HPCGRAPH: Benchmarking Massive Graph Analytics on Supercomputers

George M. Slota*f

Sivasankaran Rajamanickam* Kamesh Maddurif

*Sandia National Laboratories
"The Pennsylvania State University

1 Introduction

We propose HPCGRAPH, a new benchmark to spur
algorithmic innovation in graph processing libraries
and software frameworks for massive graph analyt-
ics. Several distributed-memory graph processing plat-
forms have emerged in the past few years (reviewed
in [1]), and each framework with its own performance-
programmability tradeoffs. = Novel algorithmic and
implementation speedup strategies developed for the
Graph500 [2] Breadth-First Search (BFS) kernel (for
instance, direction-optimized traversal, use of bitmap
data structures, a two-dimensional graph layout, high
degree vertex adjacency partitioning, adaptive load bal-
ancing, fine-grained asynchronous messaging, etc.) have
not yet been adopted in most graph processing frame-
works. One reason why the Graph500 BFS optimiza-
tions are not commonplace in generic software frame-
works is the vast diversity of modern graph analyt-
ics (i.e., the graph structures, typical sizes, and algo-
rithms vary significantly from one application domain
to another). In order to identify commonly-applicable
performance optimizations in real-world settings, we
constrain the test graph instance in HPCGRAPH to
the 2012 Web Data Commons hyperlink graph (http:
//webdatacommons . org/hyperlinkgraph/), and de-
scribe seven graph processing routines (“kernels”) that
could be applied to this graph. We also provide refer-
ence implementations (C++/MPI/OpenMP-based) of
these seven kernels. Implementation details and perfor-
mance results on the NCSA Blue Waters supercomputer
are discussed in [3]. Since this hyperlink graph is quite
large (3.5 billion vertices and 128 billion edges), we typ-
ically require multiple compute nodes for executing the
kernels. Our benchmark is similar to Graph500 in that
it is textual specification-based and we do not want to
restrict algorithms used for each kernel.

2 HPCGraph Kernels

A graph construction phase (Kernel 0) and six graph
analytics constitute HPCGRAPH. We assume the input
data is disk-resident in binary edge list format. The
edge list file is nearly 1 TB. Each directed edge is

represented by two vertices of 32-bit unsigned integer
type (vo,v1). The vertex identifiers are zero-indexed.
The edges are sorted by start vertex. The goal of the
graph construction kernel is to ingest the 1 TB file and
construct an in-memory graph representation that will
permit efficient execution of the next six kernels.

Since the hyperlink graph is directed with possibly
many strongly connected components, we implement
a routine to identify vertices belonging to the largest
strongly connected component in this graph. This ker-
nel is labeled SCC. Another related analytic is deter-
mining the edges and vertices that belong to the largest
weakly connected component (WCC). When determin-
ing the largest WCC, we ignore the edge directivity
and consider vertex connectivity through both incom-
ing and outgoing edges. We then have two centrality
measures, a vanilla implementation of PageRank (PR)
and Harmonic Centrality (HC). We use the power it-
eration method for computing PageRank. This is an
iterative method with the stopping criterion dependent
on a user-defined tolerance setting. The inter-node data
communication volume does not vary much across itera-
tions in the vanilla PageRank implementation. We rec-
ommend fixing the iteration count to a small value, say
30, and reporting the average per-iteration time. Com-
puting the harmonic centrality of a single vertex has an
operation count that is linear in the number of edges
and requires an augmented breadth-first search. Deter-
mining the harmonic centrality of all the vertices is thus
prohibitively expensive for large graphs. In HC, we com-
pute the harmonic centralities of the top 1000 vertices
ranked by their vertex degree, and report the average
time per vertex. The fifth analytic we implement is ap-
prozimate k-core computation (KC). A k-core in a graph
is a maximal connected subgraph in which all vertices
have degree k or higher. If a vertex belongs to an [-core,
but not an [+ 1-core, it is said to have a coreness of [.
Using this approximate k-core analytic, we determine
an upper bound for the coreness of every vertex in the
graph in the following manner: we iteratively remove
vertices that have degree less than 27, i ranging from 1
to 27, and determine the largest connected component
in the pruned graph. The value 2¢ thus gives a coreness

http://webdatacommons.org/hyperlinkgraph/
http://webdatacommons.org/hyperlinkgraph/

upper bound for all vertices in the component. Our
sixth analytic is a vanilla implementation of the Label
Propagation (LP) community detection method. This
is also an iterative method and the stopping criterion is
typically user-defined. We can again fix the number of
iterations beforehand, and use the average per-iteration
time as the performance measure.

3 Reference Implementation and Preliminary
Performance Results

Our reference implementations use 1D distributed graph
representation of G(V, E), where each MPI task owns
some subset of vertices V' and the set E of edges be-
longing to those vertices. We see two main algorith-
mic patterns in our reference implementations of the
six kernels. These algorithmic patterns differ in how
per-vertex information propagates along edges in the
graph. In the first pattern, given in Algorithm [1} the
stored per-vertex information D(v) for a given vertex
v is potentially pushed to all neighbors u of v. We
consider breadth-first search (BFS) to be a prototyp-
ical example. In BFS, we expand a frontier of vertices,
held in @, by examining all neighbors, potentially mark-
ing them as visited or assigning a level or parent (with
D(u) < update()), and then adding them to the next-
level frontier Qpc.¢. For each iteration, updates to the
frontier are exchanged among all MPI tasks for use in
subsequent iterations. Using this algorithmic pattern,
we implement HC, KC, (part of) WCC, and SCC.

Algorithm 1 Push-Based algorithmic pattern in our
reference implementations.

1: procedure BFS-LIKE(G(V, E))
2 for allv € V do

3 D(v) < init()

4 if addToQ(v) then
5: Qnext < (v, D(v))
6: while Qnezt # 9 do
7
8
9

> Task Parallel
> Thread Parallel

Q, D + AllToAllExchange(Qnext)
Qne:ct — g

: for all v € Q do > Thread Parallel
10: for all (v,u) € E do
11: D(u) + update()
12: if addToQ(u) then
13: Qnext <+ (u, D(u))

14: return D

In our second abstraction, each vertex v updates
its own per-vertex information D(v) by pulling infor-
mation from all of its neighbors u. We consider the
vanilla PageRank power iteration method to be the pro-
totypical example, where on each iteration, every vertex
updates its PageRank value based on the values of its
neighbors. If the value of v is updated, this informa-
tion is propagated to all tasks that own an adjacency of
v. The kernel implementations exhibiting this pattern
include PR, LP, (part of) WCC, and our PULP par-

titioning algorithm [4]. Note that graph partitioning
could be used as a preprocessing strategy in the graph
construction kernel.

Table 1: Execution times (in seconds) on 256 nodes of Blue

Waters with various 1D graph layout strategies, including with
PULP partitioning.

Partitioning Strategy
Analytic PULP 1DVert 1DEdge 1DRand

+PuLP 105 - - -
SCC 181 184 108 184
WCC 39 88 63 112
PR 55 87 111 227

HC 54 54 46 101

KC 375 445 363 583

LP 59 400 435 367
Total 868 1258 1126 1574

In Table [} we give execution time in seconds for
the reference implementations on 256 nodes of the Blue
Waters supercomputer. We try four 1D partitioning
schemes (PULP: using a partitioner for vertex identi-
fier reordering and reducing edge cut; 1DVert: using a
balanced vertex distribution; 1DEdge: balanced edge
distribution; 1DRand: 1D vertex with randomly shuf-
fled vertex identifiers). We observe that the 1DEdge
strategy benefits push-based kernels, and PULP pre-
processing improves performance of pull-based kernels.

Our reference implementations will be open-
sourced. We hope the CSC and Supercomputing com-
munities find HPCGRAPH challenging and stimulating.

Acknowledgments

This research is part of the Blue Waters sustained-petascale
computing project, which is supported by the NSF (awards OCI-
0725070, ACI-1238993, and ACI-1444747) and the state of Illinois.
Blue Waters is a joint effort of the UTUC and the NCSA. This work
is also supported by NSF grants ACI-1253881, CCF-1439057,
and the DOE Office of Science through the FASTMath SciDAC
Institute. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
References

[1] R. R. McCune, T. Weninger, and G. Madey, Thinking
Like a Verter: A Survey of Vertex-Centric Frameworks for
Large-Scale Distributed Graph Processing, ACM Comput.
Surv. 48, 2, Article 25 (October 2015), 39 pages.

[2] R. C. Murphy, K. B. Wheeler, B. W. Barrett, J. A. Ang,
Introducing the Graph 500, Proc. CUG 2010. http://www.
graphb500.org/.

[3] G. M. Slota, S. Rajamanickam, and K. Madduri, A Case
Study of Complex Graph Analysis in Distributed Memory:
Implementation and Optimization, Proc. IPDPS 2016.

[4] G. M. Slota, K. Madduri, and S. Rajamanickam, PuLP:
Scalable Multi-Objective Multi-Constraint Partitioning for
Small-World Networks, Proc. BigData 2014.

http://www.graph500.org/
http://www.graph500.org/

	Introduction
	HPCGraph Kernels
	Reference Implementation and Preliminary Performance Results

