
Sparse Matrix-Matrix Multiplication for Modern Architectures

Mehmet Deveci ∗ Erik G Boman ∗ Sivansakaran Rajamanickam ∗

Sparse matrix-matrix multiplication (SPMM) is an
important kernel in high performance computing that is
heavily used in the graph analytics as well as multigrid
linear solvers. Because of its highly sparse structure,
it is usually difficult to exploit the parallelism in the
modern shared memory architectures. Although there
have been various work studying shared memory par-
allelism of SPMM, some points are usually overlooked,
such as the memory usage of the SPMM kernels. Since
SPMM is a service-kernel, it is important to respect
the memory usage of the calling application in order
not to interfere with its execution. In this work, we
study memory-efficient scalable shared memory parallel
SPMM methods. We study graph compression tech-
niques that reduce the size of the matrices, and allow
faster computations. Our preliminary results show that
we obtain upto 40% speedups w.r.t SPMM implemen-
tation provided in Intel Math Library while using 65%
less memory.

1 Introduction

SPMM is a fundamental kernel that is used in various
applications in scientific computing such as graph ana-
lytics or multigrid solvers. In this work, we study scal-
able and memory efficient SPMM methods for multi-
core and many-core architectures. In the literature,
most parallel SPMM methods [1] follow Gustavson’s al-
gorithm [2]. This algorithm schedules the computations
in 1D row-wise fashion, and multiplication results for all
entries in a row are found simultaneously. That is, given
the multiplication C = A × B, the algorithm performs
multiplications in the forms of Ci =

∑
k∈Ai

Ai,k ×Bk

in order to find a single row i of C.
There are various memory constraints with the par-

allelization of Gustavson’s algorithm. For example, the
size and structure of C is unknown at the beginning
of SPMM operation. Although, there exist studies to
predict the size of C [3], they still do not provide a ro-
bust upper bound for the memory requirements. In the
literature, this problem is addressed using various ap-

∗Sandia National Laboratories. Sandia is a multi-program
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for

the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.

proaches. One approach is to calculate the upper bound
for the size of C, and allocate this memory prior to com-
putation [4]. However, the upper bound becomes the
number of floating-point operations (FLOPS), which
can be significantly larger than the actual size of C.
Another approach is to dynamically reallocate the size
of C as the computation progresses. However, this ap-
proach might also be problematic in the modern ar-
chitectures with massive number of threads, as mem-
ory re-allocations can become bottlenecks in parallel re-
gions. In addition, such re-allocations are not feasible
for GPUs. Another approach is to perform a symbolic
SPMM operation before the numeric computations to
compute the accurate size of C [5]. Although, this ap-
proach performs FLOPS many matrix-operations twice
(in symbolic and numeric phases), it allows SPMM to
run with minimal memory usage. Symbolic phase needs
to be run only once for matrices in which only the nu-
meric values change while the symbolic structures are
preserved. In this work, we follow this approach, and
we aim to speedup the symbolic phase by performing
matrix compression.

Another memory constraint with the parallel Gus-
tavson algorithm is the use of the sparse or dense ac-
cumulators. The sequential algorithm uses dense data
structures that have the size of the number of columns
in B, in order to accumulate the result rows. However,
having such thread private arrays is costly on massively
threaded architectures. Therefore, sparse accumulators
such as heaps or hashmaps are usually preferred in par-
allel implementations. In this work, we use multi-level
hashmaps as sparse accumulators.

2 Algorithms

Algorithm 1 gives the overall structure of our SPMM
method. Given two matrices A and B for C = A ×
B, we compress the symbolic structure of B with an
approach similar to [6]. Symbolic structure refers to the
underlying graph structure with binary relations, which
can be represented using single bits. We compress the
rows of B such that 32 columns are represented using a
single integer. In this scheme each column is represented
with 2 integers (or possibly with long integer). First
integer refers to column set (CS) in which the set bit
indices denote the indices of the columns. That is, if



ith bit in CS is 1, the row has a nonzero entry at ith
column. The second integer refers to the column set
index (CSI) to represent more than 32 columns. With
this compression method, the number of non-zeros of
B can be reduced up to 32 times. The compression
becomes more successful if the column indices in each
rows are packed close to each other. This reduces the
problem size, and also allows faster union operations
using BitwiseOr, which helps to speedup the symbolic
phase to find the structure of C. In the following steps,
we predict the maximum number of non-zeros in a row of
C as MAXFLOPS, which is later re-used by each thread
in the symbolic SPMM phase as the upper bound for the
required memory. Symbolic phase performs unions of
rows of compressed B matrix, Bc, to find the memory
requirements. In the numeric phase, we perform the
actual matrix multiplication.

Algorithm 1 SPMM for C = A×B

Require: Matrices A, B
1: Bc ← Compress(B)
2: maxRowNNZ ← getMaxNNZ(A, Bc)
3: cmem← Symbolic Spmm(A, Bc, maxRowNNZ)
4: C ← Numeric Spmm(A, B, cmem)
5: return C

3 Preliminary Results

We evaluate the performance of the proposed method
on the single nodes of an internal cluster at Sandia.
A node of the cluster has 64 cores at 2.3 GHz with
128 GB memory. The proposed method is imple-
mented using the Kokkos Library in Trilinos, and com-
piled using the version within the Trilinos 12.2 release,
with icc 16.0.190. In the experiments, we study ma-
trix multiplications in the forms of PT × A × P and
A × AT . The matrices are selected from a Laplace3D
problem where A is a square matrix with 15, 625, 000
rows and 109, 000, 000 non-zeros, and P is a rectangu-
lar matrix with 15, 625, 000 rows, 1, 969, 824 columns,
and 57, 354, 176 non-zeros. We compare our proposed
method (KK) with the SPMM implementation provided
in Math Kernel Library (MKL) library for multiplica-
tions that often occur in algebraic multigrid setup. .
Table 1 gives the strong scaling results with the average
speedups of KK and MKL w.r.t sequential MKL.

MKL performs the SPMM within a single phase.
Its peak memory usage 68%, 65% and 7.5% more than
KK on the multiplications for R × A, A × AT , and
A×P and RA×P than KK. Although, KK doubles the
matrix operations, it usually obtains better speedups
than MKL on A × AT , A × P , and PT × A. The
compression speeds up KK’s symbolic phase by the
amount of the reduction, where it was able to reduce the

Table 1: Strong scaling speedups for Laplace3D SPMM

A×AT A× P PT ×AP PT ×A PTA× P
KK MKL KK MKL KK MKL KK MKL KK MKL

1 0.63 1.00 0.72 1.00 0.65 1.00 0.68 1.00 0.65 1.00
2 1.27 1.93 1.40 1.91 1.31 1.93 1.36 1.97 1.28 1.91
4 2.17 3.50 2.82 2.88 2.15 3.10 2.39 2.63 2.21 2.83
8 4.93 6.90 5.22 5.47 3.90 4.51 3.97 4.09 4.23 6.45
16 9.28 9.35 10.07 6.71 5.81 6.52 5.95 5.93 6.66 7.54
32 17.08 12.22 19.17 8.67 10.74 9.67 9.28 9.09 10.56 10.50
64 12.61 10.75 14.41 14.14 9.12 11.33 9.03 7.42 9.19 12.00

number of non-zeros in A by 27.7%. However, it only
reduced it by 6.7% and 2.9% on P and AP matrices.

4 Ongoing Work

There are various ongoing efforts to extend our shared
memory SPMM work. Firstly, the current work is being
extended to GPUs. We would like to study 2D parti-
tioning of C using the massive number of threads pro-
vided by GPUs. Secondly, we are studying ordering
methods to allow better quality compressions as well as
better cache locality. Compression mechanism will de-
pends on the column order of B. In the experiments so
far the compression mechanism is able to achieve 27%
reduction at the most. This can be improved by using
different column orderings that reduce the bandwidth or
minimum logarithmic gap arrangement. We are study-
ing the ordering heuristics that minimizes the column
sets of Bc that is, it orders the columns as consecutive
as possible. We believe such orderings are important in
different applications such as for improving the cache
locality in Sparse Matrix-Vector multiplications. More-
over, we would like to study methods that re-orders the
rows of A in such a way that consecutive rows have sim-
ilar columns so that the cache-locality can be exploited
for the accesses to rows of B.

References

[1] M. M. A. Patwary et al., “Parallel efficient sparse
matrix-matrix multiplication on multicore platforms,”
in High Performance Computing. Springer, 2015

[2] F. G. Gustavson, “Two fast algorithms for sparse
matrices: Multiplication and permuted transposi-
tion,” ACM Transactions on Mathematical Software
(TOMS), vol. 4, no. 3, pp. 250–269, 1978.

[3] E. Cohen, “Structure prediction and computation of
sparse matrix products,” Journal of Combinatorial
Optimization, vol. 2, no. 4, pp. 307–332, 1998.

[4] S. Dalton, L. Olson, and N. Bell, “Optimizing sparse
matrixmatrix multiplication for the GPU,” ACM
Transactions on Mathematical Software (TOMS),
vol. 41, no. 4, p. 25, 2015.

[5] J. Demouth, “Sparse matrix-matrix multiplication on
the gpu,” in GPU Technology Conference, 2012.

[6] M. Deveci, E. G. Boman, K. D. Devine, and S. Raja-
manickam, “Parallel graph coloring for manycore ar-
chitectures.” IPDPS, 2016, to appear.


