Z°7| BERKELEY LAB

N
A
o frrrrrrer u
— J._

P |
. .
. o -~ Lawrence Berkeloy National Laboratory

8

The Reverse Cuthill-McKee Algorithm
In Distributed-Memory

Ariful Azad
Lawrence Berkeley National Laboratory (LBNL)

SIAM CSC 2016, Albuquerque

Acknowledgements

Q Joint work with
— Aydin Bulug
— Mathias Jacquelin
— Esmond Ng

Q Funding

— DOE Office of Science
— Time allocation at the DOE NERSC Center

Reordering a sparse matrix

A In this talk, | consider parallel algorithms for reordering
sparse matrices

0 Goal: Find a permutation P so that the bandwidth/
profile of PAPT is small.

Original Reordered
0 Al T Ti 0 T T T T T
1000 | » 1000 |
2000 °. 2000
000 ™ 3000 |
4000 B 4000 |-
5000 |- 5000 |-
6000 |- T MY 6000 |-
oM
7000 L. 7000
g, N
I*’B 1 XY L 1 \ » = 1 1 L L 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000

Before permutation After permutation

Why reordering a matrix

Q Better cache reuse in SpMV [Karantasis et al. SC ‘14]

Q Faster iterative solvers such as preconditioned
conjugate gradients (PCG).

Example: PCG implementation in PETSc

=»=Natural ordering =&=RCM ordering

128
64

W
o o N
L L

Solver time (s)

I

“ |

N
]

-

Thermal2 (n=1.2M, nnz=4.9M) I 2 4 8 16 32 6 128 256

Number of cores

The case for the Reverse Cuthill-McKee (RCM) algorithm

Q Finding a permutation to minimize the bandwidth is
NP-complete. [Papadimitriou ‘76]
Q Heuristics are used in practice

— Examples: the Reverse Cuthill-McKee algorithm, Sloan’s
algorithm

0 We focus on the Reverse Cuthill-McKee (RCM)
algorithm
— Simple to state
— Easy to understand
— Relatively easy to parallelize

The case for distributed-memory algorithm

Q Enable solving very large problems

Q More practical: The matrix is already distributed

— gathering the distributed matrix onto a node for serial
execution is expensive.

12
§ 10 ...
QE) 8 ...
Time tO gather a graph e 6 ...
On a node from 45 nodes Of -qc) 4 ...
NERSC/Edison (Cray XC30) £ S I
U]
o . m_ N .
< Q > > ™ Q Q
Distributed algorithms NSRS P AN)
NS QQ c_)q} QO) 87V O
are cheaper and scalable & < & v R
> S &
\)Qo > KQO

The RCM algorithm

Cuthill-McKee 1 Start vertex

order (a pseudo-peripheral vertex)
2 3
q D Order vertices by
increasing degree
4 \5 /6
H C) Order vertices by

(parents’ order, degree)
, / \8

Reverse the order of vertices to obtain the RCM ordering

Order vertices by
parents’ order

RCM: Challenges in parallelization
(in addition to parallelizing BFS)

A Given a start vertex, the algorithm
gives a fixed ordering except for tie

breaks. Not parallelization friendly.

Q Unlike traditional BFS, the parent of
a vertex is set to a vertex with the

minimum label. (i.e., bottom-up BFS
is not beneficial)

O Within a level, vertices are labeled

by lexicographical order of (parents’
order, degree) pairs, needs sorting

Our approach to address parallelization challenges

Q We use specialized level-synchronous BFS
Q Key differences from traditional BFS (Bulu¢ and Madduri, SC ‘11)

1. A parent with smaller label is preferred over another
vertex with larger label

2. The labels of parents are passed to their children
Lexicographical sorting of vertices in BFS levels

Q The first two of them are addressed by sparse matrix-
sparse vector multiplication (SpMSpV) over a semiring

Q The third challenge is addressed by a lightweight
sorting function

Exploring the next-level vertices via SpMSpV

Overload (multiply,add) with (select2nd, min)

l f f l
abcde fgh
Current 3 1
frontier b X s
X X X
C X X | X X — |2
d X
:z):tier 1 X X
f X x| |7 |3
g X X |
h X |— 2]

Adjacency matrix

>0m O O 6 T Q

Ordering vertices via partial sorting

Current
frontier

Next
frontier

Sort degrees of the siblings
many instances of small sortings
(avoids expensive parallel sorting)

abcde fgh

| 2

3

2 | Parent’s label

| 4

2

1| My degree

Rules for ordering vertices

1. cand h are ordered before f
2. his ordered before c

Distributed memory parallelization (SpMSpV)

<€
n/p| |® ® ,: - e P processors are arranged in
o0 o9
p o _~- "o X e \/;x\/; Processor grid
o,- o @ o
O o0
O O
A frontier
ALGORITHM:

1. Gather vertices in processor column [communication]
2. Local multiplication [computation]

3. Find owners of the current frontier’s adjacency and exchange
adjacencies in processor row [communication]

Distributed-memory partial sorting

Q Bin vertices by their parents’ labels
— All vertices in a bin is assigned to a single node
— Needs AllToAll communication

A Sequentially sort the degree of vertices in a single
node

Computation and communication complexity

m . . (ﬂ . L)
SpMSpV ; diameter * a./ p B PN
. n
Sorting " log(n/ p) diameter * ap B >

P

©

: number of vertices, m: number of edges

: latency (0.25 ps to 3.7 us MPI latency on Edison)
: inverse bandwidth (¥8GB/sec MPI bandwidth on Edison)

: number of processors

Other aspects of the algorithm

Q Finding a pseudo peripheral vertex.

— Repeated application of the usual BFS (no ordering of
vertices within a level)

A Our SpMSpV is hybrid OpenMP-MPI implementation

— Multithreaded SpMSpV is also fairly complicated and
subject to another work

Results: Scalability on NERSC/Edison
(6 threads per MPI process)

#vertices: 1.1M #edges: 89M
Bandwidth before: 1,036,475 after: 23,813

dielFilterV3real
10 e —
| |Peripheral: SpMSpV
B Peripheral: Other
S i S ___|Ordering: SpMSpV |
. Bl Ordering: Sorting
O 6 m— ___|Ordering: Other
N
£
=4 o
Communication
2.‘
- / dominates
0

1 6 24 54 216 1,014 4,056
Number of Cores

Scalability on NERSC/Edison
(6 threads per MPI process)

#vertices: 78M #edges: 760M
Bandwidth before: 14,169,841 after: 361,755

nlpkkt240
12— - - -
|__|Peripheral: SpMSpV
1O.i Bl Peripheral: Other |
| |Ordering: SpMSpV
S| P Bl Ordering: Sorting |
: [1Ordering: Other Larger graphs
g O/fS continue scaling
Eoabl L
L B — B _
[]
0 54 216 1,014 4,056

Number of Cores

Single node performance
NERSC/Edison (2x12 cores)

aQ SpMP (Sparse Matrix Pre-processing) package by
Park et al. (https://github.com/jspark1105/SpMP)

a We switch to MPI+OpenMP after 12 cores

Matrix: l[door

Hvertices: 1M

=>=SpMP ={FOur algorithm

#Hedges: 42M

DN

N

AN

N ™

\D\
\

2 4

8 16

Number of cores

32

If the matrix is already
Distributed in 1K cores
(~45 nodes)

Time to gather: 0.82 s
making the distributed
algorithm more profitable

Conclusions

Q For many practical problems, the RCM ordering
expedites iterative solvers

Q No scalable distributed memory algorithm for RCM
ordering exists

— forcing us gathering an already distributed matrix on a node
and use serial algorithm (e.g., in PETSc), which is expensive

Q We developed a distributed-memory RCM algorithm
using SpMSpV and partial sorting

A The algorithm scales up to 1K cores on modern
supercomputers.

c
O
o

c

<)
s

©

-

>

O

>

-

O
[e

n
=

o

"
L
-

