Preconditioning techniques based on the Birkhoff-von Neumann decomposition

Bora Uçar

CNRS & ENS Lyon, France

CSC 2016, 10-12 October, 2016, Albuquerque

From joint work with:

1/20

Michele Benzi Emory Univ., US Alex Pothen Purdue Univ., US

Problem

Develop and investigate preconditioners for Krylov subspace methods for solving Ax = b, with A highly unstructured and indefinite.

How?

- Preprocess to have a doubly stochastic matrix (whose row and column sums are one).
- Using this doubly stochastic matrix, select some fraction of some of the nonzeros of **A** to be included in the preconditioner.

Why?

Preconditioners can be applied to vectors by a number of highly concurrent steps, where the number of steps is controlled by the user.

Main ingredients: Birkhoff-von Neumann (BvN) decomposition, and matrix splitting of the form $\mathbf{A} = \mathbf{M} - \mathbf{N}$.

2/20

Contributions

- Sufficient conditions when such a splitting is convergent
- Specialized solvers for My = z when these conditions are met.
- Use as preconditioners (e.g., with LU decomposition M: it is of the type "complete decomposition of an incomplete matrix" as opposed to incomplete decomposition of a complete matrix).

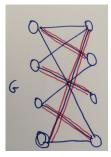
Context

Matrix view

 Permutation matrix: An n × n matrix with exactly one 1 in each row and in each column (other entries are 0)

Bipartite graph view

 Perfect matching in (*R* ∪ *C*, *E*): a set of *n* edges no two share a common vertex.



Context

An $n \times n$ matrix **A** is doubly stochastic if $a_{ij} \ge 0$, and row sums and column sums are 1.

A doubly stochastic matrix has perfect matchings touching all of its nonzeros.

Birkhoff's Theorem: **A** is a doubly stochastic matrix

There exist $\alpha_1, \alpha_2, \ldots, \alpha_k \in (0, 1)$ with $\sum_{i=1}^k \alpha_i = 1$ and permutation matrices $\mathbf{P}_1, \mathbf{P}_2, \ldots, \mathbf{P}_k$ such that:

$$\mathbf{A} = \alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2 + \dots + \alpha_k \mathbf{P}_k.$$

- Also called Birkhoff-von Neumann (BvN) decomposition.
- Not unique, neither k, nor P_i s in general.
- Finding the minimum number k of permutation matrices is NP hard.

マロト イラト イラト

Motivation

Consider solving $\alpha \mathbf{P} x = b$ for x where **P** is a permutation matrix.

$$\alpha \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix} \text{ yields } \begin{array}{c} x_4 = b_1/\alpha \\ x_3 = b_2/\alpha \\ x_1 = b_3/\alpha \\ x_2 = b_4/\alpha \end{array}$$

We just scale the input and write at unique (permuted) positions in the output. Should be very efficient.

Next consider solving $(\alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2)x = b$ for x.

Motivation

Consider solving $(\alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2)x = b$ for x.

Matrix splitting and stationary iterations For an invertible $\mathbf{A} = \mathbf{M} - \mathbf{N}$ with invertible \mathbf{M} $x^{(i+1)} = \mathbf{H}x^{(i)} + c$, where $\mathbf{H} = \mathbf{M}^{-1}\mathbf{N}$ and $c = \mathbf{M}^{-1}b$ where k = 0, 1, ... and $x^{(0)}$ is arbitrary.

• Computation: At every step, multiply with N and solve with M.

• Converges to the solution of Ax = b for any $x^{(0)}$ if and only if $\rho(H) < 1$ [largest magnitude of an eigenvalue is less than 1].

Motivation

Theorem

Define the splitting $\mathbf{A} = \alpha_1 \mathbf{P}_1 - (-\alpha_2 \mathbf{P}_2)$.

The iterations are convergent with the rate α_2/α_1 for $\alpha_1 > \alpha_2$.

Next generalize to more than two permutation matrices.

Motivation: Let's generalize to solve Ax = b

Let
$$\mathbf{A} = \alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2 + \dots + \alpha_k \mathbf{P}_k$$
 be a BvN.

Assume $\alpha_1 \geq \cdots \geq \alpha_k$. Pick an integer r between 1 and k-1 and split **A** as $\mathbf{A} = \mathbf{M} - \mathbf{N}$ where

$$\mathbf{M} = \alpha_1 \mathbf{P}_1 + \dots + \alpha_r \mathbf{P}_r, \quad \mathbf{N} = -\alpha_{r+1} \mathbf{P}_{r+1} - \dots - \alpha_k \mathbf{P}_k.$$

(M and -N are doubly substochastic matrices.)

Computation: At every step $M^{-1}Nx^{(i)}$

- multiply with **N** (k r parallel steps).
- apply M^{-1} (or solves with the doubly stochastic matrix $\frac{1}{1-\sum_{i=r+1}^{k} \alpha_i}M$); a recursive solver.

Motivation: Let's generalize more

Splitting $\mathbf{A} = \mathbf{M} - \mathbf{N}$ where

 $\mathbf{M} = \alpha_1 \mathbf{P}_1 + \dots + \alpha_r \mathbf{P}_r, \quad \mathbf{N} = -\alpha_{r+1} \mathbf{P}_{r+1} - \dots - \alpha_k \mathbf{P}_k.$

Theorem

A sufficient condition for $\mathbf{M} = \sum_{i=1}^{r} \alpha_i \mathbf{P}_i$ to be invertible: α_1 is greater than the sum of the remaining ones.

Theorem

Suppose that α_1 is greater than the sum of all the other α_i . Then $\rho(\mathbf{M}^{-1}\mathbf{N}) < 1$ and the stationary iterative method converges for all x^0 to the unique solution of $\mathbf{A}x = b$.

This is a sufficient condition; ...and it is rather restrictive in practice. ©

Motivation: Let's generalize to any A

 ${\bf M}$ as a preconditioner for a Krylov subspace method like GMRES.

... need to generalize to matrices with negative and positive entries.

Scaling fact

Any nonnegative matrix **A** with total support can be scaled with two (unique) positive diagonal matrices **R** and **C** such that **RAC** is doubly stochastic.

Let **A** be $n \times n$ with total support and positive and negative entries.

B = abs(A) is nonnegative and RBC is doubly stochastic.

We can write **RBC** = $\sum \alpha_i \mathbf{P}_i$.

Motivation: Let's generalize to any A

B = abs(**A**) and **RBC** = $\sum_{i}^{k} \alpha_{i} \mathbf{P}_{i}$.

$$\mathbf{RAC} = \sum_{i}^{k} \alpha_{i} \mathbf{Q}_{i} \, .$$

where $\mathbf{Q}_i = [\mathbf{q}_{jk}^{(i)}]_{n \times n}$ is obtained from $\mathbf{P}_i = [\mathbf{p}_{jk}^{(i)}]_{n \times n}$ as follows:

$$q_{jk}^{(i)} = \operatorname{sgn}(a_{jk}) p_{jk}^{(i)} \,.$$

Generalizing Birkhoff-von Neumann decomposition

Any (real) matrix **A** with total support can be written as a convex combination of a set of signed, scaled permutation matrices.

We can then use the same construct to define ${\bf M}$ (for splitting or for defining the preconditioner).

Motivation: Let's generalize to any A (for having a special solver)

Select only a few $\alpha_i \mathbf{P}_i$ from the BvN decomposition:

$$\mathbf{A} = \alpha_1 \mathbf{P}_1 + \alpha_2 \mathbf{P}_2 + \cdots + \alpha_k \mathbf{P}_k.$$

$$\mathbf{M} = \alpha_1 \mathbf{P}_1 + \alpha_3 \mathbf{P}_3 + \cdots + \alpha_i \mathbf{P}_i$$

We have a greedy algorithm which finds α_i in non-increasing order.

Find first 10–15 $\alpha_i \mathbf{P}_i$, take α_1 (the largest) into **M**, and add the others as long as α_1 is greater than their sum.

Experiments

- All chemical, real, square matrices from the UFL collection (70 matrices) nasty for Krylov subspace methods. Work with the largest fully indecomposable block.
- Two sets: Nonnegative and general
- (F)Gmres at most 3K iterations with 1.0*e*-6. Check output for accuracy (> 1.0*e*-4 is not accurate).
- Scaling algorithm of Knight and Ruiz'13 [IMA J. Numer. Anal.], with tolerance 1.0e-8.
- ILU with all suggested preprocessing.
- LU of BvN based preconditioners with differing number of permutation matrices, and the specialized solver (select α_iP_i in such a way that α₁ > ∑ the rest).

Experiments

Number of failed instances

	nonnegative	general
ILU(0)	47	47
LU(BvN) ₁	24	19
$LU(BvN)_2$	12	13
LU(BvN)4	25	33
$LU(BvN)_{16}$	33	33
BvN-Solver	6	4

About 7 matrices for the solver.

Re-checked earlier results (be watchful of warnings)

- ILU fails in 17 out of 28 nonnegative matrices, and in 14 general matrices.
- BvN-solver fails in 8 nonnegative, and in 4 general matrices

Insights

- The better scaling, the better the BvN decomposition as an approximation.
- Inner splitting based solver can be used with less accuracy than the outer solver (fgmres).
- Usually, the more matrices in **M**, the better the number of iterations (not for the matrices for which scaling algorithms have issues).

Experiments (running times)

One of the hard cases (for scaling even) 'bayer08', n = 1734, nnz=17363.

- Scaling (15K iters): 1.52 seconds
- BvN decomposition (finds 518 matchings): 0.70.
- BvN-Solve: 162 iters, 3.27 seconds (7 matchings)
- ILU: 35 iters. (set up time < 0.01 seconds), 0.13 seconds;

Conclusions

What?: Find a set of permutation matrices with scaled entries to define a preconditioner.

Why?: Exposes parallelism in applying the preconditioner.

How?: Scale the matrices and use Birkhoff-von Neumann decomposition; even for matrices with positive and negative entries.

Future work: Reduce the running time of the construction; parallel experiments.

Thank you for your attention.

References I

- M. Benzi, A. Pothen, and B. Uçar, Preconditioning techniques based on the Birkhoff–von Neumann decomposition, Tech. Rep. RR-8914, Inria Grenobl—Rhône-Alpes, 2016.
- R. A. Brualdi, The diagonal hypergraph of a matrix (bipartite graph), Discrete Mathematics 27 (2) (1979) 127–147.
- R. A. Brualdi, Notes on the Birkhoff algorithm for doubly stochastic matrices, Canadian Mathematical Bulletin, 25 (1982), pp. 191–199.
- R
 - R. A. Brualdi and P. M. Gibson, Convex polyhedra of doubly stochastic matrices: I. Applications of the permanent function, Journal of Combinatorial Theory, Series A, 22 (1977), pp. 194–230.
- C. S. Chang , W. J. Chen, and H. Y. Huang, On service guarantees for input buffered crossbar switches: A capacity decomposition approach by Birkhoff and von Neumann, IEEE IWQos'99, 79–86, London, UK.

References II

- I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a sparse matrix, SIAM Journal on Matrix Analysis and Applications 22 (2001) 973–996.
- F. Dufossé and B. Uçar, Notes on Birkhoff-von Neumann decomposition of doubly stochastic matrices, Linear Algebra and its Applications 497 (2016) 108–115.
- P. A. Knight, The Sinkhorn–Knopp algorithm: Convergence and applications, SIAM J. Matrix Anal. A. 30 (1) (2008) 261–275.
- P. A. Knight and D. Ruiz, A fast algorithm for matrix balancing, IMA Journal of Numerical Analysis 33 (3) (2013) 1029–1047.
- P. A. Knight, D. Ruiz, and B. Uçar, A symmetry preserving algorithm for matrix scaling, SIAM J. Matrix Anal. A. 35 (3) (2014) 931–955.
 - M. Marcus and R. Ree, Diagonals of doubly stochastic matrices, The Quarterly Journal of Mathematics 10 (1) (1959) 296–302.

References III

- A. Pothen and C.-J. Fan, Computing the block triangular form of a sparse matrix, ACM T. Math. Software 16 (4) (1990) 303–324.
- D. Ruiz, A scaling algorithm to equilibrate both row and column norms in matrices, Tech. Rep. TR-2001-034, RAL (2001).
- R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math. 21 (1967) 343–348.
- D. de Werra, Variations on the Theorem of Birkhoff-von Neumann and extensions, Graphs and Combinatorics, 19 (2003), 263–278.
- D. de Werra, Partitioning the edge set of a bipartite graph into chain packings: Complexity of some variations, Linear Algebra and its Applications, 368 (2003) 315–327.