
Sparse Computations and Multi-BSP

Sparse Computations and Multi-BSP

Albert-Jan Yzelman

October 11, 2016

Parallel Computing & Big Data
Huawei Technologies France

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP

BSP machine = { sequential processor } + interconnect

The machine is described entirely by (p, g , L):

strobing synchronisation,

homogeneous processing,

uniform full-duplex network,

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP

BSP algorithm:

strobing barriers

full overlap

h-relation bottlenecks: maxs{sents , recv s}
work balance

L. G. Valiant, A bridging model for parallel computation, CACM, 1990

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP

BSP cost:

Tp = max
s

w
(0)
s + L + max{max

s
w

(1)
s + L,max

s
h

(1)
s g + L}+ . . .

Separation of computation vs. communication.

L. G. Valiant, A bridging model for parallel computation, CACM, 1990

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP

BSP cost:

Tp = max
s

w
(0)
s + L + max{max

s
w

(1)
s + L,max

s
h

(1)
s g + L}+ . . .

Separation of algorithm vs. hardware.

L. G. Valiant, A bridging model for parallel computation, CACM, 1990

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Immortal algorithms

The BSP paradigm, allows the design of immortal algorithms:

given a problem to compute

given a BSP computer (p, g , l)

find the BSP algorithm that attains provably minimal cost.

E.g., fast Fourier transforms, matrix-matrix multiplication.

Thinking in Sync: the Bulk-Synchronous Parallel approach to
large-scale computing. Bisseling and Yzelman, ACM Hot Topic ’16.

http://www.computingreviews.com/hottopic/hottopic_essay.cfm?htname=BSP

Albert-Jan Yzelman

http://www.computingreviews.com/hottopic/hottopic_essay.cfm?htname=BSP

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

Variables As , xs , ys are local versions of the global variables A, x , y
distributed according to πA, πx , πy .

1: for j | ∃aij 6= 0 ∈ As and πx(j) 6= s do
2: get xπx (j),j

3: sync {execute fan-out}

4: ys = Asxs {local multiplication stage}

5: for i | ∃aij ∈ As and πy (i) 6= s do
6: send (i , ys,i) to πy (i)
7: sync {execute fan-in}

8: for all (i , α) received do
9: add α to ys,i

Rob H. Bisseling, “Parallel Scientific Computation”, Oxford Press, 2004.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

Variables As , xs , ys are local versions of the global variables A, x , y
distributed according to πA, πx , πy .

1: for j | ∃aij 6= 0 ∈ As and πx(j) 6= s do
2: get xπx (j),j

3: sync {execute fan-out}

4: ys = Asxs {local multiplication stage}

5: for i | ∃aij ∈ As and πy (i) 6= s do
6: send (i , ys,i) to πy (i)
7: sync {execute fan-in}

8: for all (i , α) received do
9: add α to ys,i

Rob H. Bisseling, “Parallel Scientific Computation”, Oxford Press, 2004.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

Variables As , xs , ys are local versions of the global variables A, x , y
distributed according to πA, πx , πy .

1: for j | ∃aij 6= 0 ∈ As and πx(j) 6= s do
2: get xπx (j),j

3: sync {execute fan-out}

4: ys = Asxs {local multiplication stage}

5: for i | ∃aij ∈ As and πy (i) 6= s do
6: send (i , ys,i) to πy (i)
7: sync {execute fan-in}

8: for all (i , α) received do
9: add α to ys,i

Rob H. Bisseling, “Parallel Scientific Computation”, Oxford Press, 2004.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

Variables As , xs , ys are local versions of the global variables A, x , y
distributed according to πA, πx , πy .

1: for j | ∃aij 6= 0 ∈ As and πx(j) 6= s do
2: get xπx (j),j

3: sync {execute fan-out}

4: ys = Asxs {local multiplication stage}

5: for i | ∃aij ∈ As and πy (i) 6= s do
6: send (i , ys,i) to πy (i)
7: sync {execute fan-in}

8: for all (i , α) received do
9: add α to ys,i

Rob H. Bisseling, “Parallel Scientific Computation”, Oxford Press, 2004.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

Variables As , xs , ys are local versions of the global variables A, x , y
distributed according to πA, πx , πy .

1: for j | ∃aij 6= 0 ∈ As and πx(j) 6= s do
2: get xπx (j),j

3: sync {execute fan-out}

4: ys = Asxs {local multiplication stage}

5: for i | ∃aij ∈ As and πy (i) 6= s do
6: send (i , ys,i) to πy (i)
7: sync {execute fan-in}

8: for all (i , α) received do
9: add α to ys,i

Rob H. Bisseling, “Parallel Scientific Computation”, Oxford Press, 2004.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

Suppose πA assigns every nonzero aij ∈ A to processor πA(i , j). If

1 πy (i) ∈ {s | ∃aij ∈ A, πA(i , j) = s} and

2 πx(j) ∈ {s | ∃aij ∈ A, πA(i , j) = s};

then

fan-out communication scatters
∑

j

(
λcol
j − 1

)
elements from x ,

fan-in communication gathers
∑

i (λrow
i − 1) elements from y ,

where

λrow
i = |{s | ∃aij ∈ As}| and

λcol
j = |{s | ∃aij ∈ As}|.

Minimising the λ− 1 metric minimises total communication volume.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

Suppose πA assigns every nonzero aij ∈ A to processor πA(i , j). If

1 πy (i) ∈ {s | ∃aij ∈ A, πA(i , j) = s} and

2 πx(j) ∈ {s | ∃aij ∈ A, πA(i , j) = s};

then

fan-out communication scatters
∑

j

(
λcol
j − 1

)
elements from x ,

fan-in communication gathers
∑

i (λrow
i − 1) elements from y ,

where

λrow
i = |{s | ∃aij ∈ As}| and

λcol
j = |{s | ∃aij ∈ As}|.

Minimising the λ− 1 metric minimises total communication volume.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

Partitioning combined with reordering illustrates clear separators:

1 2 3 4

1 2

43

Group nonzeroes aij for which πA(i) = πA(j),
permute rows i with λi > 1 in between,
apply recursive bipartitioning.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

When partitioning in both dimensions:

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

Classical worst-case bounds (in flops):

Block: 2nz(A)
p (1 + ε) + n/p(

√
p − 1)(2g + 1) + 2l .

Row 1D: 2nz(A)
p (1 + ε) + ghfan-out + l .

Col 1D: 2nz(A)
p (1 + ε) + maxs recv

fan-in
s + ghfan-in + l .

Full 2D: 2nz(A)
p (1 + ε) + maxs recv

fan-in
s + g(hfan-out + hfan-in) + 2l .

Memory overhead (buffers):

Θ

∑
i

(λrow
i − 1) +

∑
j

(
λcol
i − 1

) = O

(
p

∑
λ:λrow∪λcol

1λ>1

)
.

Depending on the higher-level algorithm:

fan-in latency can be hidden behind other kernels,
fan-out latency can be hidden as well.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

Classical worst-case bounds (in flops):

Block: 2nz(A)
p (1 + ε) + n/p(

√
p − 1)(2g + 1) + 2l .

Row 1D: 2nz(A)
p (1 + ε) + ghfan-out + l .

Col 1D: 2nz(A)
p (1 + ε) + maxs recv

fan-in
s + ghfan-in + l .

Full 2D: 2nz(A)
p (1 + ε) + maxs recv

fan-in
s + g(hfan-out + hfan-in) + 2l .

Memory overhead (buffers):

Θ

∑
i

(λrow
i − 1) +

∑
j

(
λcol
i − 1

) = O

(
p

∑
λ:λrow∪λcol

1λ>1

)
.

Depending on the higher-level algorithm:

fan-in latency can be hidden behind other kernels,
fan-out latency can be hidden as well.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

Classical worst-case bounds (in flops):

Block: 2nz(A)
p (1 + ε) + n/p(

√
p − 1)(2g + 1) + 2l .

Row 1D: 2nz(A)
p (1 + ε) + ghfan-out + l .

Col 1D: 2nz(A)
p (1 + ε) + maxs recv

fan-in
s + ghfan-in + l .

Full 2D: 2nz(A)
p (1 + ε) + maxs recv

fan-in
s + g(hfan-out + hfan-in) + 2l .

Memory overhead (buffers):

Θ

∑
i

(λrow
i − 1) +

∑
j

(
λcol
i − 1

) = O

(
p

∑
λ:λrow∪λcol

1λ>1

)
.

Depending on the higher-level algorithm:

fan-in latency can be hidden behind other kernels,
fan-out latency can be hidden as well.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

Classical worst-case bounds (in flops):

Block: 2nz(A)
p (1 + ε) + n/p(

√
p − 1)(2g + 1) + 2l .

Row 1D: 2nz(A)
p (1 + ε) + ghfan-out + l .

Col 1D: 2nz(A)
p (1 + ε) + maxs recv

fan-in
s + ghfan-in + l .

Full 2D: 2nz(A)
p (1 + ε) + maxs recv

fan-in
s + g(hfan-out + hfan-in) + 2l .

Memory overhead (buffers):

Θ

∑
i

(λrow
i − 1) +

∑
j

(
λcol
i − 1

) = O

(
p

∑
λ:λrow∪λcol

1λ>1

)
.

Depending on the higher-level algorithm:

fan-in latency can be hidden behind other kernels,
fan-out latency can be hidden as well.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

Classical worst-case bounds (in flops):

Block: 2nz(A)
p (1 + ε) + n/p(

√
p − 1)(2g + 1) + 2l .

Row 1D: 2nz(A)
p (1 + ε) + ghfan-out + l .

Col 1D: 2nz(A)
p (1 + ε) + maxs recv

fan-in
s + ghfan-in + l .

Full 2D: 2nz(A)
p (1 + ε) + maxs recv

fan-in
s + g(hfan-out + hfan-in) + 2l .

Memory overhead (buffers):

Θ

∑
i

(λrow
i − 1) +

∑
j

(
λcol
i − 1

) = O

(
p

∑
λ:λrow∪λcol

1λ>1

)
.

Depending on the higher-level algorithm:

fan-in latency can be hidden behind other kernels,
fan-out latency can be hidden as well.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

BSP sparse matrix–vector multiplication

Classical worst-case bounds (in flops):

Block: 2nz(A)
p (1 + ε) + n/p(

√
p − 1)(2g + 1) + 2l .

Row 1D: 2nz(A)
p (1 + ε) + ghfan-out + l .

Col 1D: 2nz(A)
p (1 + ε) + maxs recv

fan-in
s + ghfan-in + l .

Full 2D: 2nz(A)
p (1 + ε) + maxs recv

fan-in
s + g(hfan-out + hfan-in) + 2l .

Memory overhead (buffers):

Θ

∑
i

(λrow
i − 1) +

∑
j

(
λcol
i − 1

) = O

(
p

∑
λ:λrow∪λcol

1λ>1

)
.

Depending on the higher-level algorithm:

fan-in latency can be hidden behind other kernels,
fan-out latency can be hidden as well.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Multi-BSP

Multi-BSP computer = p (subcomputers or processors) +

M bytes of local memory+

an interconnect

A total of 4L parameters: (p0, g0, l0,M0, . . . , pL−1, gL−1, lL−1,ML−1).

Advantages:

memory-aware,

non-uniform!

Disadvantages:

(likely) harder to prove optimality.

L. G. Valiant, A bridging model for multi-core computing, CACM 2011.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Multi-BSP

Multi-BSP computer = p (subcomputers or processors) +

M bytes of local memory+

an interconnect

A total of 4L parameters: (p0, g0, l0,M0, . . . , pL−1, gL−1, lL−1,ML−1).

Advantages:

memory-aware,

non-uniform!

Disadvantages:

(likely) harder to prove optimality.

L. G. Valiant, A bridging model for multi-core computing, CACM 2011.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Multi-BSP

Multi-BSP computer = p (subcomputers or processors) +

M bytes of local memory+

an interconnect

A total of 4L parameters: (p0, g0, l0,M0, . . . , pL−1, gL−1, lL−1,ML−1).

Advantages:

memory-aware,

non-uniform!

Disadvantages:

(likely) harder to prove optimality.

L. G. Valiant, A bridging model for multi-core computing, CACM 2011.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Multi-BSP

An example with L = 3 quadlets (p, g , l ,M):

C = (2, g0, l0,M0) (4, g1, l1,M1) (8, g2, l2,M2)

Each quadlet runs its own BSP SPMD program.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Multi-BSP SpMV multiplication

SPMD-style Multi-BSP SpMV multiplication:

define process 0 at level −1 as the Multi-BSP root.

let process s at level k have parent t at level k − 1.

define (A−1,0, x−1,0, y−1,0) = (A, x , y), the original input.

variables Ak,s , xk,s , yk,s are local versions of Ak−1,t , xk−1,t , yk−1,t ,

{A, x , k}k−1,t was distributed into p̃k−1 parts,

where p̃k−1 ≥ pk−1 is such that all {A, x , y}k,s fit into Mk bytes.

1: do
2: for j = 0 to p̃ step p
3: get {A}k,j from parent
4: down
5: while(up)

Mandatory input data movement only.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Multi-BSP SpMV multiplication

SPMD-style Multi-BSP SpMV multiplication:

define process 0 at level −1 as the Multi-BSP root.

let process s at level k have parent t at level k − 1.

define (A−1,0, x−1,0, y−1,0) = (A, x , y), the original input.

variables Ak,s , xk,s , yk,s are local versions of Ak−1,t , xk−1,t , yk−1,t ,

{A, x , k}k−1,t was distributed into p̃k−1 parts,

where p̃k−1 ≥ pk−1 is such that all {A, x , y}k,s fit into Mk bytes.

1: do
2: for j = 0 to p̃ step p
3: get {A}k,j from parent
4: down
5: while(up)

Mandatory input data movement only.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Multi-BSP SpMV multiplication

SPMD-style Multi-BSP SpMV multiplication:

define process 0 at level −1 as the Multi-BSP root.

let process s at level k have parent t at level k − 1.

define (A−1,0, x−1,0, y−1,0) = (A, x , y), the original input.

variables Ak,s , xk,s , yk,s are local versions of Ak−1,t , xk−1,t , yk−1,t ,

{A, x , k}k−1,t was distributed into p̃k−1 parts,

where p̃k−1 ≥ pk−1 is such that all {A, x , y}k,s fit into Mk bytes.

1: do
2: for j = 0 to p̃ step p
3: get {A}k,j from parent
4: down
5: while(up)

Mandatory input data movement only.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Multi-BSP SpMV multiplication

SPMD-style Multi-BSP SpMV multiplication:

define process 0 at level −1 as the Multi-BSP root.

let process s at level k have parent t at level k − 1.

define (A−1,0, x−1,0, y−1,0) = (A, x , y), the original input.

variables Ak,s , xk,s , yk,s are local versions of Ak−1,t , xk−1,t , yk−1,t ,

{A, x , k}k−1,t was distributed into p̃k−1 parts,

where p̃k−1 ≥ pk−1 is such that all {A, x , y}k,s fit into Mk bytes.

1: do
2: for j = 0 to p̃ step p
3: get {A}k,j from parent
4: down
5: while(up)

Mandatory input data movement only.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Multi-BSP SpMV multiplication

SPMD-style Multi-BSP SpMV multiplication:

1: do
2: . . .
3: for j = 0 to p̃ step p
4: get {A, x , y}k,j from parent
5: . . .
6: if(not down)
7: compute yk,j = Ak,jxk,j {only executed on leafs}
8: . . .
9: put yk,j into parent

10: . . .
11: while(up)

Mandatory and mixed mandatory/overhead data movement.
Minimal required work only.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Multi-BSP SpMV multiplication

SPMD-style Multi-BSP SpMV multiplication:

1: do
2: ∀j , get separator x̃k,j and initialise ỹk,j iff j mod p = s
3: for j = 0 to p̃ step p
4: get {A, x , y}k,j from parent
5: sync
6: if(not down)
7: compute yk,j = Ak,jxk,j {only executed on leafs}
8: perform fan-in on seperator ỹk,j
9: put yk,j into parent

10: sync
11: put ỹk,j into parent and sync
12: while(up)

Mandatory costs plus overhead. Split vectors: {x , y}s versus {x̃ , ỹ}s .

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Flat partitioning for Multi-BSP

Can we reuse existing partitioning techniques?

1 Partition A = A0 ∪ . . .Ap−1 with p = πL−1
l=0 pl?

No: As , xs , ys may not fit in ML−1.

2 Find minimal k to partition A into s.t. {A, x , y}i fits into ML−1?
Very similar to previous work!

Y. and Bisseling, “Cache-oblivous sparse matrix–vector
multiplication by using sparse matrix partitioning”, SISC, 2009.
Y. and Bisseling, “Two-dimensional cache-oblivious sparse
matrix–vector multiplication”, Parallel Computing, 2011.

3 Hierarchical partitioning?
A = A0 ∪ . . . ∪ Ak0 ,
Ai = Ai,0 ∪ . . . ∪ Ai,k1 , etc.
solves assignment issue.

However,
all of these do not take into account different gl !

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Flat partitioning for Multi-BSP

Can we reuse existing partitioning techniques?

1 Partition A = A0 ∪ . . .Ap−1 with p = πL−1
l=0 pl?

2 Find minimal k to partition A into s.t. {A, x , y}i fits into ML−1?
Very similar to previous work!

Y. and Bisseling, “Cache-oblivous sparse matrix–vector
multiplication by using sparse matrix partitioning”, SISC, 2009.
Y. and Bisseling, “Two-dimensional cache-oblivious sparse
matrix–vector multiplication”, Parallel Computing, 2011.

3 Hierarchical partitioning?
A = A0 ∪ . . . ∪ Ak0 ,
Ai = Ai,0 ∪ . . . ∪ Ai,k1 , etc.
solves assignment issue.

However,
all of these do not take into account different gl !

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Flat partitioning for Multi-BSP

Can we reuse existing partitioning techniques?

1 Partition A = A0 ∪ . . .Ap−1 with p = πL−1
l=0 pl?

2 Find minimal k to partition A into s.t. {A, x , y}i fits into ML−1?
Very similar to previous work!

Y. and Bisseling, “Cache-oblivous sparse matrix–vector
multiplication by using sparse matrix partitioning”, SISC, 2009.
Y. and Bisseling, “Two-dimensional cache-oblivious sparse
matrix–vector multiplication”, Parallel Computing, 2011.

3 Hierarchical partitioning?
A = A0 ∪ . . . ∪ Ak0 ,
Ai = Ai,0 ∪ . . . ∪ Ai,k1 , etc.
solves assignment issue.

However,
all of these do not take into account different gl !

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Flat partitioning for Multi-BSP

Can we reuse existing partitioning techniques?

1 Partition A = A0 ∪ . . .Ap−1 with p = πL−1
l=0 pl?

2 Find minimal k to partition A into s.t. {A, x , y}i fits into ML−1?
Very similar to previous work!

Y. and Bisseling, “Cache-oblivous sparse matrix–vector
multiplication by using sparse matrix partitioning”, SISC, 2009.
Y. and Bisseling, “Two-dimensional cache-oblivious sparse
matrix–vector multiplication”, Parallel Computing, 2011.

3 Hierarchical partitioning?
A = A0 ∪ . . . ∪ Ak0 ,
Ai = Ai,0 ∪ . . . ∪ Ai,k1 , etc.
solves assignment issue.

However,
all of these do not take into account different gl !

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Hierarchical partitioning

If g0 < 2g1, greedy hierarchical partitioning is suboptimal.

Upper level Lower level

Fan-out 6g0

Fan-in 2g0

Total: 8g0 + . . .
Previous:

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Hierarchical partitioning

If g0 < 2g1, greedy hierarchical partitioning is suboptimal.

Upper level Lower level

Fan-out 6g0 0
Fan-in 2g0 0

Total: 8g0

Previous:

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Hierarchical partitioning

If g0 < 2g1, greedy hierarchical partitioning is suboptimal.

Upper level Lower level

Fan-out 0
Fan-in 4g0

Total: 4g0 + . . .
Previous: 8g0

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Hierarchical partitioning

If g0 < 2g1, greedy hierarchical partitioning is suboptimal.

Upper level Lower level

Fan-out 0 6g1

Fan-in 4g0 2g1

Total: 4g0 + 8g1

Previous: 8g0

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Hierarchical partitioning

If g0 < 2g1, greedy hierarchical partitioning is suboptimal.

Upper level Lower level

Fan-out 0 6g1

Fan-in 4g0 2g1

Total: 4g0 + 8g1

Previous: 8g0

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Multi-BSP aware partitioning

Slightly modified V-cycle:

1 coarsen

2 recurse or randomly partition
3 do k steps of HKLFM

calculate gains taking g0, . . . , gL−1 into account

4 refine

Claim: if g0 > g1 > g2 . . ., then HKLFM is a local operation.

By enumeration of all possibilities (L = 2). At level-1 refinement:

suppose we move a nonzero aij from As1,s2 to At1,t2 with s1 6= t1:

aij ∈ Ãs1,s2 , aij /∈ Ãs1 : gain is g1 − g0 or 2(g1 − g0).

aij /∈ Ãs1,s2 : gain is 0, g1 − g0, or 2(g1 − g0).

Hence it suffices to perform HKLFM steps on each level separately.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Multi-BSP aware partitioning

Slightly modified V-cycle:

1 coarsen

2 recurse or randomly partition
3 do k steps of HKLFM

calculate gains taking g0, . . . , gL−1 into account

4 refine

Claim: if g0 > g1 > g2 . . ., then HKLFM is a local operation.

By enumeration of all possibilities (L = 2). At level-1 refinement:

suppose we move a nonzero aij from As1,s2 to At1,t2 with s1 6= t1:

aij ∈ Ãs1,s2 , aij /∈ Ãs1 : gain is g1 − g0 or 2(g1 − g0).

aij /∈ Ãs1,s2 : gain is 0, g1 − g0, or 2(g1 − g0).

Hence it suffices to perform HKLFM steps on each level separately.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Summary

Differences from flat BSP:

different notion of load balance
parts must fit into local memory.

non-uniform communication costs
implies different partitioning techniques.

Non-uniform data locality...

with fine-grained distribution.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Summary

Differences from flat BSP:

different notion of load balance
parts must fit into local memory.

non-uniform communication costs
implies different partitioning techniques.

Non-uniform data locality...
with fine-grained distribution.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

How does it compare?

ANSI C++11, parallelisation using std::thread,

implementation relies on shared-memory cache coherency

Mondriaan 4.0, medium-grain, symmetric doubly BBD reordering

Global arrays without blocking, nonzero reordering, compression.

matrix original p = 1 p = max Optimal

2x8 G3 circuit 33.3 26.7 10.5 2.77
2x8 FS1 83.5 65.3 22.0 10.3
2x8 cage15 523 387 77.1 29.8

2x10 G3 circuit 22.7 16.9 9.77 1.73
2x10 FS1 83.5 65.3 22.0 7.56
2x10 cage15 341 233 54.7 23.4

all numbers are in ms.

Y. and Bisseling, Cache-oblivious sparse matrix–vector multiplication, SISC 2009

Y. and Roose, High-level strategies for sparse matrix–vector multiplication, IEEE TPDS 2014

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Conclusions and Outlook

Conclusions:

not (yet) competitive on shared-memory

programmability, usability?
do we need to program for explicit hierarchies? (No!)
is recursive SPMD general enough?
Generic API, portability
interoperability: call from MPI, BSP, Spark, ...

Future work:

incorporate vector distribution

distributed-memory, and shared memory without cache coherency:
requires explicit Multi-BSP programming

extension to sparse matrix powers

Thank you!

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Backup Slides

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Interoperable BSP

We have a shared-memory prototype. Preliminary results:

SpMM multiply, SpMV multiply, and basic vector operations;

one machine learning application.

Cage15, n = 5 154 859, nz = 99 199 551. Using the 1D method:

Note: this is ongoing work. Performance will be improved, and
functionality will be extended.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Interoperable BSP

Using an unified BSP guarantees interoperability. Going further:

Call BSP algorithms from MPI;

call BSP algorithms from MapReduce/Hadoop;

call BSP algorithms from Spark;

...

Data I/O is a challenge. One example approach:

scala> val output_rdd = rdd.map(BSP_algorithm);

Hello from BSP, process number 0

Hello from BSP, process number 1

...

Hello from BSP, process number 11

scala>

Is this the best way to bridge HPC and Big Data?

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Multi-BSP broadcast example

do {

if (val != NULL)

bsp_put(val into process 0);

bsp_sync()

} while(bsp_up());

do {

if (my process ID is not 0)

bsp_get(val from process 0);

bsp_sync();

} while(bsp_down());

Automatically deploys over arbitrary hierarchies.

Albert-Jan Yzelman

Sparse Computations and Multi-BSP

Results: cross platform

Cross platform results over 24 matrices:

Structured Unstructured Average

Intel Xeon Phi 21.6 8.7 15.2
2x Ivy Bridge CPU 23.5 14.6 19.0

NVIDIA K20X GPU 16.7 13.3 15.0

no one solution fits all.

If we must, some generalising statements:

Large structured matrices: GPUs.

Large unstructured matrices: CPUs or GPUs.

Smaller matrices: Xeon Phi or CPUs.

Ref.: Yzelman, A. N. (2015). Generalised vectorisation for sparse matrix: vector multiplication. In Proceedings of the 5th
Workshop on Irregular Applications: Architectures and Algorithms. ACM.

Albert-Jan Yzelman

