

The Reverse Cuthill-McKee Algorithm in Distributed-Memory

Ariful Azad

Lawrence Berkeley National Laboratory (LBNL)

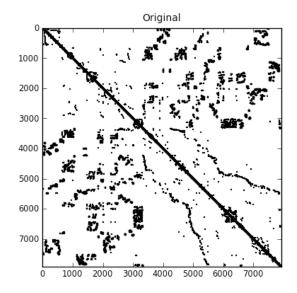
SIAM CSC 2016, Albuquerque

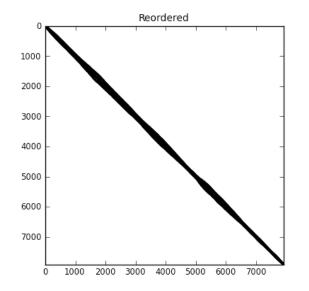
Acknowledgements

Joint work with

- Aydın Buluç
- Mathias Jacquelin
- Esmond Ng
- □ Funding
 - DOE Office of Science
 - Time allocation at the DOE NERSC Center

- In this talk, I consider parallel algorithms for reordering sparse matrices
- Goal: Find a permutation P so that the bandwidth/ profile of PAP^T is small.



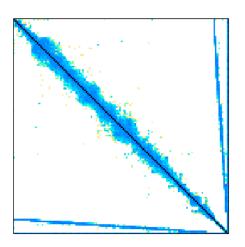


Before permutation

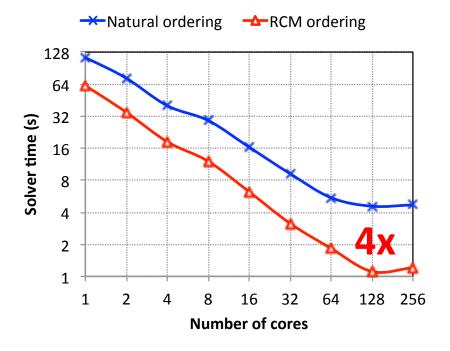
After permutation

- □ Better cache reuse in SpMV [Karantasis et al. SC '14]
- Faster iterative solvers such as preconditioned conjugate gradients (PCG).

Example: PCG implementation in PETSc



Thermal2 (n=1.2M, nnz=4.9M)

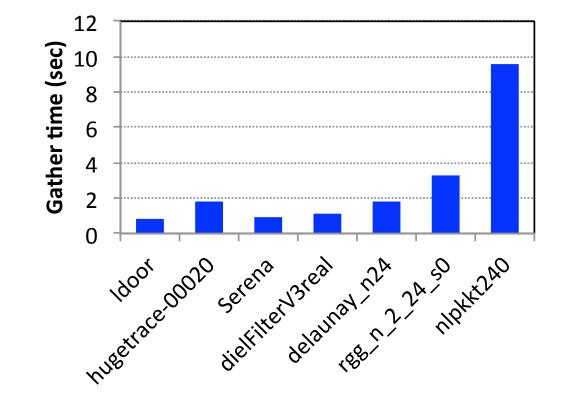


- □ Finding a permutation to minimize the bandwidth is NP-complete. [Papadimitriou '76]
- Heuristics are used in practice
 - Examples: the Reverse Cuthill-McKee algorithm, Sloan's algorithm
- We focus on the Reverse Cuthill-McKee (RCM) algorithm
 - Simple to state
 - Easy to understand
 - Relatively easy to parallelize

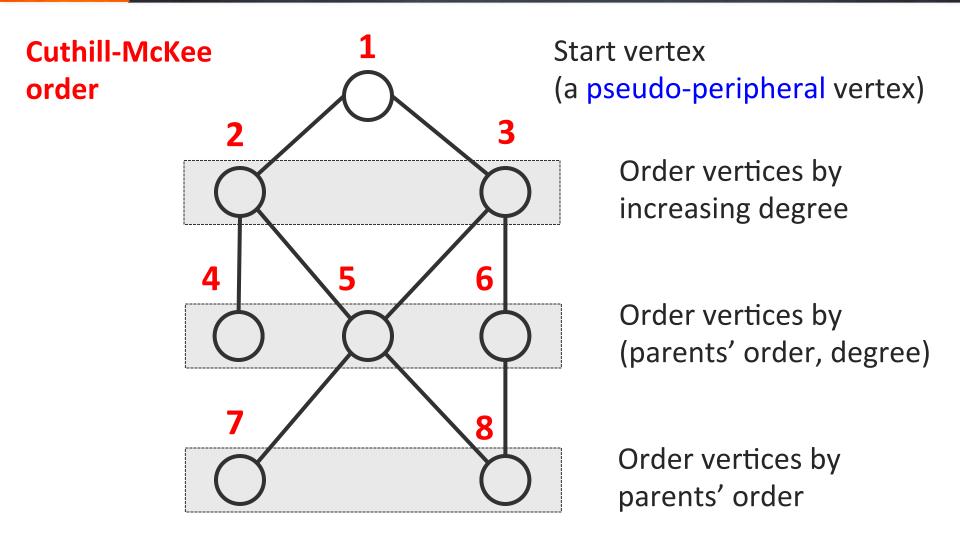
- □ Enable solving very large problems
- □ More practical: The matrix is already distributed
 - gathering the distributed matrix onto a node for serial execution is expensive.

Time to gather a graph on a node from 45 nodes of NERSC/Edison (Cray XC30)

Distributed algorithms are cheaper and scalable

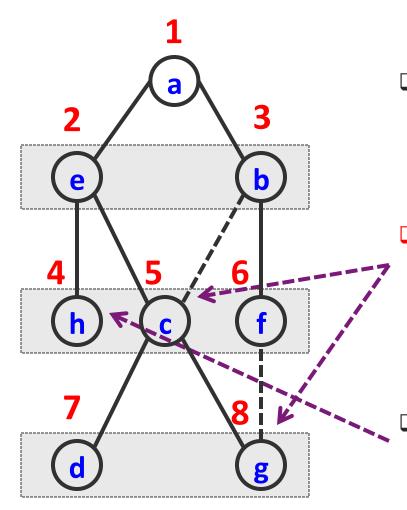


The RCM algorithm



Reverse the order of vertices to obtain the RCM ordering

RCM: Challenges in parallelization (in addition to parallelizing BFS)



Given a start vertex, the algorithm gives a fixed ordering except for tie breaks. Not parallelization friendly.

Unlike traditional BFS, the parent of a vertex is set to a vertex with the minimum label. (i.e., bottom-up BFS is not beneficial)

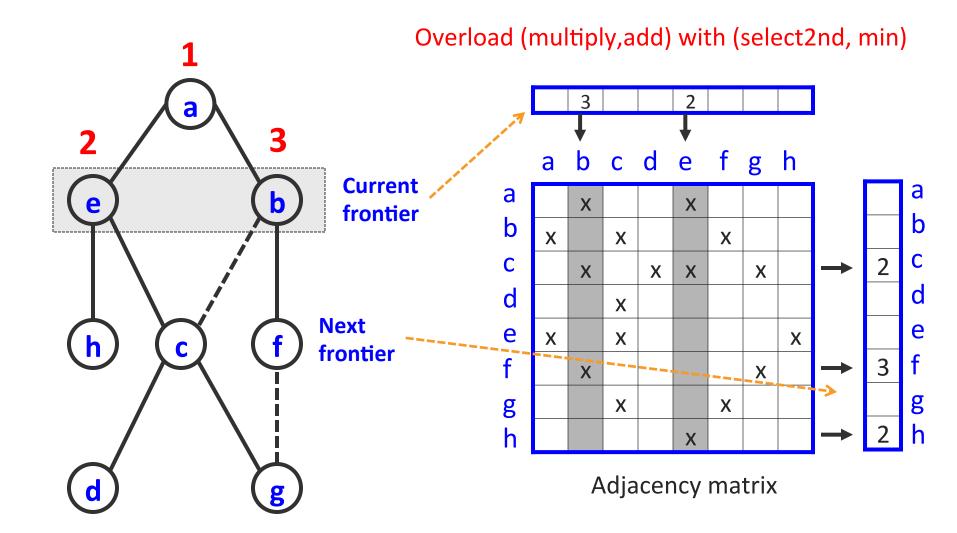
 Within a level, vertices are labeled by lexicographical order of (parents' order, degree) pairs, needs sorting

□ We use **specialized** level-synchronous BFS

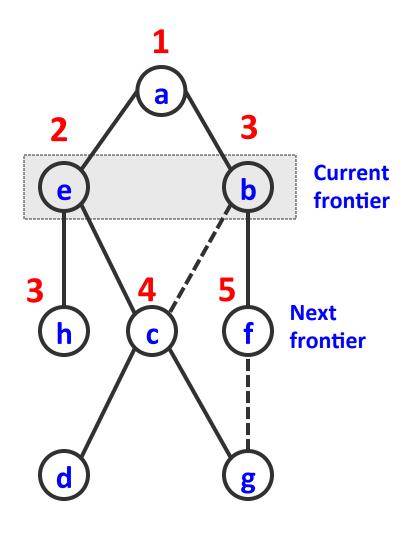
□ Key differences from traditional BFS (Buluç and Madduri, SC '11)

- 1. A parent with smaller label is preferred over another vertex with larger label
- 2. The labels of parents are passed to their children
- 3. Lexicographical sorting of vertices in BFS levels
- □ The first two of them are addressed by sparse matrixsparse vector multiplication (SpMSpV) over a semiring
- The third challenge is addressed by a lightweight sorting function

Exploring the next-level vertices via SpMSpV



Ordering vertices via partial sorting



Sort degrees of the siblings many instances of small sortings (avoids expensive parallel sorting)

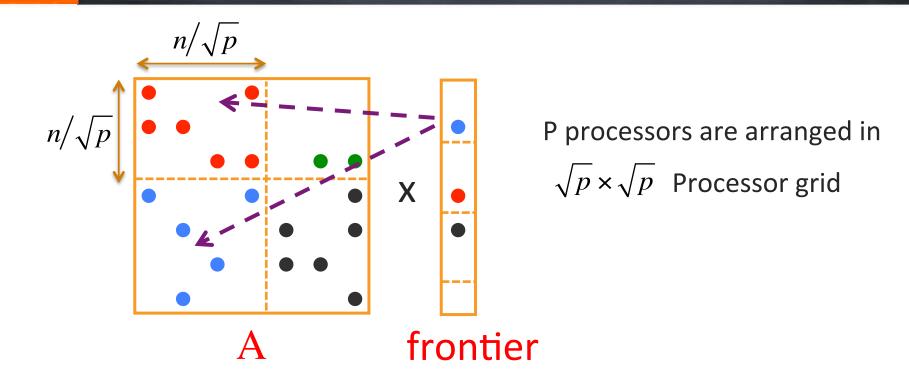
abcdefgh2322Parer421My de

Parent's label My degree

Rules for ordering vertices

- 1. c and h are ordered before f
- 2. h is ordered before c

Distributed memory parallelization (SpMSpV)



ALGORITHM:

- 1. Gather vertices in *processor column* [communication]
- 2. Local multiplication [computation]
- 3. Find owners of the current frontier's adjacency and exchange adjacencies in *processor row* [communication]

□ Bin vertices by their parents' labels

- All vertices in a bin is assigned to a single node
- Needs AllToAll communication
- Sequentially sort the degree of vertices in a single node

Computation and communication complexity

Operation	Per processor Computation (lower bound)	Per processor Comm (latency)	Per processor Comm (bandwidth)
SpMSpV	$\frac{m}{p}$	diameter $*\alpha\sqrt{p}$	$\beta\left(\frac{m}{p} + \frac{n}{\sqrt{p}}\right)$
Sorting	$\frac{n}{p}\log(n/p)$	diameter $*\alpha p$	$\beta \frac{n}{p}$

n: number of vertices, m: number of edges

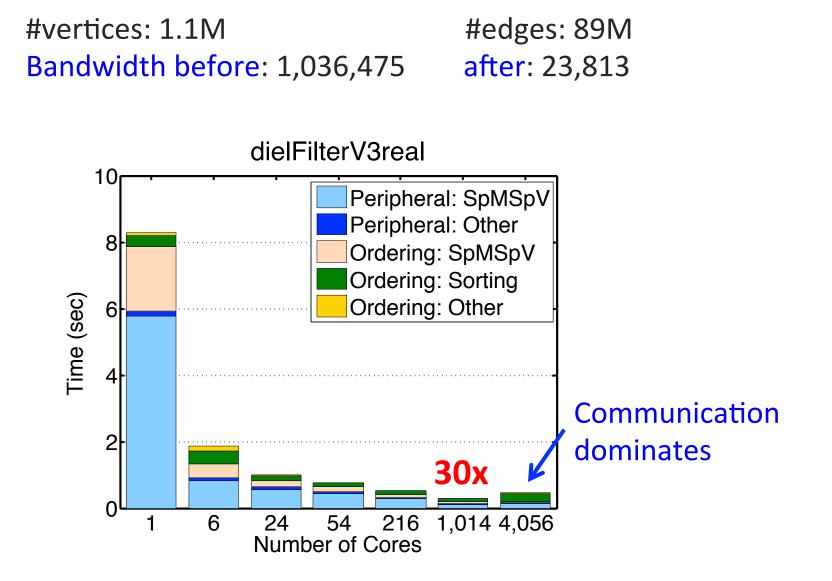
 α : latency (0.25 µs to 3.7 µs MPI latency on Edison)

- β : inverse bandwidth (~8GB/sec MPI bandwidth on Edison)
- p : number of processors

□ Finding a pseudo peripheral vertex.

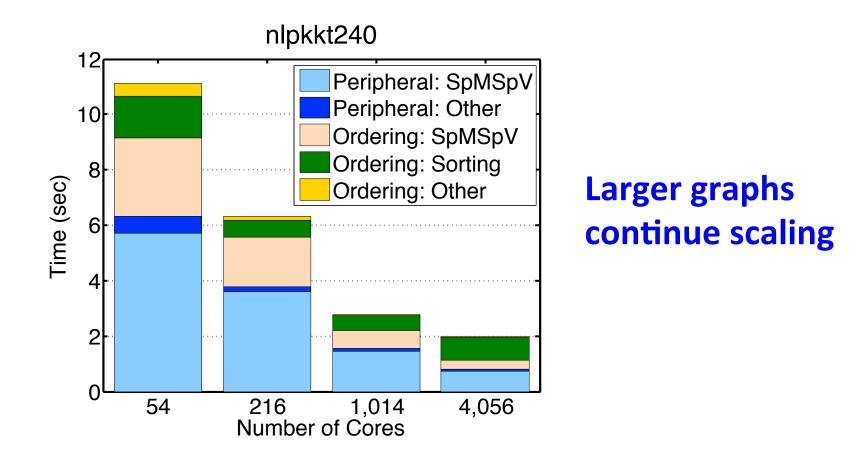
- Repeated application of the usual BFS (no ordering of vertices within a level)
- □ Our SpMSpV is hybrid OpenMP-MPI implementation
 - Multithreaded SpMSpV is also fairly complicated and subject to another work

Results: Scalability on NERSC/Edison (6 threads per MPI process)



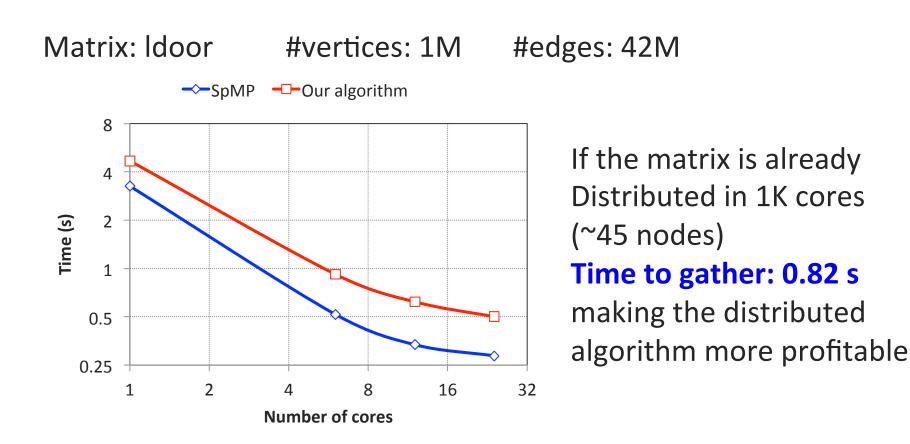
Scalability on NERSC/Edison (6 threads per MPI process)

#vertices: 78M Bandwidth before: 14,169,841 #edges: 760M after: 361,755



Single node performance NERSC/Edison (2x12 cores)

- SpMP (Sparse Matrix Pre-processing) package by Park et al. (<u>https://github.com/jspark1105/SpMP</u>)
- □ We switch to MPI+OpenMP after 12 cores



Conclusions

- For many practical problems, the RCM ordering expedites iterative solvers
- No scalable distributed memory algorithm for RCM ordering exists
 - forcing us gathering an already distributed matrix on a node and use serial algorithm (e.g., in PETSc), which is expensive
- We developed a distributed-memory RCM algorithm using SpMSpV and partial sorting
- □ The algorithm scales up to 1K cores on modern supercomputers.

Thanks for your attention

SANDIA PEAK