Sparse Computations and Multi-BSP

Albert-Jan Yzelman

October 11, 2016

HUAWEI
Parallel Computing \& Big Data Huawei Technologies France

BSP machine $=\{$ sequential processor $\}+$ interconnect

The machine is described entirely by (p, g, L) :

- strobing synchronisation,
- homogeneous processing,
- uniform full-duplex network,

BSP algorithm:

- strobing barriers
- full overlap
- h-relation bottlenecks: $\max _{s}\left\{s e n t_{s}\right.$, recv $\left._{s}\right\}$
- work balance
L. G. Valiant, A bridging model for parallel computation, CACM, 1990

BSP cost:

$$
T_{p}=\max _{s} w_{s}^{(0)}+L+\max \left\{\max _{s} w_{s}^{(1)}+L, \max _{s} h_{s}^{(1)} g+L\right\}+\ldots
$$

Separation of computation vs. communication.

BSP cost:

$$
T_{p}=\max _{s} w_{s}^{(0)}+L+\max \left\{\max _{s} w_{s}^{(1)}+L, \max _{s} h_{s}^{(1)} g+L\right\}+\ldots
$$

Separation of algorithm vs. hardware.

The BSP paradigm, allows the design of immortal algorithms:

- given a problem to compute
- given a BSP computer (p, g, l)
- find the BSP algorithm that attains provably minimal cost.
E.g., fast Fourier transforms, matrix-matrix multiplication.

Thinking in Sync: the Bulk-Synchronous Parallel approach to large-scale computing. Bisseling and Yzelman, ACM Hot Topic '16.
http://www.computingreviews.com/hottopic/hottopic_essay.cfm?htname=BSP

Variables A_{s}, x_{s}, y_{s} are local versions of the global variables A, x, y distributed according to $\pi_{A}, \pi_{x}, \pi_{y}$.

Variables A_{s}, x_{s}, y_{s} are local versions of the global variables A, x, y distributed according to $\pi_{A}, \pi_{x}, \pi_{y}$.

1: for $j \mid \exists a_{i j} \neq 0 \in A_{s}$ and $\pi_{x}(j) \neq s$ do
2: get $x_{\pi_{x}(j), j}$
3: sync \{execute fan-out $\}$

Variables A_{s}, x_{s}, y_{s} are local versions of the global variables A, x, y distributed according to $\pi_{A}, \pi_{x}, \pi_{y}$.

1: for $j \mid \exists a_{i j} \neq 0 \in A_{s}$ and $\pi_{x}(j) \neq s$ do
2: get $x_{\pi_{x}(j), j}$
3: sync \{execute fan-out $\}$
4: $y_{s}=A_{s} x_{s}$ \{local multiplication stage $\}$

Variables A_{s}, x_{s}, y_{s} are local versions of the global variables A, x, y distributed according to $\pi_{A}, \pi_{x}, \pi_{y}$.

1: for $j \mid \exists a_{i j} \neq 0 \in A_{s}$ and $\pi_{x}(j) \neq s$ do
2: get $x_{\pi_{\times}(j), j}$
3: sync \{execute fan-out $\}$
4: $y_{s}=A_{s} x_{s}$ \{local multiplication stage $\}$
5: for $i \mid \exists a_{i j} \in A_{s}$ and $\pi_{y}(i) \neq s$ do
6: \quad send $\left(i, y_{s, i}\right)$ to $\pi_{y}(i)$
7: sync $\{$ execute fan-in\}

Variables A_{s}, x_{s}, y_{s} are local versions of the global variables A, x, y distributed according to $\pi_{A}, \pi_{x}, \pi_{y}$.

1: for $j \mid \exists a_{i j} \neq 0 \in A_{s}$ and $\pi_{x}(j) \neq s$ do
2: get $x_{\pi_{\times}(j), j}$
3: sync \{execute fan-out $\}$
4: $y_{s}=A_{s} x_{s}$ \{local multiplication stage $\}$
5: for $i \mid \exists a_{i j} \in A_{s}$ and $\pi_{y}(i) \neq s$ do
6: \quad send $\left(i, y_{s, i}\right)$ to $\pi_{y}(i)$
7: sync \{execute fan-in\}
8: for all (i, α) received do
9: \quad add α to $y_{s, i}$
Rob H. Bisseling, "Parallel Scientific Computation", Oxford Press, 2004.

Suppose π_{A} assigns every nonzero $a_{i j} \in A$ to processor $\pi_{A}(i, j)$. If
(1) $\pi_{y}(i) \in\left\{s \mid \exists a_{i j} \in A, \pi_{A}(i, j)=s\right\}$ and
(2) $\pi_{x}(j) \in\left\{s \mid \exists a_{i j} \in A, \pi_{A}(i, j)=s\right\}$;

Suppose π_{A} assigns every nonzero $a_{i j} \in A$ to processor $\pi_{A}(i, j)$. If
(1) $\pi_{y}(i) \in\left\{s \mid \exists a_{i j} \in A, \pi_{A}(i, j)=s\right\}$ and
(2) $\pi_{x}(j) \in\left\{s \mid \exists a_{i j} \in A, \pi_{A}(i, j)=s\right\}$;
then

- fan-out communication scatters $\sum_{j}\left(\lambda_{j}^{\text {col }}-1\right)$ elements from x,
- fan-in communication gathers $\sum_{i}\left(\lambda_{i}^{\text {row }}-1\right)$ elements from y,
where

$$
\begin{aligned}
\lambda_{i}^{\text {row }} & =\left|\left\{s \mid \exists a_{i j} \in A_{s}\right\}\right| \text { and } \\
\lambda_{j}^{\text {col }} & =\left|\left\{s \mid \exists a_{i j} \in A_{s}\right\}\right| .
\end{aligned}
$$

Minimising the $\lambda-1$ metric minimises total communication volume.

BSP sparse matrix-vector multiplication

Partitioning combined with reordering illustrates clear separators:

- Group nonzeroes $a_{i j}$ for which $\pi_{A}(i)=\pi_{A}(j)$,
- permute rows i with $\lambda_{i}>1$ in between,
- apply recursive bipartitioning.

BSP sparse matrix-vector multiplication

When partitioning in both dimensions:

Classical worst-case bounds (in flops):
Block: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+n / p(\sqrt{p}-1)(2 g+1)+2 l$.

Classical worst-case bounds (in flops):
Block: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+n / p(\sqrt{p}-1)(2 g+1)+2 l$.
Row 1D: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+g h_{\text {fan-out }}+l$.

Classical worst-case bounds (in flops):
Block: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+n / p(\sqrt{p}-1)(2 g+1)+2 l$.
Row 1D: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+g h_{\text {fan-out }}+l$.
Col 1D: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+\max _{s} r e c v_{s}^{\text {fan-in }}+g h_{\text {fan-in }}+l$.

Classical worst-case bounds (in flops):
Block: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+n / p(\sqrt{p}-1)(2 g+1)+2 l$.
Row 1D: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+g h_{\text {fan-out }}+l$.
Col 1D: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+$ max $_{s}$ recv $v_{s}^{\text {fan-in }}+g h_{\text {fan-in }}+l$.
Full 2D: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+\max _{s}$ recv $_{s}^{\text {fan-in }}+g\left(h_{\text {fan-out }}+h_{\text {fan-in }}\right)+2 l$.

Classical worst-case bounds (in flops):
Block: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+n / p(\sqrt{p}-1)(2 g+1)+2 l$.
Row 1D: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+g h_{\text {fan-out }}+l$.
Col 1D: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+$ max $_{s}$ recv $v_{s}^{\text {fan-in }}+g h_{\text {fan-in }}+l$.
Full 2D: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+\max _{s} r e c v_{s}^{\text {fan-in }}+g\left(h_{\text {fan-out }}+h_{\text {fan-in }}\right)+2 l$.
Memory overhead (buffers):

$$
\Theta\left(\sum_{i}\left(\lambda_{i}^{\text {row }}-1\right)+\sum_{j}\left(\lambda_{i}^{\text {col }}-1\right)\right)=\mathcal{O}\left(p \sum_{\lambda: \lambda^{\text {row }} \cup \lambda^{\text {col }}} \mathbf{1}_{\lambda>1}\right) .
$$

3SP sparse matrix-vector multiplication

Classical worst-case bounds (in flops):
Block: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+n / p(\sqrt{p}-1)(2 g+1)+2 l$.
Row 1D: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+g h_{\text {fan-out }}+l$.
Col 1D: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+\max _{s} r e c v_{s}^{\text {fan-in }}+g h_{\text {fan-in }}+l$.
Full 2D: $\quad \frac{2 n z(A)}{p}(1+\epsilon)+$ max $_{s} r e c v_{s}^{\text {fan-in }}+g\left(h_{\text {fan-out }}+h_{\text {fan-in }}\right)+2 l$.
Memory overhead (buffers):

$$
\Theta\left(\sum_{i}\left(\lambda_{i}^{\text {row }}-1\right)+\sum_{j}\left(\lambda_{i}^{\text {col }}-1\right)\right)=\mathcal{O}\left(p \sum_{\lambda: \lambda^{\text {row }} \cup \lambda^{\text {col }}} \mathbf{1}_{\lambda>1}\right) .
$$

Depending on the higher-level algorithm:

- fan-in latency can be hidden behind other kernels,
- fan-out latency can be hidden as well.

Multi-BSP computer $=p$ (subcomputers or processors $)+$ M bytes of local memory+ an interconnect

Multi-BSP computer $=p($ subcomputers or processors $)+$ M bytes of local memory+ an interconnect

A total of $4 L$ parameters: $\left(p_{0}, g_{0}, I_{0}, M_{0}, \ldots, p_{L-1}, g_{L-1}, I_{L-1}, M_{L-1}\right)$.
Advantages:

- memory-aware,
- non-uniform!

Multi-BSP computer $=p$ (subcomputers or processors $)+$ M bytes of local memory+ an interconnect

A total of $4 L$ parameters: $\left(p_{0}, g_{0}, I_{0}, M_{0}, \ldots, p_{L-1}, g_{L-1}, I_{L-1}, M_{L-1}\right)$.
Advantages:

- memory-aware,
- non-uniform!

Disadvantages:

- (likely) harder to prove optimality.
L. G. Valiant, A bridging model for multi-core computing, CACM 2011.

An example with $L=3$ quadlets (p, g, I, M) :

$$
\mathcal{C}=\left(2, g_{0}, I_{0}, M_{0}\right)\left(4, g_{1}, I_{1}, M_{1}\right)\left(8, g_{2}, I_{2}, M_{2}\right)
$$

Each quadlet runs its own BSP SPMD program.

SPMD-style Multi-BSP SpMV multiplication:

- define process 0 at level -1 as the Multi-BSP root.
- let process s at level k have parent t at level $k-1$.
- define $\left(A_{-1,0}, x_{-1,0}, y_{-1,0}\right)=(A, x, y)$, the original input.

SPMD-style Multi-BSP SpMV multiplication:

- define process 0 at level -1 as the Multi-BSP root.
- let process s at level k have parent t at level $k-1$.
- define $\left(A_{-1,0}, x_{-1,0}, y_{-1,0}\right)=(A, x, y)$, the original input.
- variables $A_{k, s}, x_{k, s}, y_{k, s}$ are local versions of $A_{k-1, t}, x_{k-1, t}, y_{k-1, t}$,
- $\{A, x, k\}_{k-1, t}$ was distributed into \tilde{p}_{k-1} parts,

SPMD-style Multi-BSP SpMV multiplication:

- define process 0 at level -1 as the Multi-BSP root.
- let process s at level k have parent t at level $k-1$.
- define $\left(A_{-1,0}, x_{-1,0}, y_{-1,0}\right)=(A, x, y)$, the original input.
- variables $A_{k, s}, x_{k, s}, y_{k, s}$ are local versions of $A_{k-1, t}, x_{k-1, t}, y_{k-1, t}$,
- $\{A, x, k\}_{k-1, t}$ was distributed into \tilde{p}_{k-1} parts,
- where $\tilde{p}_{k-1} \geq p_{k-1}$ is such that all $\{A, x, y\}_{k, s}$ fit into M_{k} bytes.

Multi-BSP SpMV multiplication

SPMD-style Multi-BSP SpMV multiplication:

- define process 0 at level -1 as the Multi-BSP root.
- let process s at level k have parent t at level $k-1$.
- define $\left(A_{-1,0}, x_{-1,0}, y_{-1,0}\right)=(A, x, y)$, the original input.
- variables $A_{k, s}, x_{k, s}, y_{k, s}$ are local versions of $A_{k-1, t}, x_{k-1, t}, y_{k-1, t}$,
- $\{A, x, k\}_{k-1, t}$ was distributed into \tilde{p}_{k-1} parts,
- where $\tilde{p}_{k-1} \geq p_{k-1}$ is such that all $\{A, x, y\}_{k, s}$ fit into M_{k} bytes.

1: do
2: \quad for $j=0$ to \tilde{p} step p
3: \quad get $\{A\}_{k, j}$ from parent
4: down
5: while(up)
Mandatory input data movement only.

SPMD-style Multi-BSP SpMV multiplication:
1: do
2: ...
3: \quad for $j=0$ to \tilde{p} step p
4: \quad get $\{A, x, y\}_{k, j}$ from parent
5:
6: if(not down)
7:
compute $y_{k, j}=A_{k, j} x_{k, j}\{$ only executed on leafs $\}$
8:
9: put $y_{k, j}$ into parent
10:
11: while(up)
Mandatory and mixed mandatory/overhead data movement.
Minimal required work only.

Multi-BSP SpMV multiplication

SPMD-style Multi-BSP SpMV multiplication:
do
2: $\forall j$, get separator $\tilde{x}_{k, j}$ and initialise $\tilde{y}_{k, j}$ iff $j \bmod p=s$
3: \quad for $j=0$ to \tilde{p} step p
4: get $\{A, x, y\}_{k, j}$ from parent
5: sync
6: if(not down)
7:
8:
9:
10:
11: put $\tilde{y}_{k, j}$ into parent and sync
12: while(up)
Mandatory costs plus overhead. Split vectors: $\{x, y\}_{s}$ versus $\{\tilde{x}, \tilde{y}\}_{s}$.

lat partitioning for Multi-BSP

Can we reuse existing partitioning techniques?
1 Partition $A=A_{0} \cup \ldots A_{p-1}$ with $p=\pi_{l=0}^{L-1} p_{l}$?
No: A_{s}, x_{s}, y_{s} may not fit in M_{L-1}.

Can we reuse existing partitioning techniques?
1 Partition $A=A_{0} \cup \ldots A_{p-1}$ with $p=\pi_{l=0}^{L-1} p_{l}$?
2 Find minimal k to partition A into s.t. $\{A, x, y\}_{i}$ fits into M_{L-1} ?

- Very similar to previous work!
- Y. and Bisseling, "Cache-oblivous sparse matrix-vector multiplication by using sparse matrix partitioning", SISC, 2009.
- Y. and Bisseling, "Two-dimensional cache-oblivious sparse matrix-vector multiplication", Parallel Computing, 2011.

Can we reuse existing partitioning techniques?
1 Partition $A=A_{0} \cup \ldots A_{p-1}$ with $p=\pi_{l=0}^{L-1} p_{l}$?
2 Find minimal k to partition A into s.t. $\{A, x, y\}_{i}$ fits into M_{L-1} ?

- Very similar to previous work!
- Y. and Bisseling, "Cache-oblivous sparse matrix-vector multiplication by using sparse matrix partitioning", SISC, 2009.
- Y. and Bisseling, "Two-dimensional cache-oblivious sparse matrix-vector multiplication", Parallel Computing, 2011.

3 Hierarchical partitioning?

- $A=A_{0} \cup \ldots \cup A_{k_{0}}$,
- $A_{i}=A_{i, 0} \cup \ldots \cup A_{i, k_{1}}$, etc.
- solves assignment issue.

Can we reuse existing partitioning techniques?
1 Partition $A=A_{0} \cup \ldots A_{p-1}$ with $p=\pi_{l=0}^{L-1} p_{l}$?
2 Find minimal k to partition A into s.t. $\{A, x, y\}_{i}$ fits into M_{L-1} ?

- Very similar to previous work!
- Y. and Bisseling, "Cache-oblivous sparse matrix-vector multiplication by using sparse matrix partitioning", SISC, 2009.
- Y. and Bisseling, "Two-dimensional cache-oblivious sparse matrix-vector multiplication", Parallel Computing, 2011.

3 Hierarchical partitioning?

- $A=A_{0} \cup \ldots \cup A_{k_{0}}$,
- $A_{i}=A_{i, 0} \cup \ldots \cup A_{i, k_{1}}$, etc.
- solves assignment issue.

However,

$$
\text { all of these do not take into account different } g_{l} \text { ! }
$$

Upper level Lower level

Fan-out $6 g_{0}$
Fan-in $2 g_{0}$
Total: $8 g_{0}+\ldots$

Upper level Lower level

Fan-out	$6 g_{0}$	0
Fan-in	$2 g_{0}$	0

Total: $8 g_{0}$

Hierarchical partitioning

Upper level Lower level

Fan-out 0
Fan-in $\quad 4 g_{0}$
Total: $4 g_{0}+\ldots$
Previous: $8 g_{0}$

Upper level Lower level

Fan-out 0
Fan-in $\quad 4 g_{0}$
$6 g_{1}$
$2 g_{1}$
Total: $4 g_{0}+8 g_{1}$
Previous: $8 g_{0}$

If $g_{0}<2 g_{1}$, greedy hierarchical partitioning is suboptimal.
Upper level Lower level
Fan-out 0
$6 g_{1}$
Fan-in $\quad 4 g_{0}$
$2 g_{1}$
Total: $4 g_{0}+8 g_{1}$
Previous: $8 g_{0}$

Slightly modified V-cycle:
(1) coarsen
(2) recurse or randomly partition
(3) do k steps of HKLFM

- calculate gains taking g_{0}, \ldots, g_{L-1} into account
(4) refine

Slightly modified V-cycle:
(1) coarsen
(2) recurse or randomly partition
(3) do k steps of HKLFM

- calculate gains taking g_{0}, \ldots, g_{L-1} into account
(4) refine

Claim: if $g_{0}>g_{1}>g_{2} \ldots$, then HKLFM is a local operation.
By enumeration of all possibilities $(L=2)$. At level-1 refinement:

- suppose we move a nonzero $a_{i j}$ from $A_{s_{1}, s_{2}}$ to $A_{t_{1}, t_{2}}$ with $s_{1} \neq t_{1}$:
- $a_{i j} \in \tilde{A}_{s_{1}, s_{2}}, a_{i j} \notin \tilde{A}_{s_{1}}$: gain is $g_{1}-g_{0}$ or $2\left(g_{1}-g_{0}\right)$.
- $a_{i j} \notin \tilde{A}_{s_{1}, s_{2}}$: gain is $0, g_{1}-g_{0}$, or $2\left(g_{1}-g_{0}\right)$.

Hence it suffices to perform HKLFM steps on each level separately.

Differences from flat BSP:

- different notion of load balance
- parts must fit into local memory.
- non-uniform communication costs
- implies different partitioning techniques.

Non-uniform data locality...

Differences from flat BSP:

- different notion of load balance
- parts must fit into local memory.
- non-uniform communication costs
- implies different partitioning techniques.

Non-uniform data locality...
with fine-grained distribution.

- ANSI $\mathrm{C}++11$, parallelisation using std::thread,
- implementation relies on shared-memory cache coherency
- Mondriaan 4.0, medium-grain, symmetric doubly BBD reordering
- Global arrays without blocking, nonzero reordering, compression.

	matrix	original	$p=1$	$p=\max$	Optimal
2×8	G3_circuit	33.3	26.7	10.5	2.77
2×8	FS1	83.5	65.3	22.0	10.3
2×8	cage15	523	387	77.1	29.8
2×10	G3_circuit	22.7	16.9	9.77	1.73
2×10	FS1	83.5	65.3	22.0	7.56
2×10	cage15	341	233	54.7	23.4

[^0]- Y. and Bisseling, Cache-oblivious sparse matrix-vector multiplication, SISC 2009
- Y. and Roose, High-level strategies for sparse matrix-vector multiplication, IEEE TPDS 2014

Conclusions:

- not (yet) competitive on shared-memory
- programmability, usability?
- do we need to program for explicit hierarchies? (No!)
- is recursive SPMD general enough?
- Generic API, portability
- interoperability: call from MPI, BSP, Spark, ...

Future work:

- incorporate vector distribution
- distributed-memory, and shared memory without cache coherency:
- requires explicit Multi-BSP programming
- extension to sparse matrix powers

Thank you!

Backup Slides

We have a shared-memory prototype. Preliminary results:

- SpMM multiply, SpMV multiply, and basic vector operations;
- one machine learning application.

Cage15, $n=5154$ 859, $n z=99199$ 551. Using the 1D method:

SpMV multiplication performance compared

Note: this is ongoing work. Performance will be improved, and functionality will be extended.

Using an unified BSP guarantees interoperability. Going further:

- Call BSP algorithms from MPI;
- call BSP algorithms from MapReduce/Hadoop;
- call BSP algorithms from Spark;
- ...

Data I/O is a challenge. One example approach:
scala> val output_rdd = rdd.map(BSP_algorithm);
Hello from BSP, process number 0
Hello from BSP, process number 1

Hello from BSP, process number 11
scala>
Is this the best way to bridge HPC and Big Data?

```
do {
    if ( val != NULL )
        bsp_put( val into process 0 );
        bsp_sync()
} while( bsp_up() );
do {
    if ( my process ID is not 0 )
        bsp_get( val from process 0 );
        bsp_sync();
} while( bsp_down() );
```

Automatically deploys over arbitrary hierarchies.

Cross platform results over 24 matrices:

	Structured	Unstructured	Average
Intel Xeon Phi	21.6	8.7	15.2
2x Ivy Bridge CPU	23.5	14.6	19.0
NVIDIA K20X GPU	16.7	13.3	15.0

If we must, some generalising statements:

- Large structured matrices: GPUs.
- Large unstructured matrices: CPUs or GPUs.
- Smaller matrices: Xeon Phi or CPUs.

Ref.: Yzelman, A. N. (2015). Generalised vectorisation for sparse matrix: vector multiplication. In Proceedings of the 5th
Workshop on Irregular Applications: Architectures and Algorithms. ACM.

[^0]: all numbers are in ms.

