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Reordering a sparse matrix

A In this talk, | consider parallel algorithms for reordering
sparse matrices

0 Goal: Find a permutation P so that the bandwidth/
profile of PAPT is small.
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Why reordering a matrix

Q Better cache reuse in SpMV [Karantasis et al. SC ‘14]

Q Faster iterative solvers such as preconditioned
conjugate gradients (PCG).

Example: PCG implementation in PETSc
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The case for the Reverse Cuthill-McKee (RCM) algorithm

Q Finding a permutation to minimize the bandwidth is
NP-complete. [Papadimitriou ‘76]
Q Heuristics are used in practice

— Examples: the Reverse Cuthill-McKee algorithm, Sloan’s
algorithm

0 We focus on the Reverse Cuthill-McKee (RCM)
algorithm
— Simple to state
— Easy to understand
— Relatively easy to parallelize



The case for distributed-memory algorithm

Q Enable solving very large problems

Q More practical: The matrix is already distributed

— gathering the distributed matrix onto a node for serial
execution is expensive.
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The RCM algorithm

Cuthill-McKee 1 Start vertex

order (a pseudo-peripheral vertex)
2 3
q D Order vertices by
increasing degree
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(parents’ order, degree)
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Reverse the order of vertices to obtain the RCM ordering

Order vertices by
parents’ order




RCM: Challenges in parallelization
(in addition to parallelizing BFS)

A Given a start vertex, the algorithm
gives a fixed ordering except for tie

breaks. Not parallelization friendly.

Q Unlike traditional BFS, the parent of
a vertex is set to a vertex with the

minimum label. (i.e., bottom-up BFS
is not beneficial)

O Within a level, vertices are labeled

by lexicographical order of (parents’
order, degree) pairs, needs sorting




Our approach to address parallelization challenges

Q We use specialized level-synchronous BFS
Q Key differences from traditional BFS (Bulu¢ and Madduri, SC ‘11)

1. A parent with smaller label is preferred over another
vertex with larger label

2. The labels of parents are passed to their children
Lexicographical sorting of vertices in BFS levels

Q The first two of them are addressed by sparse matrix-
sparse vector multiplication (SpMSpV) over a semiring

Q The third challenge is addressed by a lightweight
sorting function



Exploring the next-level vertices via SpMSpV

Overload (multiply,add) with (select2nd, min)
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Ordering vertices via partial sorting

Current
frontier

Next
frontier

Sort degrees of the siblings
many instances of small sortings
(avoids expensive parallel sorting)
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Rules for ordering vertices

1. cand h are ordered before f
2. his ordered before c



Distributed memory parallelization (SpMSpV)
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ALGORITHM:

1. Gather vertices in processor column [communication]
2. Local multiplication [computation]

3. Find owners of the current frontier’s adjacency and exchange
adjacencies in processor row [communication]



Distributed-memory partial sorting

Q Bin vertices by their parents’ labels
— All vertices in a bin is assigned to a single node
— Needs AllToAll communication

A Sequentially sort the degree of vertices in a single
node



Computation and communication complexity
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: number of vertices, m: number of edges

: latency (0.25 ps to 3.7 us MPI latency on Edison)
: inverse bandwidth (¥8GB/sec MPI bandwidth on Edison)

: number of processors




Other aspects of the algorithm

Q Finding a pseudo peripheral vertex.

— Repeated application of the usual BFS (no ordering of
vertices within a level)

A Our SpMSpV is hybrid OpenMP-MPI implementation

— Multithreaded SpMSpV is also fairly complicated and
subject to another work



Results: Scalability on NERSC/Edison
(6 threads per MPI process)

#vertices: 1.1M #edges: 89M
Bandwidth before: 1,036,475 after: 23,813
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Scalability on NERSC/Edison
(6 threads per MPI process)

#vertices: 78M #edges: 760M
Bandwidth before: 14,169,841 after: 361,755
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Single node performance
NERSC/Edison (2x12 cores)

aQ SpMP (Sparse Matrix Pre-processing) package by
Park et al. (https://github.com/jspark1105/SpMP)

a We switch to MPI+OpenMP after 12 cores

Matrix: l[door

Hvertices: 1M

=>=SpMP ={FOur algorithm
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If the matrix is already
Distributed in 1K cores
(~45 nodes)

Time to gather: 0.82 s
making the distributed
algorithm more profitable



Conclusions

Q For many practical problems, the RCM ordering
expedites iterative solvers

Q No scalable distributed memory algorithm for RCM
ordering exists

— forcing us gathering an already distributed matrix on a node
and use serial algorithm (e.g., in PETSc), which is expensive

Q We developed a distributed-memory RCM algorithm
using SpMSpV and partial sorting

A The algorithm scales up to 1K cores on modern
supercomputers.
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