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Abstract

We consider the vertex separator problem on a graph: find a set of
vertices of minimum cost whose removal disconnects the graph into two
roughly equal sized components. In this talk, we present a multilevel al-
gorithm for the VSP, whose refinement phase is based on the solution
of a bilinear program which is shown to approximate the VSP at each
level in the multilevel graph hierarchy. We investigate the correspondence
between local optimizers in the bilinear program and locally optimal sep-
arators in the VSP. In addition, two techniques are developed for escaping
from either stationary points or local optima. These techniques are based
on making small perturbations in the problem parameters in order to
deliberately violate the first-order optimality conditions of the bilinear
program. Finally, we investigate the effectiveness of the refinement pro-
cedure both in isolation and in the context of the multilevel algorithm,
providing computational results on a set of medium to large scale graphs.

Let G = (E ,V) be a simple, undirected graph on vertex set V = {1, 2, . . . , n}
and edge set E ⊆ V × V. Let ci ∈ R denote the cost of vertex i and let wi > 0
denote its weight. If X ⊆ V, let W(X ) =

∑
i∈X wi and C(X ) =

∑
i∈X ci.

The Vertex Separator Problem (VSP) on G is to find a partition of V into
three sets A, S, and B such that there are no edges between A and B (that
is, (A ∩ B) ∩ E = ∅), W(A) and W(B) lie within specified ranges, and C(S)
is as small as possible. Identifying low-cost vertex separators is important in
several applications, including sparse matrix factorizations (see [4, Sect. 7.6],
[7, Chapter 8], and [13]), hypergraph partitioning [9], and network security
[3, 10, 12].
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A combinatorial formulation of the VSP is as follows:

min
A,S,B⊆V

C(S) (1)

subject to S = V \ (A ∪ B), A ∩ B = ∅, (A× B) ∩ E = ∅,
`a ≤ W(A) ≤ ua, and `b ≤ W(B) ≤ ub,

where `a, `b, ua, and ub are given non-negative real numbers less than or equal to
W(V). The VSP (1) is NP-hard [2, 6]. However, due to its practical importance,
many heuristics have been developed for finding low-cost separators, including
node-swapping heuristics [11], spectral methods [13], semidefinite programming
methods [5], and recently a breakout local search algorithm [1].

In the case where the vertex weights wi are identically one, the authors in
[8] found conditions under which (1) is equivalent to the following continuous
bilinear program:

max
x,y∈Rn

cT(x + y)− γxT(A + I)y (2)

subject to `a ≤ wTx ≤ ua, `b ≤ wTy ≤ ub,
0 ≤ x ≤ 1, and 0 ≤ y ≤ 1.

Here, the decision variables x and y represent continuous extensions of the
incidence vectors for the disconnected components A and B, A is the binary
adjacency matrix for G, and γ is a penalty parameter satisfying γ ≥ max {ci :
i ∈ V} which enforces the separation condition (A× B) ∩ E = ∅.

Preliminary numerical experiments in [8] showed that applying a continu-
ous optimization algorithm to the bilinear program can be an effective means
of making local improvements to vertex separators in multilevel algorithms for
large scale graphs. However, at the coarser levels of a multilevel algorithm,
vertices typically have non unit weights, since they represent aggregates of ver-
tices from the original graph; moreover, the aggregates often vary widely in size.
Hence, it is necessary to understand the relationship between the bilinear pro-
gram of [8] and (1) in the more general case where vertex weights are arbitrary
positive real numbers.

In this talk, we show that in the general case where wi > 0, the bilinear pro-
gram (2), while not equivalent to the VSP, still approximates it in some sense. In
addition, two techniques are presented for escaping from either stationary points
or local optima encountered during the refinement phase in order to encourage
a wide exploration of the solution space before stopping. These techniques are
based on perturbing the problem parameters c and γ in order to deliberately
violate the first-order optimality conditions. At the end of the talk, we con-
duct a numerical investigation, comparing the performance of our refinement
method with refinements based on node swaps. We look at the performance
of the refinement method both in isolation and in the context of a multilevel
algorithm. Experiments are made on a large benchmark set of medium to large
scale graphs from the University of Florida Sparse Matrix Library, the Konect
Database, and the Stanford SNAP collection.
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