
The Reverse Cuthill-McKee Algorithm
in Distributed-Memory

Ariful	Azad	
Lawrence	Berkeley	Na.onal	Laboratory	(LBNL)	
	

	

SIAM	CSC	2016,	Albuquerque	

q  Joint	work	with	
–  Aydın	Buluç		
– Mathias	Jacquelin	
–  Esmond	Ng	

q  Funding	
–  DOE	Office	of	Science	
–  	Time	alloca.on	at	the	DOE	NERSC	Center	

Acknowledgements	

q  In	this	talk,	I	consider	parallel	algorithms	for	reordering	
sparse	matrices		

q  Goal:	Find	a	permuta.on	P	so	that	the	bandwidth/
profile	of	PAPT		is	small.	

	Reordering	a	sparse	matrix	

Before	permuta.on		 ASer	permuta.on		

q  BeTer	cache	reuse	in	SpMV	[Karantasis	et	al.	SC	‘14]	
q  Faster	itera.ve	solvers	such	as	precondi.oned	
conjugate	gradients	(PCG).		

Why	reordering	a	matrix	

1	

2	

4	

8	

16	

32	

64	

128	

1	 2	 4	 8	 16	 32	 64	 128	 256	

So
lv
er
	(
m
e	
(s
)	

Number	of	cores	

thermal2	(n=1.2	M,	nnz=4.9	M)	

Natural	ordering	 RCM	ordering	

Example:	PCG	implementa.on	in	PETSc	

4x	
Thermal2	(n=1.2M,	nnz=4.9M)	

q  Finding	a	permuta.on	to	minimize		the	bandwidth	is	
NP-complete.	[Papadimitriou	‘76]	

q  Heuris.cs	are	used	in	prac.ce	
–  Examples:	the	Reverse	Cuthill-McKee	algorithm,	Sloan’s	
algorithm	

q We	focus	on	the	Reverse	Cuthill-McKee	(RCM)	
algorithm	
–  Simple	to	state	
–  Easy	to	understand	
–  Rela.vely	easy	to	parallelize	

The	case	for	the	Reverse	Cuthill-McKee	(RCM)	algorithm	

q  Enable	solving	very	large	problems		
q More	prac.cal:		The	matrix	is	already	distributed	

–  gathering	the	distributed	matrix	onto	a	node	for	serial	
execu.on	is	expensive.	

The	case	for	distributed-memory	algorithm		

0"
2"
4"
6"
8"
10"
12"

ldo
or"

hu
ge
tra
ce
300
02
0"

Se
ren
a"

die
lFi
lte
rV
3re
al"

de
lau
na
y_
n2
4"

rgg
_n
_2
_2
4_
s0"

nlp
kk
t24
0"

Ga
th
er
'(
m
e'
(s
ec
)'

Time	to	gather	a	graph	
on	a	node	from	45	nodes	of		
NERSC/Edison	(Cray	XC30)	

Distributed	algorithms		
are	cheaper	and	scalable	

The	RCM	algorithm		

Start	vertex	
(a	pseudo-peripheral	vertex)	

Cuthill-McKee		
order	

1	

Order	ver.ces	by		
increasing	degree	

2	 3	

Order	ver.ces	by		
parents’	order	

5	 6	

7	 8	

Order	ver.ces	by		
(parents’	order,	degree)	

Reverse	the	order	of	ver.ces	to	obtain	the	RCM	ordering		

4	

RCM:	Challenges	in	paralleliza.on	
(in	addi.on	to	parallelizing	BFS)		

q  Given	a	start	vertex,	the	algorithm	
gives	a	fixed	ordering	except	for	.e	
breaks.	Not	parallelizaLon	friendly.	

q  Unlike	tradiLonal	BFS,	the	parent	of	
a	vertex	is	set	to	a	vertex	with	the	
minimum	label.	(i.e.,	boTom-up	BFS	
is	not	beneficial)	

q  Within	a	level,	ver.ces	are	labeled	
by	lexicographical	order	of	(parents’	
order,	degree)	pairs,	needs	sor.ng	

a	

e	 b	

c	 f	

g	d	

1	

2	 3	

h	
5	 6	4	

7	 8	

q We	use	specialized	level-synchronous	BFS	
q  Key	differences	from	tradi.onal	BFS	(Buluç	and	Madduri,	SC	‘11)		

1.  A	parent	with	smaller	label	is	preferred		over	another	
vertex	with	larger	label		

2.  The	labels	of	parents	are	passed	to	their	children	
3.  Lexicographical	sor.ng	of	ver.ces	in	BFS	levels	

q  The	first	two	of	them	are	addressed	by	sparse	matrix-
sparse	vector	mul.plica.on	(SpMSpV)	over	a	semiring	

q  The	third	challenge	is	addressed	by	a	lightweight	
sor.ng	func.on	

Our	approach	to	address	paralleliza.on	challenges	

Exploring	the	next-level	ver.ces	via	SpMSpV	

a	

e	 b	

c	 f	

g	d	

1	

2	 3	
3	 2	

x	 x	
x	 x	 x	

x	 x	 x	 x	
x	

x	 x	 x	
x	 x	

x	 x	
x	

a	
b	
c	
d	
e	
f	
g	
h	

a			b			c			d			e				f			g			h	

2	

3	

2	

Overload	(mul.ply,add)	with	(select2nd,	min)	

a	
b	
c	
d	
e	
f	
g	
h	

Current		
fronLer	

Next		
fronLer	

Adjacency	matrix	

h	

Ordering	ver.ces	via	par.al	sor.ng	

a	

e	 b	

c	 f	

g	d	

1	

2	 3	

2	 3	 2	
a			b			c			d			e				f			g			h	

Current		
fronLer	

Next		
fronLer	h	 Parent’s	label	

4	 2	 1	

		

My	degree	

1.  c	and	h	are	ordered	before	f	
2.  h	is	ordered	before	c	

Rules	for	ordering	verLces	

3	 4	 5	

Sort	degrees	of	the	siblings	
many	instances	of	small	sor.ngs	
(avoids	expensive	parallel	sor.ng)		

Distributed	memory	paralleliza.on	(SpMSpV)	

xA fron.er	

à	x

ALGORITHM:	
1.  Gather	ver.ces	in	processor	column	[communicaLon]	
2.  Local	mul.plica.on	[computa.on]	
3.  Find	owners	of	the	current	fron.er’s	adjacency	and	exchange	

adjacencies	in	processor	row	[communicaLon]	

n p

n p

p × p Processor	grid	

P	processors	are	arranged	in	

q  Bin	ver.ces	by	their	parents’	labels		
–  All	ver.ces	in	a	bin	is	assigned	to	a	single	node	
–  Needs	AllToAll	communica.on	

q  	Sequen.ally	sort	the	degree	of	ver.ces	in	a	single	
node		

Distributed-memory	par.al	sor.ng	

Computa.on	and	communica.on	complexity			

OperaLon	
Per	processor	
ComputaLon	
(lower	bound)	

Per	processor	
Comm	
(latency)	

Per	processor	
Comm	

(bandwidth)	

SpMSpV	

Sor.ng	

diameter *α p

diameter *αp β
n
p

β
m
p
+
n
p

!

"
##

$

%
&&

m
p

n
p
log(n / p)

α	:	latency	(0.25	μs	to	3.7	μs	MPI	latency	on	Edison)	
β	:	inverse	bandwidth	(~8GB/sec	MPI	bandwidth	on	Edison)	
p	:	number	of	processors		

n:	number	of	ver.ces,	m:	number	of	edges		

q  Finding	a	pseudo	peripheral	vertex.	
–  Repeated	applica.on	of	the	usual	BFS	(no	ordering	of	
ver.ces	within	a	level)	

q Our	SpMSpV	is	hybrid	OpenMP-MPI	implementa.on	
– Mul.threaded	SpMSpV	is	also	fairly	complicated	and	
subject	to	another	work	

Other	aspects	of	the	algorithm	

Results:	Scalability	on	NERSC/Edison	
(6	threads	per	MPI	process)	

1 6 24 54 216 1,014 4,0560

2

4

6

8

10

Number of Cores

Ti
m

e
(s

ec
)

dielFilterV3real

Peripheral: SpMSpV
Peripheral: Other
Ordering: SpMSpV
Ordering: Sorting
Ordering: Other

#ver.ces:	1.1M																																	#edges:	89M	
Bandwidth	before:	1,036,475								aSer:	23,813		

30x	

Communica.on		
dominates		

54 216 1,014 4,0560

2

4

6

8

10

12

Number of Cores

Ti
m

e
(s

ec
)

nlpkkt240

Peripheral: SpMSpV
Peripheral: Other
Ordering: SpMSpV
Ordering: Sorting
Ordering: Other

Scalability	on	NERSC/Edison	
(6	threads	per	MPI	process)	

#ver.ces:	78M																																	#edges:	760M	
Bandwidth	before:	14,169,841								aSer:	361,755		

Larger	graphs		
conLnue	scaling	

q  	SpMP	(Sparse	Matrix	Pre-processing)	package	by	
Park	et	al.	(hTps://github.com/jspark1105/SpMP)	

q We	switch	to	MPI+OpenMP	aSer	12	cores	

Single	node	performance		
NERSC/Edison	(2x12	cores)		

0.25	

0.5	

1	

2	

4	

8	

1	 2	 4	 8	 16	 32	

Ti
m
e	
(s
)	

Number	of	cores	

SpMP	 Our	algorithm	

If	the	matrix	is	already		
Distributed	in	1K	cores		
(~45	nodes)	
Time	to	gather:	0.82	s	
making	the	distributed		
algorithm	more	profitable	

Matrix:	ldoor										#ver.ces:	1M							#edges:	42M	

q  For	many	prac.cal	problems,	the	RCM	ordering	
expedites	itera.ve	solvers	

q No	scalable	distributed	memory	algorithm	for	RCM	
ordering	exists	
–  forcing	us	gathering	an	already	distributed	matrix	on	a	node	
and	use	serial	algorithm	(e.g.,	in	PETSc),	which	is	expensive	

q We	developed	a	distributed-memory	RCM	algorithm	
using	SpMSpV	and	par.al	sor.ng	

q  The	algorithm	scales	up	to	1K	cores	on	modern	
supercomputers.	

Conclusions	

Thanks	for	your	a_enLon	

