
Preconditioning techniques based on the
Birkhoff-von Neumann decomposition

Bora Uçar
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Introduction Experiments Conclusion

Problem

Develop and investigate preconditioners for Krylov subspace methods for
solving Ax = b, with A highly unstructured and indefinite.

How?

Preprocess to have a doubly stochastic matrix (whose row and
column sums are one).

Using this doubly stochastic matrix, select some fraction of some of
the nonzeros of A to be included in the preconditioner.

Why?

Preconditioners can be applied to vectors by a number of highly
concurrent steps, where the number of steps is controlled by the user.

Main ingredients: Birkhoff-von Neumann (BvN) decomposition, and
matrix splitting of the form A = M−N.
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Contributions

Sufficient conditions when such a splitting is convergent

Specialized solvers for My = z when these conditions are met.

Use as preconditioners (e.g., with LU decomposition M: it is of the
type “complete decomposition of an incomplete matrix” as opposed
to incomplete decomposition of a complete matrix).
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Context

Matrix view

Permutation matrix: An n × n
matrix with exactly one 1 in
each row and in each column
(other entries are 0)

Bipartite graph view

Perfect matching in (R∪ C,E ):
a set of n edges no two share a
common vertex.
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Context

An n × n matrix A is doubly stochastic if aij ≥ 0, and row sums and
column sums are 1.

A doubly stochastic matrix has perfect matchings touching all of its
nonzeros.

Birkhoff’s Theorem: A is a doubly stochastic matrix

There exist α1, α2, . . . , αk ∈ (0, 1) with
∑k

i=1 αi = 1 and permutation
matrices P1,P2, . . . ,Pk such that:

A = α1P1 + α2P2 + · · ·+ αkPk .

Also called Birkhoff-von Neumann (BvN) decomposition.

Not unique, neither k , nor Pi s in general.

Finding the minimum number k of permutation matrices is NP hard.
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Motivation

Consider solving αPx = b for x where P is a permutation matrix.
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We just scale the input and write at unique (permuted) positions in the
output. Should be very efficient.

Next consider solving (α1P1 + α2P2)x = b for x .
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Motivation

Consider solving (α1P1 + α2P2)x = b for x .

Matrix splitting and stationary iterations

For an invertible A = M−N with invertible M

x (i+1) = Hx (i) + c , where H = M−1N and c = M−1b

where k = 0, 1, . . . and x (0) is arbitrary.

Computation: At every step, multiply with N and solve with M.

Converges to the solution of Ax = b for any x (0) if and only if
ρ(H) < 1 [largest magnitude of an eigenvalue is less than 1].
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Motivation

Theorem

Let A = α1P1 + α2P2 and α1 ≥ α2. Then, A is invertible if

(i) α1 6= α2,

(ii) α1 = α2 and all connected components of GA have an odd number
of rows (and columns). If any such block is of even order, A is
singular.

Define the splitting A = α1P1 − (−α2P2).

The iterations are convergent with the rate α2/α1 for α1 > α2.

Next generalize to more than two permutation matrices.
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Motivation: Let’s generalize to solve Ax = b

Let A = α1P1 + α2P2 + · · ·+ αkPk be a BvN.

Assume α1 ≥ · · · ≥ αk . Pick an integer r between 1 and k − 1 and split
A as A = M−N where

M = α1P1 + · · ·+ αrPr , N = −αr+1Pr+1 − · · · − αkPk .

(M and −N are doubly substochastic matrices.)

Computation: At every step M−1Nx (i)

multiply with N (k − r parallel steps).

apply M−1 (or solves with the doubly stochastic matrix
1

1−
∑k

i=r+1 αi
M); a recursive solver.
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Motivation: Let’s generalize more

Splitting A = M−N where

M = α1P1 + · · ·+ αrPr , N = −αr+1Pr+1 − · · · − αkPk .

Theorem

A sufficient condition for M =
∑r

i=1 αiPi to be invertible: α1 is greater
than the sum of the remaining ones.

Theorem

Suppose that α1 is greater than the sum of all the other αi . Then
ρ(M−1N) < 1 and the stationary iterative method converges for all x0 to
the unique solution of Ax = b.

This is a sufficient condition; . . .and it is rather restrictive in practice./
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Motivation: Let’s generalize to any A

M as a preconditioner for a Krylov subspace method like GMRES.

. . . need to generalize to matrices with negative and positive entries.

Scaling fact

Any nonnegative matrix A with total support can be scaled with two
(unique) positive diagonal matrices R and C such that RAC is doubly
stochastic.

Let A be n × n with total support and positive and negative entries.

B = abs(A) is nonnegative and RBC is doubly stochastic.

We can write RBC =
∑
αiPi .
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Motivation: Let’s generalize to any A

B = abs(A) and RBC =
∑k

i αiPi .

RAC =
k∑

i

αiQi .

where Qi = [q
(i)
jk ]n×n is obtained from Pi = [p

(i)
jk ]n×n as follows:

q
(i)
jk = sgn(ajk)p

(i)
jk .

Generalizing Birkhoff–von Neumann decomposition

Any (real) matrix A with total support can be written as a convex
combination of a set of signed, scaled permutation matrices.

We can then use the same construct to define M (for splitting or for
defining the preconditioner).
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Motivation: Let’s generalize to any A (for having a
special solver)

Select only a few αiPi from the BvN decomposition:

A = α1P1+ α2P2+ · · · +αkPk .

M = α1P1 +α3P3 + · · ·+ αiPi

We have a greedy algorithm which finds αi in non-increasing order.

Find first 10–15 αiPi , take α1 (the largest) into M, and add the others
as long as α1 is greater than their sum.
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Experiments

All chemical, real, square matrices from the UFL collection (70
matrices) — nasty for Krylov subspace methods. Work with the
largest fully indecomposable block.

Two sets: Nonnegative and general

(F)Gmres at most 3K iterations with 1.0e-6. Check output for
accuracy (> 1.0e-4 is not accurate).

Scaling algorithm of Knight and Ruiz’13 [IMA J. Numer. Anal.],
with tolerance 1.0e-8.

ILU with all suggested preprocessing.

LU of BvN based preconditioners with differing number of
permutation matrices, and the specialized solver (select αiPi in such
a way that α1 >

∑
the rest).
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Experiments

Number of failed instances

nonnegative general

ILU(0) 47 47

LU(BvN)1 24 19
LU(BvN)2 12 13
LU(BvN)4 25 33
LU(BvN)16 33 33

BvN-Solver 6 4

About 7 matrices for the solver.

Re-checked earlier results (be watchful of
warnings)

ILU fails in 17 out of 28 nonnegative
matrices, and in 14 general matrices.

BvN-solver fails in 8 nonnegative,
and in 4 general matrices

Insights

The better scaling, the better the
BvN decomposition as an
approximation.

Inner splitting based solver can be
used with less accuracy than the
outer solver (fgmres).

Usually, the more matrices in M,
the better the number of iterations
(not for the matrices for which
scaling algorithms have issues).
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Experiments (running times)

One of the hard cases (for scaling even) ’bayer08’, n = 1734, nnz=17363.

Scaling (15K iters): 1.52 seconds

BvN decomposition (finds 518 matchings): 0.70.

BvN-Solve: 162 iters, 3.27 seconds (7 matchings)

ILU: 35 iters. (set up time < 0.01 seconds), 0.13 seconds;
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Conclusions

What?: Find a set of permutation matrices with scaled entries to define a
preconditioner.

Why?: Exposes parallelism in applying the preconditioner.

How?: Scale the matrices and use Birkhoff–von Neumann decomposition;
even for matrices with positive and negative entries.

Future work: Reduce the running time of the construction; parallel
experiments.

Thank you for your attention.
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