy to estimate both.

Components and cores are related concepts for subdi-

viding a network: All nodes in a connected component

are reachable from each other. k-cores/k-shells result

from successively peeling away nodes of degree k.

Centrality refers to the relative importance of a node

within a network. Di↵erent ideas of importance are

expressed by betweenness, PageRank and eigenvec-

tor centrality. Betweenness is approximated with a

bounded error to be applicable to large networks.

Standard graph algorithms such as finding indepen-

dent sets, computing approximate maximum weight

matchings, breadth-first and depth-first search or

finding shortest paths.

Generative models aim to explain how networks form

and evolve specific structural features. NetworKit

has e�cient generators for basic Erdős-Rényi ran-

dom graphs, the Barabasi-Albert and Dorogovtsev-

Mendes models (which produce power law degree dis-

tributions), the Chung-Lu and Havel-Hakimi model

(which replicate given degree distributions, the former

in expectation, the latter only realizable ones).

Visualization functionality which enables the user to

draw smaller networks to the IPython Notebook or

files.
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Design Goals

NetworKit is designed to stand out in three areas:

Performance Algorithms and data structures are se-

lected and implemented with high performance and par-

allelism in mind. Some implementations are among the

fastest in published research. For example, community

detection in a 3 billion edge web graph can be performed

on a machine with 16 physical cores and 256 GB of RAM

in a matter of minutes.

Interface Networks are as diverse as the series of ques-

tions we might ask of them - for example, what is the

largest connected component, what are the most central

nodes in it and how do they connect to each other? A

practical tool for network analysis should therefore avoid

restricting the user to fixed and predefined tasks, as most

static command line interfaces do. Rather, the aim must

be to create convenient and freely combinable functions.

In this respect we take inspiration from software like R,

MATLAB and Mathematica, as well as a variety of Python

packages. An interactive shell, which the Python lan-

guage provides, meets these requirements. While Net-

worKit works with the standard Python 3 interpreter,

combining it with the IPython Notebook allows us to in-

tegrate it into a fully fledged computing environment for

scientific workflows [6]. It is also straightforward to set

up and control a remote server for heavy computations.

Integration As a Python module, NetworKit enables

seamless integration with Python libraries for scientific

computing and data analysis, e. g. pandas for data frame

processing and analytics, matplotlib for plotting, networkx

for additional network analysis tasks, or numpy and scipy

for advanced numeric and scientific computation. Further-

more, NetworKit aims to support a variety of input/output

formats, for example export to the graphical network

analysis software Gephi [2].

Implementation

Core data structures and algorithms of NetworKit are

implemented in C++ using the C++11 standard, which

allows the use of object-oriented and functional program-

ming concepts without sacrificing performance. The graph

data structure provides parallel iterators over node and

edge sets using di↵erent load balancing schemes. Shared-

memory parallelized is realized with OpenMP. Classes

are then exposed to Python via the Cython toolchain [3]:

Wrapper classes are converted to C++ code via the Cython

compiler, then compiled and linked with the core into a

native Python extension module. Additional functionality

and a convenient interface is implemented in pure Python,

yielding the final Python module.

C++ / OpenMP

Data Structures I/O TestsAlgorithms

Cython

Python
Task-oriented Interface

Additional
Functionality

Pythonized Classes

Wrapper Classes

IP[y]

NetworKit

numpyscipy pandas networkxmatplotlib

IPython Notebook

Figure 1: NetworKit architecture

Open Source

NetworKit is published1 under the permissive MIT Li-

cense to encourage review, reuse and extension by the

community. We invite algorithm engineers and potential

users from various research domains to benefit from and

contribute to the development e↵ort. ¿¿¿¿¿¿¿ other

References

[1] J. Alstott, E. Bullmore, and D. Plenz. powerlaw: a python
package for analysis of heavy-tailed distributions. PLOS ONE,
9(1):e85777, 2014.

[2] M. Bastian, S. Heymann, and M. Jacomy. Gephi: an open
source software for exploring and manipulating networks. In
ICWSM, pages 361–362, 2009.

[3] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S. Seljebotn,
and K. Smith. Cython: The best of both worlds. Computing in
Science & Engineering, 13(2):31–39, 2011.

[4] U. Brandes and T. Erlebach. Network analysis: methodological
foundations, volume 3418. Springer, 2005.

[5] M. Newman. Networks: an introduction. Oxford University
Press, 2010.

[6] F. Perez, B. E. Granger, and C. Obispo. An open source frame-
work for interactive, collaborative and reproducible scientific
computing and education, 2013.

[7] C. L. Staudt and H. Meyerhenke. Engineering high-performance
community detection heuristics for massive graphs. arXiv
preprint arXiv:1304.4453.

1
http://www.network-analysis.info

Bora Ucar
42

http://www.network-analysis.info


Detecting Anomalies in Very Large Graphs
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Numerous applications focus on the analysis of entities and the connections between them, and such data are
naturally represented as graphs. In particular, the detection of a small subset of vertices with anomalous coordinated
connectivity is of broad interest, for problems such as detecting strange tra�c in a computer network or unknown
communities in a social network. These problems become more di�cult as the background graph grows larger and
noisier and the coordination patterns become more subtle. In this talk, we present a statistical framework addressing
this cross-mission challenge and the computational challenges involved when the data sets are very large.

The statistical framework has been developed as part of an e↵ort called Signal Processing for Graphs (SPG),
where signal processing concepts are applied to graph data in order to find these anomalies [3]. The SPG framework
determines statistically whether, for the observed data, an anomalous subgraph is detected (rejection of the null
hypothesis that there is no anomalous subgraph) or not (acceptance of the null hypothesis). Detection algorithms
in the SPG framework are based on the concept of graph residuals, formed by subtracting the expected graph data
from the observed graph data. The detection framework is designed to detect significant residuals concentrated on
a small subset of vertices. The SPG processing chain has several stages including temporal integration of graph
data, construction of the expected topology graph, dimensionality reduction, anomalous subgraph detection, and
identification of the subgraph’s vertices. Dimensionality reduction is a particularly important step, being the most
computationally complex, and will be the primary focus of the presentation.

Dimensionality reduction is frequently done by decomposing the residual matrix through eigendecomposition
(although SVD would work as well). While relatively strong signals can be detected with only one eigenvector, more
powerful detection methods needed to detect more subtle anomalies may require hundreds of eigenvectors. Thus,
our initial e↵orts improve the performance of this step have focused on speeding up the solution of the eigensystem,
Bxi = �ixi, where B = A � E[A] is the residual matrix. For the purpose of this work, we have focused on the
modularity matrix [4], where the expected value is a rank-1 approximation to the observed data, E[A] = kk

T
/(2M),

where M is the number of edges in the graph and k is the degree vector (assuming undirected edges for simplicity).
We use the Anasazi eigensolver [2] to solve our eigensystem, allowing us to find anomalies in very large graphs
in a reasonable amount of time. In particular, we use the block Krylov-Schur method to find the eigenvectors
corresponding to the eigenvalues with the largest real components (which correspond to the largest residuals). The
presentation will demonstrate the use of Anasazi to find eigenpairs in graphs with over four billion vertices.

Figure 1a shows the run time to find the first eigenvalue of a 223-vertex R-Mat matrix (a=0.5, b=0.125, c=0.125,
with an average of 8 nonzeros per row) as the number of cores increases. When a simple one-dimensional distribution
(1D, blue curve) is used, the scalability is limited and the run time actually increases for more than 1024 cores. 1D
distributions are the de facto standard and tend to work well for traditional computational science and engineering
problem. However, for matrices derived from power-law graphs, 1D partitioning tends to result in all-to-all com-
munication in the sparse matrix-vector multiplication (SpMV) operation that dominates the eigensolver run time.
Figure 1 shows the communication patterns for 1D distributions of a more traditional finite di↵erence matrix (1b)
and the R-Mat matrix ( 1c). In these illustrations, the color corresponds to amount of data communicated between a
pair of processes (white represents no communication, blue represents little communication, and red represents much
communication, with the maximum value (red) being set to be the number of rows divided by the number of cores).
The 1D distribution works well for the finite di↵erence matrix, with each process communicating with at most two
other processes. However, for the R-Mat matrix, each process has to communicate with every other process.

With 1D distributions, solving our eigendecomposition problem for very large power-law graphs is infeasible
with our runtime requirements. However, there has been recent work on using two-dimensional (2D) distributions
that bound the number of messages to be communicated in the resulting SpMV operation. In Figure 1a, we show
the improved results for two of these 2D distributions: one based on a random partitioning of rows/columns with
an imposed 2D block Cartesian structure (2DR, red line, [5]) and one that uses hypergraph partitioning (with the
Zoltan 1D hypergraph partitioner) instead of random partitioning to improve the communication volume (2DH, green
line, [1]). Using these 2D methods, we are able to get more reasonable performance scaling and find eigenvectors for
large graphs, with the 2DH method performing particularly well. In this talk, we present these results and further
analysis of how these 2D methods can be used in practice.
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Figure 1: Strong scaling results for R-Mat matrix (a). Communication patterns (b,c) for 1D distributions over 64 cores. Row
represents source process and column represents the destination process. Color corresponds to amount of data communicated
(with maximum value being number of rows divided by number of cores). Jobs run on National Energy Research Scientific
Computing Center (NERSC) machine Hopper.

The challenge with 2DH is its relative complexity in computing the distribution. For an 8-million-row R-Mat
problem, approximately 40,000 SpMV operations are required to amortize the additional cost of calculating the 2DH
distribution rather than 2DR. Since we typically need at most a few thousand SpMV operations in our eigensolver,
the 2DH distribution must be e↵ective for multiple observed graphs to be useful. We explored this e↵ectiveness using
a simple dynamic graph model in which we partition an initial graph and use our R-Mat generator to add more edges
(using the defined distribution) to generate a sequence of additional graphs. Figure 2 shows the runtime (normalized
by the number of edges) of the SpMV operations for the 2DR and 2DH distributions applied to several graphs that
evolve from an initial graph containing 30% of the edges in the final graph. Although the 2DH distribution loses
some of its advantage over the 2DR distribution, it still has a significant advantage at the final graph. Thus, it may
be possible to e↵ectively amortize the expensive 2DH distribution over several graphs and use this distribution to
our computational advantage. We plan to explore this further for additional dynamic graph models.
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Figure 2: SpMV time in seconds (normalized by number of nonzeros) as graph evolves.
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Finding High Betweenness Centrality Vertices in Large
Networks

Vladimir Ufimtsev and Sanjukta Bhowmick

Department of Computer Science, University of Nebraska at Omaha

Introduction. Betweenness centrality (BC) is a widely applied network measure for identifying
important vertices in complex networks. BC measures the importance of a vertex with respect to the
flow of information in a network, based on the number of shortest paths that pass through that vertex.
Specifically, the BC of vertex v is defined as [3]: BC(v) =

P
s6=v 6=t2V

�st(v)
�st

, where �st is the total number

of shortest paths in G between nodes s and t, and �st(v) is the total number of shortest paths in G
between s and t that pass through v. Most algorithms for computing BC have to compute the values
for all the vertices in the network i.e. it is not possible to compute the BC just for a specific vertex
without having to compute BC for the whole network. For example, the popular Brandes method [1]
for obtaining BC, cumulatively computes the values for every vertex in the network. Although the
algorithm has polynomial complexity, the execution time O(V ⇤ E) is still prohibitive for large-scale
networks. However, in practice only the vertices with the highest BC values are required. Here we show
how we can use group testing to obtain the d-highest BC vertices, in shorter time than computing the
BC of all vertices (and then sorting to find the highest ones).

Group Testing to Identify High BC Vertices

We focus on identifying only the top-highest BC vertices in the network, and it is the identity not
the actual BC value of the vertex that is important. We use our proposed algorithm (for calculating
the BC of a specified vertex) in a group testing based technique to identify the vertices in the network
that have the highest BC [7]. The central idea of group testing is that if there is a small percentage
of defective units in a large population of units, it is more e�cient (requires less tests) to test the
units in carefully selected groups, using for example principles of superimposed code theory, rather
than testing each unit separately. Group testing has a vast amount of applications including pattern
matching and DNA library screening [4, 5]. In our application of group testing, the defective units
correspond to vertices with high BC. We use a group testing design based on a Latin square to
determine the number of groups (tests) and what vertices are part of each group. According to this
design, for each test the specified vertices are grouped into a single supervertex and the betweenness
centrality of that specified supervertex is calculated using our single vertex BC algorithm. If the BC
value of the supervertex (group) is high (exceeds a threshold) then the result is designated as positive
(1) otherwise it is negative (0). Upon completion of all the tests, the vertices that have the highest
BC rank are identified. Theoretically this method guarantees that we find at least two highly ranked
vertices in 3d

p
ne tests in a network on n vertices.

Preliminary Results

Using our group testing algorithm we performed experiments over a set of ten networks collected
from the DIMACS Implementation Challenge Set [2] and the Stanford Network Analysis Project [6].

To evaluate the e�ciency and accuracy of the method we analyze how many of the nodes identified
by group testing are actually high ranking. Using the Brandes algorithm [1] we obtain the full ranking
for each network and see what rank the nodes identified by group testing have. The group testing
design we are using (based on Latin squares) is successful if it identifies at least the top 2 vertices.
The results are given in Table 1 (reproduced from [8]). Out of the ten networks, group testing was
successful on six networks (top six rows of the table), and found low ranked (below rank 10) vertices
for the other four (the last four rows of the table).

On further study we observed that the networks for which group testing failed to find the high
ranked vertices were the ones that were most sensitive to small perturbations in the network structure.
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Therefore group testing can be also used as a method to classify networks that are robust to noise
from networks that are more sensitive.

Table 1. Finding High BC Vertices Using Group Testing on Real-World Networks. The best
threshold and the vertices obtained using that threshold are given. The vertices are represented
by their rank, as per their BC values obtained using the Brandes method.

Name Vertices Edges # of Tests Threshold High BC
Vertices

Karate 34 156 18 55% 1st, 2nd

Chesapeake 39 340 21 30% 1st, 2nd

AS20000102 6474 13233 243 12% 1st, 2nd, 3rd

AS20000101 3570 7391 180 16% 1st, 2nd

Caida 16301 65910 384 21% 1st, 2nd, 3rd

C. Elegans 453 4050 66 35% 1st, 2nd, 4th
10th + 3 low ranked

Les Mis. 77 508 27 45% 1st, 10th,
+3 low ranked

GrQc 5242 28980 219 80.3% 20 low ranked
HepTh 9877 51971 300 76% 6 low ranked

Power Grid 4941 13188 213 84% 6 low ranked

Each group of vertices can be formed and the corresponding tests can be executed independently.
Therefore group testing is perfectly parallelizable. In each test we are only required to know the BC
of the supervertex. However, most of the current BC computing algorithms focus on cumulatively
finding the BC of all the vertices, and cannot identify the BC of only a specific vertex.

Therefore, in order to e�ciently apply our group testing algorithm, we have developed an algorithm
that computes the BC of one vertex only. The e�ciency of the algorithm is related to the size of and
the number of chordless cycles in the graph. If the graph is chordal, i.e. the largest chordless cycle is
of length three, then we can compute the BC of a designated vertex in time proportional to execute
one breadth first search. For larger chordless cycles, in the worst case, we have to execute a BFS for
each cycle. Therefore, if the number of chordless cycles in the graph is q, then computing the BC of
a vertex would take time O(q ⇤ V ).

In this talk we will present our results on group testing over a wider set of networks, we will
demonstrate how group testing is an e↵ective method for finding the highest BC vertices in robust
networks, and how we can identify sensitive networks using this method. Finally we will present our
algorithm for finding the BC of a single vertex, along with the scalability results for group testing.
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Abstract 

 
        We show that a sufficiently large Random Geometric Graph G(n, r) can be efficiently partitioned 
into disjoint connected bipartite subgraphs such that a sequence B1, B2,   …,   Bk of these subgraphs 
comprising over 85% of the vertices of G(n, r) have vertex sets that are either dominant sets or (1 - ε) 
dominating for small ε. These subgraphs are applicable to the problem of backbone partitioning in 
wireless   sensor   networks   (WSN’s)   where each backbone is desired to be connected, dominating, and 
amenable to efficient routing. Bipartite subgraphs of an RGG are provably planar, so deadlock free routing 
is readily available for these backbone subgraphs. We first employ smallest-last coloring and show that 
the initial k color sets sufficient to include about 50% of the vertices of G(n, r) are about the same size. 
We  then  employ  an  adaptive  “relay  coloring”  of  the  remaining  vertices  to  extract  k more independent sets 
matched with the initial  sets  as  paired  “relay  sets”  to  achieve  our  bipartite  subgraph  partition. 
        We provide results from extensive tests for various sizes of RGG’s  and  also  for   random  geometric  
graphs with vertices on the sphere. For the spherical case we obtain that the average face size in the 
bipartite subgraphs is generally between five and six, which is a further desirable property for routing 
when  these  subgraphs  are  considered  as  backbones  for  WSN’s  on  the  surface  of  the  earth. 

Keywords: Random Geometric Graphs, Wireless Sensor Networks, Smallest-last coloring, 
Backbone selection. 

1. INTRODUCTION 

        Let a random geometric graph (RGG) denote a graph G(n, r) with vertex set formed by choosing n 
points in a uniform random manner on the unit square, and introducing an edge between every vertex pair 
whose Euclidian distance is less than r. Our problem is to partition the majority of vertices into k disjoint 
sets {V1, V2,  …  Vk} whose induced subgraphs <V1>, <V2>,  …,  <Vk> are connected bipartite subgraphs 
with each part an independent set that dominates all or nearly all n vertices of G(n, r). We desire to create 
such a partition efficiently so as to be applicable for applicable with linear time scalability   for  RGG’s  
with from one thousand to several million vertices and average degrees up to several hundred. Regarding 
uniformity, the partition should yield subgraphs of reasonably similar size and structure. Regarding the 
total partition size we seek that the bipartite subgraphs collectively include a large majority of the n 

vertices, e.g. ∑ ||ೖ

 ≫ ଵ

ଶ. 
        This  problem  is  motivated  by  the  extensive  research  on  wireless  sensor  networks  (WSN’s)  which  are  
typically modeled by RGG’s [1], [2], [3], [4], [5], [6]. 
        The partition V1|V2|…|Vk with S the  residual  “surplus”  vertices  of  the  RGG, allows that each bipartite 
subgraph <Vi> can serve as a backbone for monitoring essentially the whole region and connectivity 
allows for messages to be routed through each backbone. To preserve sensor lifetime the monitoring 
function activity may be rotated through the k backbones. The property that each backbone has two 
disjoint sets each dominating (1 - ε) vertices of the graph for very small ε (e.g. ε<0.01) gives high overall 
monitoring effectiveness to the resulting backbone system. 
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        Previous research investigating fully dominating set partitions has focused on the minimum degree 
δ(G(n, r)) and attempted to find up to δ + 1 suitable backbones. The minimum degree is problematic due 
to the boundary effect in RGG’s   and  we   avoid   this   issue   by   shifting   our   focus   in   two  ways.   First  we  
determine the number of parts k by requiring they collectively include a large majority of the sensors. In a 
second direction we also look at spherical random geometric graphs Gs(n, r) where n vertices are placed 
at random on the surface of the unit sphere which supports the important application of sensor backbone 
formations spanning the globe. Note that spherical Gs(n, r) provides that all vertices have an isomorphic 
probabilistic environment of adjacent neighbors without any boundary bias. 
        Our bipartite subgraph partitioning algorithms proceeds in two phases employing a greedy selective 
coloring algorithm in each phase. In the first phase smallest-last coloring of G(n, r) is determined with k 
determined so that the first k-color sets, denoted P1, P2,…,  Pk, are chosen so that ∪ 𝑃 includes at least ଶ 
vertices termed primary independent sets. In a second carefully crafted coloring phase of the remaining 
vertices (“relay  candidates”) we sequentially and in a greedy manner assign each vertex to a relay color 
set Ri, 1≤i≤k, based primarily on the vertex having the greatest number of adjacencies in Pi, also 
maintaining that each Ri is an independent set. Then the bipartite subgraph on 𝑃 ∪ 𝑅, is searched to 
determine the large component with the occasional smaller components or isolated vertices deleted into 
the surplus set. 

2. RESULTS 

Screenshots of benchmark of RGG G(6400, 0.08) on square model and sphere model: 
 

Original graph SL-colored graph RL-colored graph Backbone example 

    
Max. degree: 175 (Pink) 
Min. degree: 34 (Green) 

Used colors: 64 Primary/Relay colors:24 
Backbones: 24 

Components: 1 
Dominent: 100% 

    
Max. degree: 85 (Pink) 
Min. degree: 35 (Green) 

Used colors: 36 Primary/Relay colors:13 
Backbones: 13 

Components: 1 
Dominent: 100% 
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Table 1. Simulation results on the unit square model. 
Topology G(3200, r) G(6400, r) G(12800, r) 

r 0.06 0.08 0.1 0.06 0.08 0.1 0.06 0.08 0.1 
Min. degree 10 14 28 14 37 44 35 63 106 
Max. degree 53 94 126 104 164 23 184 312 466 
Avg. degree 33.94 59.80 91.83 68.63 119.24 184.82 137.57 240.87 368.06 

SL-coloring colors  23 35 50 40 62 92 72 116 157 
Backbones (BB) 8 13 19 15 24 35 27 45 67 

Avg. BB size 344.25 213.08 145.00 376.93 230.63 155.31 409.59 244.78 163.75 
Avg. BB degrees 2.38 2.58 2.72 2.63 2.81 2.88 2.88 2.97 2.99 

Avg. BB components 5.88 2.46 1.42 3.33 1.25 1.20 1.48 1.16 1.01 
Avg. BB faces 73.00 66.31 54.79 126.47 96.08 70.74 183.74 121.56 83.43 

Avg. BB face sizes 12.04 8.60 7.39 8.27 6.82 6.37 6.48 6.02 5.91 
Avg. BB dominates 99.97% 99.95% 99.99% 99.97% 99.99% 99.99% 99.99% 99.99% 99.99% 

 
Table 2. Simulation results on the unit sphere model. 

Topology G(6400, r) G(12800, r) G(25600, r) 
r 0.06 0.08 0.1 0.06 0.08 0.1 0.06 0.08 0.1 

Min. degree 9 20 36 25 52 90 58 114 188 
Max. degree 41 60 95 69 113 175 128 215 309 
Avg. degree 23.02 40.89 63.86 46.07 81.83 128.00 92.14 163.92 255.96 

SL-coloring colors  18 26 37 29 46 65 50 82 115 
Backbones (BB) 6 10 14 10 17 25 19 31 47 

Avg. BB size 938.17 585.7 409.00 1091.30 659.47 443.36 1189.00 711.10 469.13 
Avg. BB degrees 2.22 2.43 2.67 2.57 2.79 2.94 2.82 3.02 3.10 

Avg. BB components 29.5 6.2 1.64 4.50 1.82 1.04 1.84 1.10 1.00 
Avg. BB faces 135.83 134.5 140.29 321.00 265.35 210.88 490.79 364.71 261.21 

Avg. BB face sizes 17.48 11.42 8.02 9.10 7.07 6.27 6.96 5.92 5.59 
Avg. BB dominates 99.95% 99.98% 100% 99.99% 100% 100% 100% 100% 100% 
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Characterizing asynchronous broadcast trees for multifrontal factorizations

Patrick R. Amestoy, Jean-Yves L’Excellent, Wissam M. Sid-Lakhdar

To solve sparse systems of linear equations, mul-
tifrontal methods [2] rely on partial LU decomposi-
tions of dense matrices called fronts. The dependen-
cies between those decompositions form a tree, which
must be processed from bottom to top in a topolog-
ical order. We consider a parallel asynchronous set-
ting where 1D acyclic pipelined decompositions are
used. At each node Ni of the multifrontal tree, fac-
tored panels have to be broadcast to other processes
involved in Ni. Because of the asynchronous envi-
ronment considered, we use w�ary broadcast trees
aiming at better controlling communication memory
and pipeline e�ciency than, for example, a binomial
tree or a standard MPI IBCAST primitive.
In our asynchronous model, memory is needed for

the communication of factored panels. In particular,
a process involved in a broadcast tree will store a
factored panel (e.g., on reception), will relay (or just
send, for the root of the broadcast tree) it to all its
successors in the broadcast tree, and the memory for
the panel will be freed only when all successors have
received the panel sent. When memory for communi-
cations is limited (for a large problem, a typical panel
to be sent might require 200 Mbytes) deadlocks may
appear. In this work, we aim at avoiding deadlocks
while designing e�cient communication patterns, us-
ing the available communication memory as much as
possible for performance.
Let us examine a simple case of deadlock. Let 1, 2,

x, y, a and b be processes involved in the computation
of two (fronts) tasks T1 and T2. Fig. 1 (left) shows
broadcast tree branches of T1 and T2, with arrows
representing messages paths. On Fig. 1 (right), an
arrow i ! j indicates that freeing a memory resource
on j (corresponding to a message sent to i) depends
on i performing the associated reception. Depend-
ing on the order of messages, there can be a cycle
(in red) in the dependency graph between resources.
Assuming that each process only has one communi-
cation bu↵er, if 1 receives a message from x and 2
receives a message from y, when 1 relays its message
to 2, 2 is already full and will not be able to receive
the message from 1. Similarly, 1 will not be able to
receive the message from 2 leading to a deadlock [1].

x

1

2

a

y

2

1

b

T1 T2

x y

1 2

ab

Figure 1: Branches in broadcast trees (left) with a possible

cycle between resources (right).

Assuming that each process has two memory
bu↵ers for communication instead of one, the dead-
lock may still happen if process 1 fills its two bu↵ers
with messages from x (thus not receiving messages
from 2) and 2 receives two messages from y (thus not
receiving messages from 1). The only way to avoid
the deadlock is to receive and relay messages to the
leaves a and b before resources are full of messages
in the cycle shown in Fig. 1 (right). Reserving one
resource for T1 and another one for T2 on both 1 and
2 also prevents the deadlock, although resources may
be wasted if T1 and T2 are not both active together.
A more dynamic approach consists in receiving mes-
sages in natural order as much as possible, and then
avoiding deadlocks by forcing the last available re-
sources to be used for messages that can be relayed
outside the cycles. In this situation, deadlock avoid-
ance could here consist in having 1 and 2 receiving
messages that can be relayed to the leaves a and b.
Property 1 provides a simpler solution, not requiring
any knowledge of distributed (dynamic) cycles [3]:

Property 1. Assume that a global order has been de-

fined between tasks (nodes). If, each time a process Pi

only has one remaining free communication resource

(others being busy), it dedicates this ressource to com-

munications involving the smallest task it is mapped

on, then deadlocks cannot occur.

Coming back to 1D asynchronous factorizations,
the overall approach is sketched in Algorithm 1 and
relies on fairly standard hypothesis for a fully asyn-
chronous context: (H1) Computation and relay op-
erations associated to a message are atomic (line 3
of the algorithm). In particular, a message arriving
too soon is not relayed before local operations can be
done. (H2) At each node of a broadcast tree, if
memory is available, the message is sent to all succes-
sors in the broadcast tree (send to all or to no one).
(H3) If m1 is sent from Pi to Pj before m2, then m1

is received by Pj before m2.
1: while (! global termination) do

2: if (some received messages can be processed) then

3: process them (computations followed by relay in

broadcast trees)

4: else

5: check whether a new local node can start: activation

of new broadcast tree (multiple non-blocking sends)

6: end if

7: end while

Algorithm 1: Asynchronous multifrontal scheme.

Fig. 2 shows an example of partial decomposition of
a dense matrix, that can be interpreted in the multi-
frontal method as a chain of fronts in the multifrontal
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tree. At each node of this chain (here with just a
child C and a parent P), one process sends panels to
other processes using broadcast trees (TC for child
process 1 and TP for parent process 2). The fact
that red panels must be computed and treated be-
fore blue ones is naturally represented by a causality
link between TC and TP, formally defined as follows.

Definition 1. Let TC and TP be two broadcast trees.

We define the child-parent causality link between

TC and TP by the relation: 8Pi 2 TP, if Pi 2 TC,

all activities of Pi in TC must be finished before any

activity of Pi in TP can start.
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Figure 2: 1D pipelined factorization and several broadcast

trees: TC for child, TP1 or TP2 for parent. We assume here

that process mapping remains unchanged between C and P so

that the root of TC does not work in TP .
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Figure 3: Gantt-charts of child (red) and parent (blue or

green) operations; idle periods in gray.

On multifrontal chains or trees it may happen that
local ressources of a process, say Pi, are busy because
of messages arriving too early or that are not e↵ec-
tivly sent (receiver busy). To apply Property 1 and
thus to avoid deadlocks, the last available resource
should then be dedicated to communications related
to the smallest unfinished node involving Pi (smallest
in the sense of a global order compatible with causal-
ity links, that is, any topological order). In this con-
text, the overhead will depend on the communication
patterns and thus on the structure of the broadcast
trees, as will be demonstrated in the following.

Definition 2. Let TC and TP be two broadcast trees.

TP is said to be IB-compatible with TC if, 8N 2
TP \ TC, 9A 2 {ancestors of N in TP}, s.t. A 2
subtree in TC rooted at predTC(N), the predecessor

of N in TC.

Property 2 (No wait). Given a child C and a parent

P such that TP is IB-compatible with TC. If a process

Pi in TP performs a blocking receive on a given mes-

sage in TC to respect causality links, then Pi will not

wait because the expected message has already been

sent.

Definition 3. ABCw trees (Asynchronous Broad-

Cast trees) are defined by the following characteris-

tics, at each level of a multifrontal chain:

(1) IB-compatibility of TP with TC (no wait);

(2) Width w determined by network topology;

(3) Number of nodes in each child subtree of any node

is balanced: di↵erence is at most 1 (this implies

minimal height and balanced communications);

(4) Maximum pipeline e�ciency between successive

child and parent trees (e.g., Fig. 3 shows that

TC1/TP1 are much better than TC2/TP2).

In order to build all ABCw trees for the chain,
we start from a tree at the bottom node respecting
(2) and (3). We then apply successive Ascensions

to build parent trees from child trees. An ascension
builds TP from TC by taking the branch in TC whose
nodes are roots of the heaviest child subtrees at each
level, and then making each node in that branch re-
place its parent. An example is given in Fig. 2, where
1 ! 2 ! 4 ! 8 in TC1 is replaced by 2 ! 4 ! 8 in
TP1. The mapping of the processes at the bottom
node induces the mapping of processes in the ABCw
trees such as to respect the following properties: (i) at
each level, the root of TP is a child of the root of
TC ; and (ii) the order of the roots of the successive
ABCw trees in the chain follows the mapping of pro-
cesses in the initial front (here 12345678). It can then
be proved that by construction ascensions guarantee
(1) and (4) and that, if the initial broadcast tree (at
chain bottom) has properties (2) and (3), they will
propagate on all broadcast trees in the chain.
To conclude, we have proposed in the context of

asynchronous multifrontal methods properties avoid-
ing deadlocks and broadcast trees providing good
performance in the case of chains of nodes with no
remapping between nodes. It can be shown that the
lost process at each node of the chain may be re-
used anywhere in the multifrontal tree with no risk
of deadlock. As an extension to this work, we work
on using ABCw trees to: (i) the case where rows
are remapped between a child and a parent (ii) the
case of general trees. In both cases, the causality
definition can be modified to take into account mes-
sages exchanges between child and parent nodes in
the elimination tree.
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A Appendix

Proof of Property 1. Two necessary conditions for
deadlock are resource starvation and the presence of
cycles. As long as enough bu↵er memory is available,
no deadlock can occur. Moreover, as no cycle exists
in a broadcast tree, a cycle may only occur between
distinct broadcast trees. Hence, the dependencies in
a cycle are related to two or more tasks. Thus, if the
processes in this cycle respect a global order between
tasks when they have critically low bu↵er memory,
we guarantee that at least two dependencies in the
cycle cannot coexist simultaneously, as the processes
will first communicate following the first dependency
before starting / continuing the communications in
the other dependency. The cycle is then broken.

Proof of Property 2. Let Pi be a process mapped on
NC 2 TC and on NP 2 TP, which has received
a message from predTP(NP ), but has not finished
its work in TC. Respecting causality implies that as
soon as Pi has only a single bu↵er resource available,
it must post the reception and treat messages msg in
TC (coming from predTC(NC)). The only way to
guarantee that a message msg has already been sent
is to find a path linking this event “Pi has posted the
reception of msg from predTC(NC)” with the event
“predTC(NC) sends msg to NC”. As the reception of
a message of TP from predTP(NP ) by Pi means that
all the ancestor processes of Pi in TP have relayed all
the messages in TC (respect of causality) and as one
of Pi’s ancestors (A) in TP is also mapped in TC in
the subtree rooted at predTC(NC) (IB-compatibility
of TP with TC), this implies that all the processes be-
tween this ancestor and predTC(NC) in TC (in par-
ticular predTC(NC)) have relayed all the messages in
TC (in particular msg). Hence, msg is guaranteed to
have been already sent. More precisely, it has been

sent by predTC(NC) to the sibling of NC subtree
that contains A, and thus – thanks to (H2) – it has
also been sent to NC.

Generalization of Property 2. Property 2 only con-
siders a child and a parent but can be generalized to a
chain of nodes where each child tree is IB-compatible
with the corresponding parent tree: if Pi must receive
a message corresponding to the smallest (lowest) ac-
tive front Pi is mapped on, then it can be proven
that the message has already been sent. The basic
idea of the proof is that, if a path linking events be-
tween two succesive fronts exists, it also exists in a
chain of successive fronts. This generalization is ac-
tually necessary to obtain the “No wait” property of
ABCw trees not only between child and parent but
also between grandchild and grandparent, . . .
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Comparing Di↵erent Cycle Bases for a Laplacian Solver
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1 Kelner et al.’s Randomized Kaczmarz Solver

Solving linear systems on the graph Laplacian of large
unstructured networks has emerged as an important
computational task in network analysis [7]. Most work
on these solvers has been on preconditioned conjugate
gradient (PCG) solvers or specialized multigrid methods
[6]. Spielman and Teng, showed how to solve these
problems in nearly-linear time [8], later improved by
Koutis et al. [5] but these algorithms do not have
practical implementations. A promising new approach
for solving these systems proposed by Kelner et al. [4]
involves solving a problem that is dual to the original
system.

The inspiration for the algorithm is to treat graphs
as electrical networks with resistors on the edges. The
graph Laplacian is defined as L = D � A where D is
a diagonal matrix containing the sum of incident edge
weights and A is the adjacency matrix. For each edge,
the weight is the inverse of the resistance. We can
think of vertices as having an electrical potential and
net current at every vertex, and define vectors of these
potentials and currents as ~v and ~� respectively. These
vectors are related by the linear system L~v = ~�. Solving
this system is equivalent to finding the set of voltages
that satisfy the currents. Kelner et al.’s SimpleSolver
algorithm solves this problem with an optimization
algorithm in the dual space which finds the optimal
currents on all of the edges subject to the constraint of
zero net voltage around all cycles. They use Kaczmarz
projections [3] [9] to adjust currents on one cycle at
a time, iterating until convergence. They prove that
randomly selecting fundamental cycles from a particular
type of spanning tree called a “low-stretch” tree yields
convergence with nearly-linear total work.

⇤Sandia National Laboratories, Sandia is a multi-program lab-
oratory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energys National Nuclear Security Administration
under contract DE-AC04-94AL85000. eboman@sandia.gov

†UC Santa Barbara Dept. of Computer Science, Supported
by Contract #618442525-57661 from Intel Corp. and Con-
tract #8-48252526701 from the DOE O�ce of Science. kde-
weese@cs.ucsb.edu, gilbert@cs.ucsb.edu

(a) (b)

(c) (d)

Figure 1: Grid Cycles

2 Choosing the Cycle Basis

We examine di↵erent ways to choose the set of cycles
and their sequence of updates with the goal of providing
more flexibility and potential parallelism. Our ideas
include the following.

• Provide parallelism by projecting against multiple
edge-disjoint cycles concurrently.

• Provide flexibility by using a non-fundamental cy-
cle basis.

• Provide flexibility by using more (perhaps many
more) cycles than just a basis.

• Accelerate convergence by varying the mixture of
short and long cycles in the updating schedule.

Sampling fundamental cycles from a tree will require
updating several potentially long cycles which will not
be edge-disjoint. It would be preferable to update
edge-disjoint cycles as these updates could be done
in parallel. Instead of selecting a cycle basis from a
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spanning tree, we will use several small, edge-disjoint
cycles. We expect updating long cycles will be needed
for convergence, but we consider mixing in the update of
several short cycles as they are cheap to update and have
more exploitable parallelism. These cycles can then be
added together to form larger cycles to project against
in a multigrid like approach.

An example of these cycles can be seen on the 5 by
5 grid graph in Figure 1. Figure 1(a) shows a spanning
tree in which each cycle is determined by an edge not
in the tree. The smallest cycles of a non-fundamental
scheme are shown in Figures 1(b)(c). All the cycles in
each of these two figures are edge-disjoint and can be
updated in parallel. They can also be summed together
as in Figure 1(d).

3 Preliminary Experiments and Results

We performed our initial experiments on grid graphs of
various sizes. We used a non-fundamental set of cycles
with a hierarchical ordering. The smallest set of cycles
are updated. Then the cycles are coarsened and the
next level of cycles are updated. This is done until
reaching the perimeter cycle before resetting back to
updating the smallest cycles. We also implemened the
SimpleSolver algorithm in Matlab, except that we used
a random spanning tree for sampling instead of a low-
stretch tree. We also haven’t implemented a clever data
structure Kelner et al. use to quckly update edges. We
also compared our results to PCG with Jacobi.

The metric we choose for comparison is the total
number of edges updated, or matrix elements touched
in CG. We can see the total work measured in edges
updated in Table 1. Also shown in the table is an
estimated potential parallelism using the work-span
model [10]. The span, or critical path length, is the
maximum number of edges that would have to be
updated by a single processor if we can split the work
over infinitly many processors.

Grid Size (Vertices) 25 289 4,225
Fundamental Cycles Work 8K 1.4M 296M
Alternative Cycles Work 1K .08M 4M
Alternative Cycles Span .5K 8.4K 105.8K

PCG Work 1K .09M 5M

Table 1: Edges Updated

4 Conclusions and Future Work

Our preliminary experiments show that choosing a non-
fundamental set of cycles can save significant work com-
pared to a fundamental cycle basis, and can be at least
competitive with PCG.

We are exploring ways to find a non-fundamental
cycle basis of more general graphs; one challenge is how
best to find large sets of short edge-disjoint cycles for
parallelism. Our ideas for cycle finding include short-
cuts to the spanning tree cycles and growing small cy-
cles locally around vertices and edges. We also plan to
make a rigorous comparison with several other precon-
ditioned CG methods, including incomplete Cholesky
and support-graph techniques.

We note that any of these graph Laplacian solvers
can be extended to general symmetric diagonally domi-
nant systems via standard reduction techniques. [1] [2].
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Numerical methods for the solution of partial di↵erential equations constitute an impor-
tant class of techniques in scientific computing. Often, the discretization is based on approx-
imating the partial derivatives by finite di↵erences on a regular Cartesian grid. The resulting
computations are structured in the sense of updating a large, multidimensional array by a
stencil operation. A stencil defines the update of the value at a grid point based on values at
neighboring grid points.

We consider the problem of computing the Jacobian matrix of some functions that is
given in the form of a computer program involving stencil operations on a regular Cartesian
grid. Due to the stencil operations this Jacobian matrix is sparse. The exploitation of
the stencil-type to compute this sparse Jacobian matrix using automatic di↵erentiation with
minimal computational e↵ort can be modeled as a graph coloring problem [1]. By definition,
exact solutions of this combinatorial optimization problem use the minimal number of colors.
Exact solutions in terms of explicit formuæ are known for various stencil types [2, 4, 5].
However, a formula for the exact solution is not readily available for an arbitrary stencil
type. So, by ignoring any structure implied by a given stencil, it is not uncommon to use
coloring heuristics for general graphs. These heuristics try to approximate the exact solution
and will, most likely, not attain the minimal number of colors. Recently, Lülfesmann and
Kawarabayashi [3] introduced a graph coloring algorithm for an arbitrary stencil on a regular
multidimensional Cartesian grid that computes the exact solution. This algorithm eliminates
the need for deriving an explicit formula for the exact solution. It is based on a divide-and-
conquer approach that establishes a hierarchy of vertex separators that recursively decomposes
the grid into smaller and smaller subgrids. The main advantage of this algorithm is that it
always computes a coloring with the minimal number of colors. However, the disadvantage
of this algorithm is its high computational complexity. In fact, there are problem instances
reported in [3] where, compared to the running time of a traditional graph coloring heuristic,
the running time of this algorithm is larger than a factor of more than 800.

So, there is urgent need to look for alternative ways to compute exact solutions of this
structured graph coloring problem while reducing the resulting running time. In this extended
abstract we propose a novel graph coloring algorithm for stencil-based Jacobian computations
on a regular Cartesian grid whose running time is independent of the grid size. The main
advantage of this new approach is twofold: First, it computes a coloring with a minimal
number of colors. Second, its computational complexity is low. The disadvantage is that we
currently can not prove that this algorithm computes a solution for every given stencil type.
It is currently open whether or not there is any stencil type where the algorithm terminates
without computing a solution. However, we carried out extensive numerical experiments

Bora Ucar
56



Figure 1: A 7⇥ 7 colored tile with a minimal coloring for the five-point stencil.

varying stencil types and observed that the new algorithm successfully computed a solution
for all considered stencil types.

The main idea of the new algorithm is to color a small subgrid whose coloring allows
to color a larger grid of arbitrary size. We call such a subgrid a colored tile. For the sake
of simplicity, the following discussion is restricted to grids in two dimensions. However, the
algorithm also generalizes to multidimensional Cartesian grids. A colored tile consists of two
pairs of rectangular regions with the following property. A pair of two rectangular regions
is called consistent if and only if the two rectangular regions have the same number of grid
points in each grid dimension and all corresponding grid points are colored identically. In
Figure 1, the pair of the two 2 ⇥ 7 rectangular regions on the left and right border of the
7⇥7 colored tile are consistent, because the color of a grid point (i, j) is identical to the color
of the grid point (i + d, j). Similarly, the top and bottom 7⇥ 2 rectangular regions are also
consistent. Therefore, the 5 ⇥ 5 region indicated by the box with the purple frame in the
bottom left corner can be used to color a larger grid by repeatedly placing this region next to
each other in horizontal and vertical direction. To ensure a valid coloring, the width kw and
height kh of the consistent rectangular regions are important and depend on the given stencil
type. These values are chosen by taking into account grid points which we call structurally
non-orthogonal.
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We consider sequential and shared-memory parallel (on multicore computers) algorithms that
implement a half-approximation algorithm for weighted b-matching on arbitrary graphs. Consider
an undirected graph G(V,E,w) with vertex set V , edge set E, and weight function w(e) � 0 for
each e 2 E, and a function f : V ! Z+ assigning non-negative integers to the vertices. (We
assume without loss of generality that f(v) is less than or equal to the degree of the vertex v.)
Then a b-matching on G is a subset of edgesM ✓ E such that every vertex v 2 V has at most f(v)
edges in M incident on it. The values f(v) for each vertex v could be be di↵erent or the same (in
the latter case f(v) = b for some positive integer b, and hence the name b-matching). The usual
notion of matching has f(v) = 1 for all v, and we will call it a 1-matching. If all vertices in M
are required to have degree exactly f(v), we call it a perfect b-matching. A maximum cardinality

b-matching M has the cardinality |M | as large as possible. A maximum weight b-matching M has
the sum of weights

P
e2M w(e) as large as possible. In this abstract we focus on the maximum

weight b-matching with f(v) >= 2 for all v.
The applications of 1-matching problem include Google’s Ad words problem, image recogni-

tion in computer vision, network alignment, sparse matrix computations, etc. Jabera et al. [4]
have shown that b-matching is useful in various machine learning problems such as classification,
spectral clustering, semi-supervised learning and graph embedding.

Let m denote the number of edges and n the number of vertices in G. The fastest exact
algorithm for this problem, by Gabow and Tarjan [1], requires O(n1/2m) time. Fremuth-Paeger
et al. [6] and Jabera et al. [4] describe exact algorithms that use min-cost flow and belief prop-
agation techniques, respectively. Both of these algorithms have running time O(nm), but the
belief propagation technique is currently the fastest practical algorithm. However, these running
times are prohibitive in case of even moderate-sized graphs, and hence we design linear-time
approximation algorithms. The approximate edge weighted 1-matching problem has also been
studied. Mestre [3] showed 1/2- and (2/3 � ✏)-approximation algorithms for b-matching by ex-
tending path-growing approximation algorithms for the 1-matching problem. Morales et al. [2]
and Georgiadis et al. [5] developed 1/2�approximation algorithms for b-matching based on the
concept of locally dominant edges. Although the latter describes a distributed algorithm and uses
di↵erent notation, their algorithm is similar to ours.

Here we propose a new 1/2�approximation maximum weight b-matching algorithm, called
b-Suitor, which we show to be practically faster than earlier algorithms. The b-Suitor algorithm
is an extension of the Suitor algorithm proposed by Manne and Halappanavar [7] for solving the
maximum weight 1-matching problem. All of these are serial algorithms. We also study these
algorithms in the parallel (shared memory) context.

In the b-Suitor algorithm each vertex v proposes to a set of f(v) vertices (v is a suitor of these
vertices). Hence each vertex maintains two lists of vertices: S(v) is the list of current Suitors
of v, i.e., vertices that propose to match to v, and T (v) is a list of vertices that v has proposed
to. The process responsible for matching a vertex v includes in T (v) its heaviest available f(v)
neighbors, where a neighbor w is unavailable if it has f(w) heavier Suitors than v. This is a
speculative algorithm: If v finds that it is heavier than the f(w)-th Suitor of w, call it y, then it
unmatches y and includes itself as a Suitor of w. This process now tries to find a neighbor not
included in the list T (y) for y to propose to.

We can describe three variants of this algorithm, based on whether the adjacency lists of the
vertices are sorted in non-increasing order of weight or not. We can choose to have unsorted
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(a) Relative performance of variant algorithms (b) Strong scaling

Figure 1: The performance of three variant Suitor algorithms, and strong scaling of the sorted
Suitor algorithm for computing a 5-matching on a multicore computer.

adjacency lists, or fully sorted lists; the third option is to partially sort so that small multiples
of f(v) highest weighted vertices in each adjacency list are sorted. The time complexity of the
unsorted algorithm is O(m�B), where B = max{f(v) : v 2 V }, and � is the maximum vertex
degree. For the sorted algorithm it is O(n+m log�),

We present preliminary results on computing a 5-matching from a shared memory parallel
implementation of the b-Suitor algorithm. The machine is an Intel Xeon multiprocessor, with
ten cores per socket, and the computer consists of two sockets. The processor speed is 3.0 GHz,
and the system has 128 GB memory. Figure 1 shows the performance of eight problems, five of
which are from the the University of Florida collection and three which are synthetic RMAT graphs.
We report the first set of results for the parallel b-Suitor algorithm with b = 5. The results in
Figure 1(a) show that sorting leads to faster algorithms, by factors upto nine, for graphs with
several hundred million edges. Complete sorting seems to be better than partial sorting for most
of these problems. Figure 1(b) shows strong scaling results on the twenty Intel Xeon cores, and all
eight problems show good speed-ups. We will discuss the factors that influence the performance
and scalability of these problems at the Workshop. We are also working with colleagues at Intel
Corporation on Xeon Phi implementations.
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1 Introduction

We consider the problem of single-source shortest path (SSSP) computation in a distributed setting,
where a large sparse graph with non-negative edge weights is partitioned across the nodes of a
parallel system. SSSP is a key computation arising in large-scale network analysis and a possible
candidate for inclusion in the Graph500 benchmark. Work-e�cient SSSP algorithms are based on
Dijkstra’s algorithm [5]. However, there is limited concurrency to exploit in Dijkstra’s algorithm, as
it belongs to the label-setting class of shortest path algorithms. Label-correcting algorithms relax the
constraint that the vertex with minimum weight be picked at each step, and these algorithms do not
use a priority queue. The Bellman-Ford algorithm [1] is an example of a label-correcting and is more
amenable to parallelization, but it is not work-optimal for graphs with non-negative edge weights.
The Delta-stepping [11] algorithm can be considered a hybrid approach combining Bellman-Ford
and Dijkstra’s algorithm. Prior work has studied shared-memory [10] and distributed-memory [6, 7]
implementations of Delta-stepping. There is one key parameter in this algorithm, �, whose setting
determines the number of parallel phases, the work performed, the load-balance across multiple
tasks in a parallel system, and hence the running time.

2 Our Contributions

We have developed optimized parallel implementations of three SSSP algorithms – Dial’s algo-
rithm [4], Bellman-Ford, and Delta-stepping – for graphs with positive integer edge weights. Dial’s
algorithm is a special case of Dijkstra’s algorithm for graphs with integer weights, and does not
require a priority queue. Bellman-Ford also does not use a priority queue because it is a label-
correcting algorithm. We use a bucket array data structure, parameterized by �, as the priority
queue in our implementation of Delta-stepping. All three approaches are bulk-synchronous. We
use a distributed compressed sparse row representation for the graph. On a system with p tasks,
each task holds n/p vertices and all outgoing edges from these vertices. The distance array is
also partitioned and distributed in a similar manner. Delta-stepping has light and heavy edge
relaxation phases. We have designed our method so that all communication happens at the end of
these phases, and all relaxations are performed locally. Our approach is thus a bulk-synchronous
modification of the implementation in [10]. Further, our code has the following optimizations:
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• The buckets are implemented as dynamic arrays. Each bucket is allocated only if a vertex
being added to it, and it can be resized when needed. At the end of a light edge relaxation
phase of bucket i, it can be deallocated and the memory can be reused for other bucket
allocations, since there will be no more insertions to that bucket. Moreover, we use two
auxiliary arrays of size n/p to provide constant time insertions and deletions of vertices in
each bucket [2].

• A semi-sorting routine is used as a preprocessing step of the algorithm. It reorders the edges
of each vertex based on edge weights and the value of � such that all light edges appear
before heavy ones.

• Local lookup arrays are used to track the tentative distance of every vertex, avoiding duplicate
requests being sent.

Additional details are discussed in a technical report [13].
We collect parallel performance results on the TACC Stampede cluster. This is a 10 PetaFlop/s

Dell Linux cluster with more than 6400 Dell PowerEdge server nodes. Each node has two Intel Xeon
E5 Sandy Bridge processors and an Intel Xeon Phi coprocessor. We do not use the coprocessor
in the current study. Our implementation uses MPI. The main collective communication routines
used in our code are Alltoallv, Alltoall, and Allreduce. We use synthetic graphs generated using the
Graph500 reference implementation v1.2 [8]. The generated graphs have skewed degree distributions
and a very low graph diameter. We experiment with uniform and normal edge weight distributions,
as well as integer (includes Dial) and double-precision (weights in (0, 1]) edge weights. We also vary
the maximum weight in case of graphs with integer weights.

Our single-node Delta-stepping performance (16 MPI tasks) is faster than the shared-memory
Chaotic relaxation approach of Galois [12, 9] on a large collection of graphs. It is 1.4⇥ faster with
uniform edges and 3.36⇥ faster with normal weight distributions. It is also nearly 10⇥ faster than
the Parallel Boost graph library implementation on a single node.
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Figure 1: Strong scaling: Overall execution time and percentage of time spent in communica-
tion for Dial’s algorithm, Bellman-Ford, and Delta-stepping, on SCALE 27 Graph500 graphs with
uniform weights and max weight set to 1024.
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Multinode strong scaling results are shown in Figure 1. We also report performance of a parallel
Breadth-First Search (BFS) for comparison. Delta-stepping scales up to 512 cores (32 nodes), but
beyond that point, there is computational load imbalance. Bellman-Ford is initially slower than
Delta-stepping, but scales better due to fewer number of parallel phases. Dial’s algorithm shows
the worst scaling, but note that its performance is dependent on the maximum edge weight. Dial
performance is comparable to BFS if all weights are set to 1. Delta-stepping would incur a significant
overhead due to bucket maintenance in that setting.

128 256 512 1024 2048
0

1

2

3

4

5

6

7

8

9

10

Number of cores

Ex
ec

ut
io

n 
tim

e 
(s

)

 

 

16
32
64
128
256
512
1024

(a) Uniform weight distribution

128 256 512 1024 2048
0

1

2

3

4

5

6

7

8

9

10

Number of cores

Ex
ec

ut
io

n 
tim

e 
(s

)

 

 

16
32
64
128
256
512
1024

(b) Normal weight distribution

Figure 2: The e↵ect of � on a SCALE 27 Graph500 network.

Note from Figure 2 that the performance of Delta-stepping is heavily dependent on the value
of � used in the case of uniformly-distributed edge weights. In general, larger values of � are
preferable at higher task concurrencies.

To alleviate the load imbalance seen at 512 cores, we are also developing a parallel implemen-
tation of Delta-stepping based on a 2D edge-based partitioning and distribution of the graph. Our
2D approach supports arbitrary partitions of the graph (e.g., with 512 MPI tasks, 32⇥ 16, 64⇥ 8,
128 ⇥ 4, etc. are possible, and the 512 ⇥ 1 case corresponds to 1D row-based partitioning). The
MPI collective Allgatherv is additionally used in the 2D implementation. While we verified that
the 2D implementation improves load balance, our current 2D implementation is still slower than
the best 1D approach (after tuning for �) due to bucketing implementation overhead.

In a recent paper [3], Chakaravarthy et al. present a new parallel algorithm for SSSP, and a
highly optimized implementation for IBM Blue Gene/Q systems. Assuming a 1D graph distribution,
this Delta-stepping based algorithm introduces a new edge pruning strategy to reduce inter-node
communication, and a new load-balancing strategy for graphs with skewed degree distributions.
We are extending our Delta-stepping implementation to include both these optimization strategies.

In current work, we are developing a hybrid MPI-OpenMP implementation to mitigate the
load imbalance issue seen in strong scaling. We are also developing a automated scheme to choose
the value of � given the task concurrency and the weight distribution. Thirdly, we are exploring
hybrid Delta-stepping and Bellman-Ford approaches, where we switch to Bellman-Ford after a
certain number of Delta-stepping phases.
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We focus on the independent task assignment problem which is defined as assigning N indepen-
dent tasks to K heterogeneous processors. In this problem, given an Expected-Time-to-Compute
matrix that identifies the expected execution times of each independent task on each processor,
the objective is to generate a task-to-processor assignment that achieves a minimum makespan.
This problem is known to be NP-complete and MinMin, MaxMin, and Su↵erage are successful
heuristics that are widely used in the literature to solve this problem [1, 2, 3, 4]. All of these
heuristics are constructive in nature and they all run in O(KN2) time. In [5], we propose a
O(KN logN)-time MinMin algorithm that achieves the same solution quality as the conventional
MinMin algorithm. The proposed algorithm achieves this asymptotic improvement through uti-
lizing a processor-oriented approach instead of the task-oriented approach of the original MinMin
algorithm. In [5], we also propose to improve the performance of MaxMin and Su↵erage heuristics,
by combining the proposed asymptotically faster MinMin heuristics with these two heuristics. The
proposed MaxMin heuristic improves the runtime performance of the conventional MaxMin and
also improves the solution quality by adaptive use of MinMin and MaxMin assignment decisions
during the assignment iterations. We propose a similar improvement on Su↵erage heuristic that
leads to an improvement on the runtime without disturbing the solution quality. The proposed al-
gorithm achieves critical assignment decisions by conventional Su↵erage in order not to disturb the
solution quality and achieve non-critical assignment decisions by the fast MinMin algorithm. For
the assignment of the 2.5 million tasks of a real-world dataset to 16 heterogeneous processors, the
conventional MinMin algorithm generates a solution in three weeks, whereas the proposed MinMin
heuristic generates the same assignment in less than a minute. Experimental results on these
real-world datasets also show that the proposed MaxMin and Su↵erage heuristics run considerably
faster than the original heuristics. On the average, the proposed MaxMin heuristic is found to
generate considerably better solutions than the original MaxMin, whereas the proposed Su↵erage
heuristic is found to generate slightly better solutions than the original Su↵erage heuristic.
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I. THE LANGFORD PROBLEM

The Langford problem is a classic permutation prob-
lem [1], [2]. While observing his son manipulating
blocks of different colors, Langford noticed that it was
possible to arrange three pairs of blocks of different
colors (e.g., yellow, red, blue) in such a way that color
1 cubes were separated by 1 block, color 2 by 2 blocks,
etc. (Fig. 1).

blue yellow blueyellow redred

Figure 1. L(2,3): arrangement for 6 blocks of 3 colors.

The nth instance of the Langford problem consists in
counting the number L(2, n) of such pairs arrangements
(up to a symmetry). This study considers the standard
Langford problem but could be generalized to any num-
ber s of blocks having the same color, in order to get
the L(s, n) value. Martin Gardner presented instance 4
of the problem (2 cubes and 4 colors) as being part of a
collection of small mathematical games and stated that
L(2, n) has solutions for all n such that n = 4k or
n = 4k � 1 for k 2 N \ {0}.

A. Miller’s algorithm: a tree search approach

The Langford problem can be modeled as a tree search
problem where look for all possible solutions. In order
to solve L(2, n), we consider a tree of height n where:

• every node of the tree corresponds to the place in
the sequence of the cubes of a determined color;

• at the depth p, the first node corresponds to the
place of the first cube of color p in first position,
and the ith node corresponds to the positioning of
the first cube of color p in position i, where i 2
[1, 2n� 1� p];

• every leaf of the tree symbolizes the positions of all
the cubes;

• a leaf is a solution if it respects the color constraint
defined by the Langford problem: all the cubes must
be in different places.

This search tree is usually implemented in a bottom-up
approach (Fig. 2), where the top color is the nth color, as
this approach allows tree pruning to remove symmetric
results and unsolvable branches.

(1,5) (2,6)

(1,4) (2,5) (3,6) (1,4) (2,5) (3,6)

(1,3) (2,4) (3,5) (4,6) (1,3) (2,4) (3,5) (4,6)

Positions of 
color 3 cubes

Positions of 
color 2 cubes

Positions of 
color 1 cubes

… ………

Figure 2. Search tree for L(2, 3) with symmetry pruning.

B. Godfrey’s algorithm: algebraic method

The Miller’s approach, limited to this naive tree search
evaluation with backtracking, suffers from combinatorial
explosion. It allowed to get L(2, 19) in 1999 after 2.5
years on a DEC alpha computer, but the compute time
is estimated to be 10 times higher from an instance to
the following one.

In 2002, an algebraic representation of the Langford
problem has been proposed by Godfrey1.
Consider L(2, 3) and X = (X1, X2, X3, X4, X5, X6). It
proposes to model instance 3 by F (X, 3) = (X1X3 +
X2X4 +X3X5 +X4X6)⇥ (X1X4 +X2X5 +X3X6)⇥
(X1X5+X2X6). In this approach, each term represents
a position for both cubes of a given color ; the number of
solutions is equal to the coefficient of X1X2X3X4X5X6

in the polynomial development. More generally, the
number of solutions of instance n corresponds to the
coefficient of X1X2X3X4X5...X2n in F (X,n).

1http://legacy.lclark.edu/⇠miller/langford/godfrey/method.html
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If G(X,n) = X1...X2nF (X,n) then Godfrey has
shown that:

X

(x1,...x2n)2{�1,1}2n

G(X,n)(x1...x2n) = 22n+1L(2, n)

So:
X

(x1...x2n)2{�1,1}2n

(
2nY

p=1

x
p

)
nY

p=1

2n�p�1X

i=1

x
i

x
i+p+1 = 22n+1L(2, n)

The computation of L(2, n) is in O(4n ⇥ n2) and an
efficient long integer arithmetic is needed.

By using this approach, M. Godfrey has solved
L(2, 20) in one week on three PCs in 2002. Later,
Krajecki et al. [3] solved the L(2, 23) and the L(2, 24)
problem instances, the latter in 3 months, using a dozen
of computers. In spite of the evolution of CPUs process-
ing power, the solution for the next problem instance
- L(2, 27) - would require several months of intensive
computing on a whole cluster.

II. LANGFORD DEPLOYMENT ON MULTIGPU
CLUSTERS

Since the end of 2000’s, GPUs become a fast and
less expensive alternative to massive parallel comput-
ing on CPUs. The number of GPU cores that can be
aligned in a single machine is much more expressive (for
example, 2688 GPU cores in a Nvidia K20Xm Kepler
GPU processor, against 16 cores in a Intel Xeon CPU).
Nowadays supercalculators include GPUs, and multi-
GPU architectures become more frequent in the TOP500
list.

One of the main limitations of GPUs is that their
cores are simpler that CPU ones and the threads spread
on these cores work synchronously. This prevents to take
advantage of their potential on irregular applications,
based on multiple tests and branchings.

Our approach uses a bottom-up tree (i.e., starting
from the nth color) and combines Miller and Godfrey’s
techniques to efficiently perform the computation.

The Miller’s tree search allows to prune the search
space in order to highly reduce the search effort, but
it is based on backtracking and thus cannot benefit of
GPUs use. This step is therefore performed on CPU.

Our Miller’s implementation is based on a binary
representation of the ”color” codes (for example, a color
in level 1 has code ”101”, while a color in level 3
has code ”10001”) with bit-shifting and bit-wise XOR
operations (Fig. 3).

Using a distributed computing middleware such as
MPI or CloudFIT [4], the generated consistent masks
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Figure 3. Bitmap evaluation of color alignments.

are treated by compute CPU-GPU clients as follows:
the CPU prepares a large set of more refined masks in
order to prepare grids and blocks to feed the GPU, which
traverses the relative sub-tree with the regular Godfrey
approach.

In order to take advantage of the GPUs compute
efficiency, much effort has to be made to optimize
the Godfrey implementation. In addition, code tuning
imposes to fix the depth of the sub-trees to be considered
by the GPU kernels; the depth dedicated to the clients
grids generation is deduced from the server [Miller]
masks generation and the GPU kernel [Godfrey] depth.

We have already developed the implementation of
the Miller tasks generation, their distribution over the
compute clients with client-server or cloud distribution,
the generation of the sub-masks sets for GPU kernel
computation, and a Miller regularized implementation of
the kernel. The results prove our concept. The last effort
to be done is to implement the GPU kernel version of
the Godfrey approach, which we currently work on. We
aim at the resolution of L(2,27) on the ROMEO cluster2,
a GPU-enhanced cluster ranked 151th on the TOP500
listing (Nov. 2013).
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In many scientific areas, the size and complexity of numerical simulations lead
to make intensive use of massively parallel simulations on High Performance Com-
puting (HPC) architectures. Such architectures are mainly modelized as a set of
processing units (PU) where memory is distributed. Distribution of simulation data
is crucial: it has to minimize the computation time of the simulation while ensuring
that the data allocated to every PU can be locally stored in memory.

In this work, we focus on numerical simulations using finite elements or finite
volumes methods, where physical and numerical data are carried on a mesh. The
computations are then performed at the cell level (for example triangle and quadri-
lateral in 2D, tetrahedron and hexahedron in 3D). More specifically, computing and
memory cost can be associated to each cell. Depending on the numerical scheme
to apply, a graph or an hypergraph representation of the mesh is built to perform
partitioning. Such a representation is then used by tools like Metis, Patoh, Scotch
or Zoltan to distribute the mesh. Traditional approaches consist in balancing the
computing load between PUs while minimizing:

• either the edge cut, or hyper-edge cut, between parts ;

• or the size of a vertex separator.

Such objective functions do not rely on an important characteristic of the nu-
merical methods used in simulation codes. The computation performed on cell i
requires data from adjacent cells. As a consequence, an usual approach is to du-
plicate some cells between PUs. Such cells are commonly called “ghost cells” and
we obtain a partitioning with covering. Although it is assumed that edge cuts is
proportional to the total communication volume, it is not [Hen98]. And, for iden-
tical reason the memory footprint of ghost cells is not explicitly taken into account
while minimizing edge cuts.

Load balancing is usually achieved in two steps:

1. Cells are distributed according to a balance criterion, without taking care of
ghost cells, to be reached;
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2. Then ghost layers are built to allow the resolution of numerical scheme locally
to every PU.

However, the partitioning obtained after phase (1) does not take into account the
memory footprint of ghost cells added in phase (2). For 2D meshes the size of
the edge cut between two parts grows as O(n

1
2 ) and for 3D meshes it grows as

O(n
2
3 ), with n the number of cells. Then, distributing a mesh on a large number of

processors can bring the simulation to break o↵ due to a lack of physical memory
on a PU.

In this context, we propose a new approach for the mesh partitioning on k parts,
which takes into account ghost cells and the memory constraint on each PU. We
formalize this new problem by means of integer linear programming [Dan63]. In
this way, we obtain a problem similar to make span minimization in scheduling
[CPW98], where the variables are: x

i,p

which is equal to 1 if the computations
associated to the cell i are performed on part p and 0 otherwise; y

i,p

which is equal
to 1 if the cell i is stored in memory on part p and 0 otherwise. The problem is:

Function: make span min C
max

Constraints: Assignment
kP

p=1
x

i,p

= 1 8i 2 Mesh

Time
P

i2Mesh
x

i,p

c
i,p

 C
max

8p 2 [[1, k]]

Memory
P

i2Mesh
y

i,p

!
i,p

 Mem
p

8p 2 [[1, k]]

Ghost x
i,p

 y
i

0
,p

8(i, i0) adjacent
and 8p 2 [[1, k]]

This model optimizes the computation time and obtains the resulting partition,
through the variables x

i,p

, while ensuring that the memory size including ghost
cells does not exceed the memory bounds of each processor, through the auxiliary
variables y

i,p

.

To compare our approach with existing solutions, we also modelize some clas-
sical combinatorial problems such as graph partitioning, hypergraph partitioning,
and graph partitioning with vertex separator by using integer linear programming.
Having these various problems in the same formalism supplies first elements of
comparison that we complete by comparing their solutions on benchmarks.
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1 Introduction
Combinatorial Scientific Computing is an important interdisciplinary field combining issues from Combinatorial
Optimization to solve efficiently Scientific Computing problems. In this work, we solve a 3D nonlinear problem
using a Newton-type method that requires, at each step, the evaluation of a Jacobian matrix and the solving of a linear
system. The Jacobian evaluation is optimized through matrix partitioning and a matrix reordering scheme is used to
accelerate the convergence of the preconditioned iterative GMRES solver, as shown in Figure 1.

Nonlinear
problem

Newton
method

Jacobian evaluation
Matrix partitioning

GMRES solver
Matrix reordering

Figure 1: Problem flow and optimizations (in blue) scheme.

2 Inexact Newton Krylov Method
The Newton-type algorithm requires the solution of linear systems at each iteration. When iterative Krylov methods
are used to solve these linearized systems, the resulting methods are known as Inexact Newton-Krylov methods.
Inexact Newton methods are especially well suited for large-scale problems and have been used very successfully in
many applications. Their success depends mainly on three factors: (i) quality of initial Newton step, (ii) robustness
of Jacobian evaluation and (iii) robustness of the Krylov iterative method, the last two which we focus on.
3 Optimizations
Sparsity in the derivative matrices can be exploited to compute the nonzero entries efficiently. In finite difference
approximations, efficiency can be achieved by partitioning the columns of a sparse Jacobian matrix into a few groups
of structurally orthogonal ones. In each group, no two columns have a nonzero in a common row and all nonzeros
can be estimated through one finite difference operation, improving the whole evaluation time of the matrix. This
partitioning problem is generally modeled and solved as a graph coloring problem [1], but a different approach is used
for the matrices treated here. Since they have a trivial sparsity pattern, we drew inspiration from [2] to obtain a set
expression, presented in the next section, that defines a minimum partitioning.
Sparse matrix reordering schemes with the purpose of minimizing the bandwidth were also implemented in this work,
as alternatives to speed up the convergence of the preconditioned GMRES method. The preconditioning technique
used is based on incomplete LU factorization ILU(p), where p is the level of fill used to control the number of
new elements generated during the process. The preconditioning calculations are optimized when we use a matrix
reordering, once with the reduced bandwidth less floating-point operations are made. For the tests we adopted the
Sloan reordering [3] for its good solutions achieved for the matrices generated in our specific problem.
4 Test Problem
For the numerical experiments we use a 3D heat transfer problem defined by the nonlinear differential equation:

�r · (K(u)ru) = 0 in ⌦ = (0, 1)⇥ (0, 1)⇥ (0, 1) (1)

where u is the temperature, the thermal conductivity is considered as K(u) = 0.0000002u2 + 0.00001u+ 0.001 and
the boundary conditions are u(x, y, 0) = u(x, 0, z) = u(1, y, z) = 10 and u(x, y, 1) = u(x, 1, z) = u(0, y, z) = 100.
Consider a discretization of ⌦ into an uniform grid with N = n ⇥ m ⇥ l unknowns points, respectively, in the
x, y, z directions. We approximate the derivatives by combining forward, backward and centered finite differences,
arriving to the nonlinear system of equations F (u) = 0, where F : IRN ! IRN is a nonlinear vector function,
u = (u1, u2, . . . , uN )T is the unknown vector and each component of F depends only on the seven unknowns uI�m·n,
uI�n, uI�1, uI , uI+1, uI+n and uI+m·n, for I = 1, 2, . . . , N . Each iteration of the Newton’s method is given by
uk+1 = uk+sk, where sk is calculated by the solution of the linear system J(uk)sk = �F (uk). The Jacobian matrix
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J represents the variation of F with respect of u, that is considered as a forward finite difference approximation. We
may terminate the iteration when the relative nonlinear residual kF (uk)k/kF (u0)k is small. Given its heptadiagonal
structure, J can be partitioned into seven groups of structurally orthogonal columns, determined by Gp = {i+ n(j �
1) +m · n(k � 1) | 1  i  n, 1  j  m, 1  k  l, (i+ 3j + 2k) mod 7 = p}, for p = 0, . . . , 6.
5 Experimental Results
For the described problem, we developed programs in the C language. All computational tests were run on an Intel
Core i5-3570 3.40GHz ⇥4 machine with 4GB of RAM under Ubuntu 12.04. To store the sparse matrices derived from
the problem we use an optimized storage scheme called Compressed Sparse Row (CSR). Eight problem instances were
considered and Table 1 shows, for each instance, its dimension N , the p parameter to the ILU(p) preconditioner and
the CPU time, in seconds, for computing the solution in four cases: with no optimization (TNO), using only the matrix
partitioning (TMP ) and the matrix reordering (TMR) techniques and finally with both optimizations (TOP ). The values
in parentheses on columns TMP , TMR, TOP indicate the percentage time reduction (red%) from time TNO. For all
instances, the optimized Jacobian evaluation performed only seven finite difference operations, as opposed to N in
the regular computation. Figure 2 shows the approximate solution obtained for a mesh with 100.000 unknowns.

Instance N (n⇥m⇥ l) p TNO TMP (red%) TMR (red%) TOP (red%)

1 10.000 (100⇥10⇥10) 5 23,8 12,5 (47,6%) 16,4 (31,1%) 5,1 (78,6%)
2 10.000 (100⇥10⇥10) 10 196,7 185,5 (5,7%) 42,7 (78,3%) 31,4 (84,0%)
3 50.000 (200⇥50⇥5) 5 340,6 84,7 (75,1%) 300,7 (11,7%) 45,6 (86,6%)
4 50.000 (200⇥50⇥5) 10 1.911,9 1.655,3 (13,4%) 354,9 (81,4%) 100,5 (94,7%)
5 100.000 (100⇥50⇥20) 5 1.784,0 255,6 (85,7%) 1.698,8 (4,8%) 178,7 (90,0%)
6 100.000 (100⇥50⇥20) 10 6.027,5 4.499,5 (25,4%) 2.255,8 (62,6%) 733,7 (87,8%)
7 300.000 (200⇥50⇥30) 5 15.991,3 1.600,4 (90,0%) 15.679,1 (2,0%) 1.344,8 (91,6%)
8 300.000 (200⇥50⇥30) 10 29.148,3 14.753,7 (49,4%) 17.522,7 (39,9%) 3.186,3 (89,1%)

Table 1: Set of chosen parameters and computational results.

6 Analysis and Conclusion
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Figure 2: Temperature distribution for a 100.000 mesh.

Examining tests 1 through 8, we observe a higher level of
fill-in induces a higher contribution of the reordering strategy
on the final time reduction, while on the lower level the
matrix partitioning strategy is responsible for the biggest
improvement. Furthermore, by increasing the dimension of
the problem but maintaining the same level of fill-in, the
reduction achieved by the Jacobian optimization increases
while the reduction achieved by the reordering decreases.
Nevertheless, the final time reduction is always higher than
78%, showing the strength in the use of the optimization
strategies. It is worth mentioning that the final execution time
is lower when using ILU(5). The preliminary results obtained
in this work show that the optimization strategies imposed on
the Jacobian evaluation and the GMRES solver significantly
reduced the final execution time for the benchmark 3D
nonlinear heat transfer problem.
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1 Introduction
The finite element method is one of the most used numerical techniques for finding approximated solutions of
partial differential equations. Generally, the finite element formulations may require the solution of linear systems of
equations involving millions of unknowns that are usually solved by Krylov space iterative update techniques, from
which the most used is the Generalized Minimal Residual method (GMRES). In this work, we analyze reordering
strategies applied to an incomplete LU preconditioner for the resulting system of a SUPG finite element formulation
considering two free softwares for unstructured mesh generation. The first one, EASYMESH (web.mit.edu/
easymesh_v1.4/www/easymesh.html), perform a renumeration of nodes in order to decrease the matrix
bandwidth while the second one, GMSH (geuz.org/gmsh/), consider a naive numeration.
2 ILU(p) preconditioner and reordering schemes
The preconditioner basic idea is to replace the given system Ax = b by the system M

�1
Ax = M

�1
b, where M is

a ”suitable” approximation to A such that M�1
A is well conditioned. From a practical point of view, preconditioner

operations should be memory-efficient and require few arithmetic operations. Hence a sparse incomplete factorization
strategy in the form of M = L̄Ū , where L̄ and Ū are the incomplete LU factors might be an appropriate candidate.
Incomplete factorization algorithms are sensitive to the ordering of equations, therefore the efficiency of elimination
and consequently the construction of an incomplete factorization applied to a preconditioned iterative solver will be
influenced by the numeration of the nodal unknowns [1].
There are several approaches to reordering nodal unknowns for efficient linear system solution. These reorderings
correspond to row and column matrix interchanges. The goal is to reduce the matrix bandwidth, i.e., reduce the
maximum of distances between the first nonzero element of a row i and the main diagonal. This is NP-complete
problem and several algorithms exist that are generally able to finding a relatively good solution in a reasonable
amount of time. It is well known that reordering techniques are efficient choices when we use incomplete factorization
algorithms [2]. However, we want to show how advantageous these reorderings can be in final CPU time when we
examine softwares for mesh generation with distinct characteristics for nodal numeration.
3 Test problem
For the experiments, we consider a benchmark problem described by the following convection-diffusion equation:

�.ru�r.(ru) = f, in ⌦ = [0, 1]⇥ [0, 1] (1)

where u represents the quantity being transported (e.g. temperature, concentration). The problem described a pure
convection of a scalar on the domain ⌦, where the diffusivity is given by  = 1 ⇥ 10�6

I , the flow direction is 45�

from the x-axis, k�k = 1 and the function f = 0. Figure 1 shows the problem set up and the boundary conditions
and Figure 2 shows the approximated solution.

Figure 1: Boundary conditions
of the related problem.
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Figure 2: Approximated solution
for a 10.000 mesh.

4 Experimental results
All programs were developed by the author in C language and the tests were run on an Intel Core i5 2.53GHz processor
with 4GB of RAM, under Ubuntu 12.10. To store the resulting matrix we use the well-known CSR optimized storage
scheme. Figures 3 and 4 show the sparsity pattern of resulting matrices derived from GMSH and EASYMESH.
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Figure 3: Sparsity pattern of resulting matrices by GMSH
Left: without reordering Right: reordering with RCM

Figure 4: Sparsity pattern of resulting matrices by EASYMESH
Left: without reordering Right: reordering with RCM

GMSH
n = 10.000 n = 50.000 n = 100.000 n = 500.000

ILU(5) ILU(10) ILU(5) ILU(10) ILU(5) ILU(10) ILU(5) ILU(10)

Figure 5: CPU time (seconds) to solve GMSH resulting matrices with no reordering ,
reordering with RCM and with Sloan , for different ILU preconditioners.

EASYMESH
n = 10.000 n = 50.000 n = 100.000

ILU(5) ILU(10) ILU(5) ILU(10) ILU(5) ILU(10)

Figure 6: Same as Figure 4, but now considering EASYMESH.
.

n = 10.000 n = 50.000 n = 100.000 n = 500.000

GMSH 0,65 4,43 10,58 65,23
EASYMESH 47,61 2.813,56 11.266,33 more than 48h

Table 1: CPU time (seconds) to generate meshes with GMSH and EASYMESH for different sizes.

5 Analysis and conclusions
Two reordering algorithms, Reverse Cuthill-McKee (RCM) and Sloan, were used for tests as well as two levels of
fill-in for ILU(p) preconditioner. Figure 5 shows us that, for all cases, reordering strategies cause significant gain of
CPU time for matrices derived from GMSH. On the other hand, for matrices derived from EASYMESH in Figure 6,
the reordering does not cause any positive impact. This fact has to do with the nodal unknowns numeration, i.e., the
matrix sparsity pattern, that may cause substantial fill-in during the preconditioner calculations and raise the number of
arithmetic operations. Regarding the reordering algorithms, RCM and Sloan had comparative results. If we examine
the ILU preconditioner effectiveness in GMSH matrices, we can see in Figure 5 that, as the p parameter increases,
higher is the impact of the reordering in the final CPU time. Now, with respect to the mesh generators, Table 1
shows that the computational time to generate meshes were quite different for each software. Meshes generated by
EASYMESH demanded much more CPU time than meshes generated by GMSH, which was expected since GMSH
does not perform any kind of optimization for numeration nodal unknowns.
We can conclude that it is not necessary to use a reordering if you choose to use a mesh generator that apply an
optimization (renumeration of nodes). However, we notice that it is much more advantageous to decide for a software
that does not implement any optimization during the mesh generation and make use of reordering strategies during the
solution process, since the CPU time to generate an optimized mesh, as does EASYMESH, can be incredibly high.
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Network Partitioning in Scientific Simulations - A Case Study

Hélène C. Coullon and Rob H. Bisseling

High-level parallel programming, or implicit par-
allel programming is one of the most important re-
search domains to bring the use of parallel archi-
tectures within easy reach for non computer scien-
tists. The large domain of scientific computations
has, a priori, no requirement limits for performance
and parallelism, and is one of the primary domains
that need implicit parallel programming solutions.
Among all possible scientific computations, simula-
tions based on partial di↵erential equations (PDEs)
are particularly time-consuming. In this context,
the high-level parallel programming library Skel-
GIS has been implemented. SkelGIS [2,3] is an im-
plicit parallelism, and a C++ header-only, library
to solve mesh-based PDEs in parallel while preserv-
ing a sequential programming style.

Numerical methods to solve partial di↵erential
equations (PDEs) discretize both time and space to
run a simulation on a computer. The discretization
of the space domain is called a mesh. Paralleliza-
tion of a simulation implies the need for a good
load balancing of the mesh among the processors,
and for a minimization of the communication vol-
ume during computations, which could be modeled
as a graph partitioning problem. In some specific
simulations, as for example in artery blood-flow or
river water-flow simulations, a network is created
to represent the domain with two di↵erent types
of elements: nodes and edges. A network could
be considered as a general graph where computa-
tions are carried out on both edges and nodes and
where communications are needed from nodes to
edges and from edges to nodes, possibly at di↵er-
ent time steps. Thus, parallelization of such appli-
cations raises a specific graph partitioning problem,
where both edges and nodes handle computations
and communications at each time iteration.

Partitioning of simulations with several compu-
tation supersteps such as our network simulation
can, in principle, be done by invoking a multi-
constraint hypergraph partitioner [4] as PaToH

for example. Our approach is di↵erent: we use
the single-constraint partitioner Mondriaan [5] but
make sure to satisfy both constraints of load bal-
ancing, while minimizing the communication. Two
di↵erent methods have been explored: the first one,
named single-partitioning method, is composed of
two steps: (1) the communication superstep from
nodes to edges is translated to a hypergraph par-
titioning problem [1], to distribute the edges, and
(2) a heuristic is applied to distribute the nodes
of the network, taking into account the distribu-
tion of the edges; the second one, named double-

partitioning method, is decomposed in three steps:
(1) the communication step from nodes to edges is
translated to a hypergraph partitioning problem to
distribute the edges, (2) the communication step
from edges to nodes is translated to a hypergraph
partitioning problem to distribute the nodes, and
(3) a permutation problem is solved to match both
distributions. We expect performance results for
the poster presentation.
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REDUCING ELIMINATION TREE HEIGHT FOR UNSYMMETRIC MATRICES

ENVER KAYAASLAN† AND BORA UÇAR‡

Abstract. The elimination tree for unsymmetric matrices is a recent model playing important roles in sparse
LU factorization. This tree captures the dependencies between the tasks of some well-known variants of sparse LU
factorization. Therefore, the height of the elimination tree roughly corresponds to the critical path length of the task
dependency graph in the corresponding parallel LU methods. We propose algorithms to symmetrically permute the
rows and columns of a given unsymmetric matrix so that the height of the elimination tree is reduced, and thus a high
degree of parallelism is exposed. The proposed algorithms are obtained by generalizing the most successful approaches
used in sparse Cholesky factorization. We test the proposed algorithms on a set of real world matrices and report
noticeable reduction in the elimination tree heights with respect to a possible exploitation of the state of the art tools
used in Cholesky factorization.

1. Introduction. The standard elimination tree [15] has been used to expose parallelism in
sparse Cholesky, LU, and QR factorizations [1, 3, 8, 11]. Roughly, a set of vertices without ances-
tor/descendant relations corresponds to a set of independent tasks that can be performed in parallel.
Therefore, the total number of parallel steps, or the critical path length, is equal to the height of
the tree on an unbounded number of processors [12]. Obtaining an elimination tree with the mini-
mum height for a given matrix is NP-complete [14]. Therefore, heuristic approaches are used. One
set of heuristic approaches is to content oneself with the graph partitioning based methods. These
methods reduce some other important cost metrics in sparse Cholesky factorization, such as the
fill-in and the operation count, while giving a shallow depth elimination tree [7]. When the matrix
is unsymmetric, the elimination tree for LU factorization [4] would be useful to expose parallelism
as well. In this respect, the height of the tree, again, corresponds to the number of parallel steps
or the critical path length for certain factorization schemes. In this work, we develop heuristics to
reduce the height of elimination trees for unsymmetric matrices. To the best of our knowledge no
other work looked at this problem on its own.

Let A be a square matrix and let G(A) = (V(A),E(A)) be the standard directed graph model.
The minimum hight of an elimination tree of A is equivalent to the graph theoretical notion of the
cycle-rank of G(A). Gruber [6] shows that computing the cycle-rank is NP-complete, justifying the
need for heuristics for large problems. One reasonable heuristic is to use a graph partitioning tool,
such as MeTiS [9], on the symmetrized matrix (we present comparisons with this method). One can
also use some local ordering heuristics [2]; but as their analogue for symmetric matrices, these are
not expected to be very effective.

2. Methodology. We propose a recursive approach to reorder a given matrix so that the
elimination tree is reduced. The main procedure takes an irreducible unsymmetric matrix A as
its input, and produces a permutation yielding an upper bordered block diagonal form, as shown
in (2.1)

ABBT = PAPT =

2

666664

A11 A12 . . . A1K A1B

A22 . . . A2K A2B

. . .
...

...
AKK AKB

AB1 AB2 . . . ABK ABB

3

777775
. (2.1)

At each recursive call, the procedure partitions the current matrix into a 2⇥2 block structure where
the off-diagonal blocks have only a few nonzeros. Then a covering for each off diagonal blocks is
found and the better one is used to have a BBT form with two blocks. Then, the recursion is
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matrix MeTiS BBT-3 BBT-50 matrix MeTiS BBT-3 BBT-50
Averous/epb1 401 325 323 Hohn/fd18 422 307 311
Bai/rw5151 268 168 168 Hohn/sinc12 1836 1206 1181
Goodwin/goodwin 422 369 371 Hollinger/g7jac040 991 762 756
Graham/graham1 549 466 467 Lucifora/cell1 193 125 133
Grund/bayer02 198 123 119 Nasa/barth 142 99 102
Grund/bayer10 211 141 141 Nasa/barth4 133 80 83
Hamrle/Hamrle2 103 67 67 Nasa/barth5 185 117 103
Hohn/fd12 260 199 202 Shen/e40r0100 617 523 597
Hohn/fd15 381 250 251 TOKAMAK/utm5940 448 387 388

Table 3.1
Height of the elimination tree on a set of matrices.

applied to each diagonal block. The recursion stops when the current matrix has a size smaller than
a parameter (we tested with 3 and 50). Then another heuristic based on feedback vertex sets is used
to order the smallest matrices. The overall approach is the unsymmetric analog of pioneering work
on extracting vertex separators from edge separators [13].

3. Results. We present results on matrices used in previous study, where the unsymmetric
elimination trees were algorithmically studied [5]. Table 3.1 compares MeTiS and the proposed
method with the stopping condition of the recursion being 3 and 50, which are shown as BBT-3
and BBT-50. In this table, BBT-3 and BBT-50 obtain tree heights whose geometric mean to the
heights obtained by MeTiS is 0.71 and 0.72, where each run is the median of 5 runs (MeTiS has
randomization inside).

Given this strikingly good results, we further performed tests with other data. We used the
matrices (a subset from [10], where the matrices with a pattern symmetry of a most 0.90 are used,
and only two matrices from each group is used). In this data set, the geometric mean of the heights
of trees obtained by BBT-50 to MeTiS is found to be 0.91.

The poster presentation will include algorithmic details and further details.
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ON NEWTON’S METHOD FOR AN INVERSE FIRST PASSAGE PROBLEM

YINGJUN DENG, ANNE BARROS AND ANTOINE GRALL

In this poster, we will introduce the inverse first passage problem (IFPT) for an Ornstein-
Uhlenbeck process and some numerical problems in our work. The IFPT problem is tar-
geted to reproduce the corresponding boundary for a given stochastic process such that
the first passage density can fit a given distribution function. This problem attracts plenty
of attention recently in various applications such as financial risk management, reliability
analysis [1] etc..

Cheng etc. [2] have proved the IFPT problem is well-posed, but some numerical prob-
lems remain in the solving procedures of IFPT problems. Following the integral equation
method proposed in [3] and [4], the IFPT problem can be translated to an integral equation:

(0.1) f(x, t) = 0,∀x ≥ L(t),

where L(t) is the desired true solution and L(0) is given. This property proposes a con-
straint for the numerical scheme to verify whether the solution is the minimal solution to
the equation.

In the solving procedure, we tried the simplest secant method because fx(x, t) cannot be
expressed for x < L(t). An interesting thing is that although fx(x, t) cannot be provided,
the left-side derivative at true solution can be given from preliminary analysis:

(0.2) lim
x→L(t)−

fx(x, t) = g(t) > 0,

which is independent of L(t).
How to maximally use this information for accelerating the numerical scheme remains a

problem for us. The ordinary Newton’s method requires the derivative information at every
iterative value, and therefore it is hard to be used directly in this case. We are interested to
try various searching methods in this problem to increase the numerical efficiency.
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