Preconditioning techniques based on the Birkhoff-von Neumann decomposition

Bora Uçar

CNRS \& ENS Lyon, France

CSC 2016, 10-12 October, 2016, Albuquerque

From joint work with:

Michele Benzi	Alex Pothen
Emory Univ., US	Purdue Univ., US

Problem

Develop and investigate preconditioners for Krylov subspace methods for solving $\mathbf{A} x=b$, with \mathbf{A} highly unstructured and indefinite.

How?

- Preprocess to have a doubly stochastic matrix (whose row and column sums are one).
- Using this doubly stochastic matrix, select some fraction of some of the nonzeros of \mathbf{A} to be included in the preconditioner.

Why?

Preconditioners can be applied to vectors by a number of highly concurrent steps, where the number of steps is controlled by the user.

Main ingredients: Birkhoff-von Neumann (BvN) decomposition, and matrix splitting of the form $\mathbf{A}=\mathbf{M}-\mathbf{N}$.

Contributions

- Sufficient conditions when such a splitting is convergent
- Specialized solvers for $\mathrm{My}=z$ when these conditions are met.
- Use as preconditioners (e.g., with LU decomposition M: it is of the type "complete decomposition of an incomplete matrix" as opposed to incomplete decomposition of a complete matrix).

Context

Matrix view

- Permutation matrix: An $n \times n$ matrix with exactly one 1 in each row and in each column (other entries are 0)

Bipartite graph view

- Perfect matching in $(\mathcal{R} \cup \mathcal{C}, E)$: a set of n edges no two share a common vertex.

Context

An $n \times n$ matrix \mathbf{A} is doubly stochastic if $a_{i j} \geq 0$, and row sums and column sums are 1 .

A doubly stochastic matrix has perfect matchings touching all of its nonzeros.

Birkhoff's Theorem: A is a doubly stochastic matrix

There exist $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \in(0,1)$ with $\sum_{i=1}^{k} \alpha_{i}=1$ and permutation matrices $\mathbf{P}_{1}, \mathbf{P}_{2}, \ldots, \mathbf{P}_{k}$ such that:

$$
\mathbf{A}=\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}+\cdots+\alpha_{k} \mathbf{P}_{k} .
$$

- Also called Birkhoff-von Neumann (BvN) decomposition.
- Not unique, neither k, nor \mathbf{P}_{i} s in general.
- Finding the minimum number k of permutation matrices is NP hard.

Motivation

Consider solving $\alpha \mathbf{P} x=b$ for x where \mathbf{P} is a permutation matrix.

$$
\alpha\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right) \text { yields } \begin{aligned}
& x_{4}=b_{1} / \alpha \\
& x_{3}=b_{2} / \alpha \\
& x_{1}=b_{3} / \alpha \\
& x_{2}=b_{4} / \alpha
\end{aligned}
$$

We just scale the input and write at unique (permuted) positions in the output. Should be very efficient.

Next consider solving $\left(\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}\right) x=b$ for x.

Motivation

Consider solving $\left(\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}\right) x=b$ for x.

Matrix splitting and stationary iterations

For an invertible $\mathbf{A}=\mathbf{M}-\mathbf{N}$ with invertible \mathbf{M}

$$
x^{(i+1)}=\mathbf{H} x^{(i)}+c, \quad \text { where } \quad \mathbf{H}=\mathbf{M}^{-1} \mathbf{N} \quad \text { and } \quad c=\mathbf{M}^{-1} b
$$

where $k=0,1, \ldots$ and $x^{(0)}$ is arbitrary.

- Computation: At every step, multiply with \mathbf{N} and solve with \mathbf{M}.
- Converges to the solution of $\mathbf{A} x=b$ for any $x^{(0)}$ if and only if $\rho(\mathbf{H})<1$ [largest magnitude of an eigenvalue is less than 1].

Motivation

Theorem

Let $\mathbf{A}=\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}$ and $\alpha_{1} \geq \alpha_{2}$. Then, \mathbf{A} is invertible if
(i) $\alpha_{1} \neq \alpha_{2}$,
(ii) $\alpha_{1}=\alpha_{2}$ and all connected components of $G_{\mathbf{A}}$ have an odd number of rows (and columns). If any such block is of even order, \mathbf{A} is singular.

Define the splitting $\mathbf{A}=\alpha_{1} \mathbf{P}_{1}-\left(-\alpha_{2} \mathbf{P}_{2}\right)$.
The iterations are convergent with the rate α_{2} / α_{1} for $\alpha_{1}>\alpha_{2}$.

Next generalize to more than two permutation matrices.

Motivation: Let's generalize to solve $\mathbf{A} x=b$

Let $\mathbf{A}=\alpha_{1} \mathbf{P}_{1}+\alpha_{2} \mathbf{P}_{2}+\cdots+\alpha_{k} \mathbf{P}_{k}$ be a BvN.
Assume $\alpha_{1} \geq \cdots \geq \alpha_{k}$. Pick an integer r between 1 and $k-1$ and split \mathbf{A} as $\mathbf{A}=\mathbf{M}-\mathbf{N}$ where

$$
\mathbf{M}=\alpha_{1} \mathbf{P}_{1}+\cdots+\alpha_{r} \mathbf{P}_{r}, \quad \mathbf{N}=-\alpha_{r+1} \mathbf{P}_{r+1}-\cdots-\alpha_{k} \mathbf{P}_{k}
$$

(\mathbf{M} and $-\mathbf{N}$ are doubly substochastic matrices.)

Computation: At every step $\mathbf{M}^{-1} \mathbf{N} x^{(i)}$

- multiply with $\mathbf{N}(k-r$ parallel steps).
- apply \mathbf{M}^{-1} (or solves with the doubly stochastic matrix $\frac{1}{1-\sum_{i=r+1}^{k} \alpha_{i}} \mathbf{M}$); a recursive solver.

Motivation: Let's generalize more

Splitting $\mathbf{A}=\mathbf{M}-\mathbf{N}$ where

$$
\mathbf{M}=\alpha_{1} \mathbf{P}_{1}+\cdots+\alpha_{r} \mathbf{P}_{r}, \quad \mathbf{N}=-\alpha_{r+1} \mathbf{P}_{r+1}-\cdots-\alpha_{k} \mathbf{P}_{k} .
$$

Theorem

A sufficient condition for $\mathbf{M}=\sum_{i=1}^{r} \alpha_{i} \mathbf{P}_{i}$ to be invertible: α_{1} is greater than the sum of the remaining ones.

Theorem

Suppose that α_{1} is greater than the sum of all the other α_{i}. Then $\rho\left(\mathbf{M}^{-1} \mathbf{N}\right)<1$ and the stationary iterative method converges for all x^{0} to the unique solution of $\mathbf{A} x=b$.

This is a sufficient condition; . . . and it is rather restrictive in practice.(:)

Motivation: Let's generalize to any A

M as a preconditioner for a Krylov subspace method like GMRES.
... need to generalize to matrices with negative and positive entries.

Scaling fact

Any nonnegative matrix \mathbf{A} with total support can be scaled with two (unique) positive diagonal matrices \mathbf{R} and \mathbf{C} such that RAC is doubly stochastic.

Let \mathbf{A} be $n \times n$ with total support and positive and negative entries.
$\mathbf{B}=\operatorname{abs}(\mathbf{A})$ is nonnegative and RBC is doubly stochastic.
We can write $\mathbf{R B C}=\sum \alpha_{i} \mathbf{P}_{i}$.

Motivation: Let's generalize to any A

$\mathbf{B}=\operatorname{abs}(\mathbf{A})$ and $\mathbf{R B C}=\sum_{i}^{k} \alpha_{i} \mathbf{P}_{i}$.

$$
\mathbf{R A C}=\sum_{i}^{k} \alpha_{i} \mathbf{Q}_{i} .
$$

where $\mathbf{Q}_{i}=\left[q_{j k}^{(i)}\right]_{n \times n}$ is obtained from $\mathbf{P}_{i}=\left[p_{j k}^{(i)}\right]_{n \times n}$ as follows:

$$
q_{j k}^{(i)}=\operatorname{sgn}\left(a_{j k}\right) p_{j k}^{(i)} .
$$

Generalizing Birkhoff-von Neumann decomposition

Any (real) matrix A with total support can be written as a convex combination of a set of signed, scaled permutation matrices.

We can then use the same construct to define \mathbf{M} (for splitting or for defining the preconditioner).

Motivation: Let's generalize to any A (for having a special solver)

Select only a few $\alpha_{i} \mathbf{P}_{i}$ from the BvN decomposition:

$$
\begin{array}{rlrlr}
\mathbf{A}= & \alpha_{1} \mathbf{P}_{1}+ & \alpha_{2} \mathbf{P}_{2}+ & \cdots & +\alpha_{k} \mathbf{P}_{k} . \\
\mathbf{M}= & \alpha_{1} \mathbf{P}_{1} & +\alpha_{3} \mathbf{P}_{3} & +\cdots+\alpha_{i} \mathbf{P}_{i} &
\end{array}
$$

We have a greedy algorithm which finds α_{i} in non-increasing order.
Find first 10-15 $\alpha_{i} \mathbf{P}_{i}$, take α_{1} (the largest) into \mathbf{M}, and add the others as long as α_{1} is greater than their sum.

Experiments

- All chemical, real, square matrices from the UFL collection (70 matrices) - nasty for Krylov subspace methods. Work with the largest fully indecomposable block.
- Two sets: Nonnegative and general
- (F)Gmres at most 3K iterations with 1.0e-6. Check output for accuracy ($>1.0 e-4$ is not accurate).
- Scaling algorithm of Knight and Ruiz'13 [IMA J. Numer. Anal.], with tolerance $1.0 \mathrm{e}-8$.
- ILU with all suggested preprocessing.
- LU of BvN based preconditioners with differing number of permutation matrices, and the specialized solver (select $\alpha_{i} \mathbf{P}_{i}$ in such a way that $\alpha_{1}>\sum$ the rest).

Experiments

Number of failed instances

	nonnegative	general
$\mathrm{ILU}(0)$	47	47
$\mathrm{LU}(\mathrm{BvN})_{1}$	24	19
$\mathrm{LU}(\mathrm{BvN})_{2}$	12	13
$\mathrm{LU}(\mathrm{BvN})_{4}$	25	33
$\mathrm{LU}(\mathrm{BvN})_{16}$	33	33
BvN-Solver	6	4

About 7 matrices for the solver.
Re-checked earlier results (be watchful of warnings)

- ILU fails in 17 out of 28 nonnegative matrices, and in 14 general matrices.
- BvN-solver fails in 8 nonnegative, and in 4 general matrices

Insights

- The better scaling, the better the BvN decomposition as an approximation.
- Inner splitting based solver can be used with less accuracy than the outer solver (fgmres).
- Usually, the more matrices in M, the better the number of iterations (not for the matrices for which scaling algorithms have issues).

Experiments (running times)

One of the hard cases (for scaling even) 'bayer08', $\mathrm{n}=1734, \mathrm{nnz}=17363$.

- Scaling (15K iters): 1.52 seconds
- BvN decomposition (finds 518 matchings): 0.70.
- BvN-Solve: 162 iters, 3.27 seconds (7 matchings)
- ILU: 35 iters. (set up time <0.01 seconds), 0.13 seconds;

Conclusions

What?: Find a set of permutation matrices with scaled entries to define a preconditioner.

Why?: Exposes parallelism in applying the preconditioner.
How?: Scale the matrices and use Birkhoff-von Neumann decomposition; even for matrices with positive and negative entries.

Future work: Reduce the running time of the construction; parallel experiments.

Thank you for your attention.

References I

M. Benzi, A. Pothen, and B. Uçar, Preconditioning techniques based on the Birkhoff-von Neumann decomposition, Tech. Rep. RR-8914, Inria Grenobl—Rhône-Alpes, 2016.

R. A. Brualdi, The diagonal hypergraph of a matrix (bipartite graph), Discrete Mathematics 27 (2) (1979) 127-147.
R. A. Brualdi, Notes on the Birkhoff algorithm for doubly stochastic matrices, Canadian Mathematical Bulletin, 25 (1982), pp. 191-199.

R R. A. Brualdi and P. M. Gibson, Convex polyhedra of doubly stochastic matrices: I. Applications of the permanent function, Journal of Combinatorial Theory, Series A, 22 (1977), pp. 194-230.C. S. Chang, W. J. Chen, and H. Y. Huang, On service guarantees for input buffered crossbar switches: A capacity decomposition approach by Birkhoff and von Neumann, IEEE IWQos'99, 79-86, London, UK.

References II

. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a sparse matrix, SIAM Journal on Matrix Analysis and Applications 22 (2001) 973-996.
F. Dufossé and B. Uçar, Notes on Birkhoff-von Neumann decomposition of doubly stochastic matrices, Linear Algebra and its Applications 497 (2016) 108-115.

P. A. Knight, The Sinkhorn-Knopp algorithm: Convergence and applications, SIAM J. Matrix Anal. A. 30 (1) (2008) 261-275.
P. A. Knight and D. Ruiz, A fast algorithm for matrix balancing, IMA Journal of Numerical Analysis 33 (3) (2013) 1029-1047.

品
P. A. Knight, D. Ruiz, and B. Uçar, A symmetry preserving algorithm for matrix scaling, SIAM J. Matrix Anal. A. 35 (3) (2014) 931-955.

五
M. Marcus and R. Ree, Diagonals of doubly stochastic matrices, The Quarterly Journal of Mathematics 10 (1) (1959) 296-302.

References III

A. Pothen and C.-J. Fan, Computing the block triangular form of a sparse matrix, ACM T. Math. Software 16 (4) (1990) 303-324.

O-
D. Ruiz, A scaling algorithm to equilibrate both row and column norms in matrices, Tech. Rep. TR-2001-034, RAL (2001).

国
R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math. 21 (1967) 343-348.

吴
D. de Werra, Variations on the Theorem of Birkhoff-von Neumann and extensions, Graphs and Combinatorics, 19 (2003), 263-278.
D. de Werra, Partitioning the edge set of a bipartite graph into chain packings: Complexity of some variations, Linear Algebra and its Applications, 368 (2003) 315-327.

