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BSP is a simple but effective model for parallel
computing. A BSP computer (p, g, l) consists of p
sequential processors with sufficient local memory.
A black-box network interconnects these. This net-
work is assumed to be full duplex and optimised for
all-to-all communication; a processor can thus si-
multaneously send and receive a single data word
at constant cost g. The network has an associated
latency cost l that has a more complete interpreta-
tion in the following context.

A BSP algorithm (p, wi,s, hi) consists of a se-
ries of supersteps. It is described as a sequential
program parametrised in p as well as in the pro-
cess ID s ∈ {0, 1, . . . , p − 1}. A superstep consists
of computation and communication. Computation
is a set of operations on local data using only lo-
cal processor resources. Communication is a global
action that involves only the network and is dis-
allowed from affecting computation that occur in
the same superstep, and vice versa. Computation
at the ith superstep of process s may assume that
all communication in preceding supersteps, as far
as they affect the state of memory local to process
s, have completed. A program needs the network
to determine whether it is safe to advance a super-
step; this is exactly the latency cost l introduced
earlier.

The sequential work in the ith superstep at
process s has cost wi,s. The number of data
words sent and received by process s as part of the
ith superstep are ti,s and ri,s, respectively. The
h-relation of the ith superstep, the cost of the
process that forms the communication bottleneck,
is hi = maxs max{ti,s, ri,s}: the cost incurred
by the process which has to send or receive the
largest number of data words of all processes during
superstep i.

Given a BSP computer (p, g, l) and a BSP
algorithm (p, wi,s, hi), the cost of running that
algorithm on that computer is

T =

N−1∑
i=0

max{max
s
wi,s + l, hig + l}.

This is the original BSP cost model by Valiant [2].
BSP fails to penalise non-local data movement.

For instance, when one core initiates data move-
ment to another core which share an L2 cache, this
will be more efficient than movement which instead
needs to pass through some higher-level resource.
The same holds true for data movement between
sockets and nodes; architectures are becoming in-
creasingly non-uniform in memory access.

Multi-BSP, developed by Valiant in the late
2000s [3], alleviates this problem by a recursive
computer model definition: a Multi-BSP computer
consists of p sequential computers, or p sub Multi-
BSP computers. This leads to a tree of intercon-
nects with depth d, where every node furthermore
is equipped with local memory.

A Multi-BSP computer is characterised by four
parameters at each of the d levels of the tree:
(pi, gi, li,Mi) describes the Multi-BSP machine at
level i. It has 1) pi sub Multi-BSP machines, 2)
a full-duplex all-to-all network with BSP charac-
teristics gi and li connecting the submachines, and
3) a local data storage with a capacity of Mi data
words. The capacity of the root machine itself is
assumed sufficient to store the problem at hand.

A good Multi-BSP algorithm minimises the
data movement through the various levels of the
Multi-BSP computer, while 1) penalising far-away
data movement and 2) properly modelling the data
flow from main memory down to processing cores
through the complete memory hierarchy. The re-



mainder of this abstract discusses the implications
of this model on various sparse matrix computing
problems. While explicit Multi-BSP programming
is possible in MulticoreBSP [5], the presented in-
sights are not restricted to it and should lead to
practical algorithms independent of the chosen im-
plementation framework.

Consider an m×n sparse matrix A which con-
tains nz nonzeroes aij ∈ V. Hypergraph modelling
enables efficient parallelisation of operations on A:
in the most generic form, the nonzeroes V corre-
spond to vertices, while rows nrowi ⊆ V and columns
ncolj ⊆ V of A correspond to the hyperedges N .
A distribution of work corresponds to a partition-
ing of V, leading to process-local submatrices As.
Other hypergraph models may collapse informa-
tion to increase partitioning efficiency; Bisseling et
al. [1] present an overview and comparison.

For the sparse matrix–vector (SpMV) multipli-
cation Ax = y with x, y of appropriate size, a scal-
able parallel algorithm proceeds in three stages: 1)
gather non-local elements required for the multi-
plication with As, 2) perform the local multiplica-
tion with As, and 3) collect remote contributions to
local output vector elements. The hyperedges en-
code information on the communication cost via
their connectivity λ; the volume of data move-
ment is captured exactly by the λ − 1 metric on
N [1, 4]. Contemporary sparse matrix partition-
ers minimise this volume under the load-balance
constraint maxi |Vi| ≤ (1 + ε)nz/p. The actual h-
relation incurred in steps 1 and 3 are minimised
by finding appropriate vector distributions of x, y,
given a distribution for A. This highly BSP-centric
approach minimises and balances both computa-
tion and communication.

In a Multi-BSP approach, a P -partitioning
of V should be tuned so that for each part Vi,
the corresponding local computation ys = Asxs
requires less than M0 data words to store. Note
that P � p for large enough matrices, thus,
seemingly(!), leading to a very different approach.
All elements from A, x, y must be streamed from
the root down to the leaves at least once, thus
incurring a minimum cost of (nz + m + n)Πd−1

i=0 gi.
Vector elements, however, are re-used and the

volume of data movement can be minimised by
recursively partitioning at each level of the Multi-
BSP tree. This differs from recursive bipartitioning
in two ways: 1) the notion of load balance includes
the number of non-empty rows and columns, apart
from the number of nonzeroes; and 2) at each level,
the load-balancing constraint is reset to target
construct parts of Mi data words each.

Now, each level i of the Multi-BSP tree runs its
own SPMD program which 1) retrieves from our
parent the next block ys, As, xs that together take
at most Mi data words; 2a) if i > 0, recursively
call this program on every submachine, or 2b)
perform a local SpMV multiplication ys = Asxs;
3) accumulate remote contributions to elements of
ys owned by us; 4) write back to the parent the part
of ys owned by us; and 5) if this As was the last
block, yield to the parent program. Note that this
is remarkably close to the original BSP algorithm.
This algorithm extends to symmetric matrices by
simple adaptation of step 2b.

Via a frame of thought prescribed by the Multi-
BSP framework, we thus refined and extended the
cache-oblivious algorithm by Yzelman and Bissel-
ing [4]. We apply the same ideas to the unstruc-
tured sparse matrix powers (SpMP) kernel, and ad-
ditionally allows present and quantify trade-offs for
2.5D counterparts to all aforementioned kernels.
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