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Introduction

Problem

Develop and investigate preconditioners for Krylov subspace methods for
solving Ax = b, with A highly unstructured and indefinite.

How?

@ Preprocess to have a doubly stochastic matrix (whose row and
column sums are one).

@ Using this doubly stochastic matrix, select some fraction of some of
the nonzeros of A to be included in the preconditioner.

| A

Why?

Preconditioners can be applied to vectors by a number of highly
concurrent steps, where the number of steps is controlled by the user.

Main ingredients: Birkhoff-von Neumann (BvN) decomposition, and
matrix splitting of the form A =M — N.
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Introduction

Contributions

o Sufficient conditions when such a splitting is convergent
@ Specialized solvers for My = z when these conditions are met.

@ Use as preconditioners (e.g., with LU decomposition M: it is of the
type “complete decomposition of an incomplete matrix” as opposed
to incomplete decomposition of a complete matrix).
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Introduction

Context

Bipartite graph view

@ Permutation matrix: An n X n @ Perfect matching in (RUC, E):
matrix with exactly one 1 in a set of n edges no two share a
each row and in each column common vertex.

(other entries are 0)

® X
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Context

An n x n matrix A is doubly stochastic if a; > 0, and row sums and
column sums are 1.

A doubly stochastic matrix has perfect matchings touching all of its
nonzeros.

Birkhoff's Theorem: A is a doubly stochastic matrix

There exist ag, ag, ..., ax € (0,1) with Zle «; = 1 and permutation
matrices Py, Py, ..., Py such that:

A =0a;P; + Py + -+ aPy.

@ Also called Birkhoff-von Neumann (BvN) decomposition.
@ Not unique, neither k, nor P;s in general.

o Finding the minimum number k of permutation matrices is NP hard.
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Motivation

Consider solving aPx = b for x where P is a permutation matrix.

00 0 1 T by g =b1/a
0 01 0 i) _ b2 . 1‘3:[)2/0[
@ 1 0 0 O I3 o bg ylelds Ilzbg/a
01 0 0 T4 by Ty =by/a

We just scale the input and write at unique (permuted) positions in the
output. Should be very efficient.

Next consider solving (a1 Py + axP2)x = b for x.
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Motivation

Consider solving (a1P1 4+ a2P2)x = b for x.

Matrix splitting and stationary iterations
For an invertible A = M — N with invertible M

xH) = Hx() 4 ¢, where H=M"'N and c=M71h

where k =0,1,... and x(© is arbitrary.

o Computation: At every step, multiply with N and solve with M.

o Converges to the solution of Ax = b for any x(? if and only if
p(H) < 1 [largest magnitude of an eigenvalue is less than 1].
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Introduction

Motivation

Let A = a1P1 + apP> and oy > an. Then, A is invertible if

(i) a1 # az,
(i) a1 = ap and all connected components of Gp have an odd number

of rows (and columns). If any such block is of even order, A is
singular.

Define the splitting A = a1 P1 — (—aaP»).

The iterations are convergent with the rate s/ for a3 > an.

Next generalize to more than two permutation matrices.
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Motivation: Let’s generalize to solve Ax = b

Let A =a1P; + aoPy + -+ - 4+ a,P, be a BvN.

Assume a3 > - -+ > «ay. Pick an integer r between 1 and k — 1 and split
A as A =M — N where

M:alpl+"'+arpr7 N:_ar+lpr+1_"'_akpk~

(M and —N are doubly substochastic matrices.)

Computation: At every step M~ tNx(")
e multiply with N (k — r parallel steps).
e apply M~ (or solves with the doubly stochastic matrix
1

——7——M); a recursive solver.
1*Zf:r+1 Qi )
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Motivation: Let’s generalize more

Splitting A = M — N where
M=aPi+ - +aP, N=-01Pr1—-— P

A sufficient condition for M = Zle «P; to be invertible: a; is greater
than the sum of the remaining ones.

Suppose that « is greater than the sum of all the other «;. Then
p(M™IN) < 1 and the stationary iterative method converges for all x° to
the unique solution of Ax = b.

This is a sufficient condition; ...and it is rather restrictive in practice.®
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Motivation: Let’s generalize to any A

M as a preconditioner for a Krylov subspace method like GMRES.

. need to generalize to matrices with negative and positive entries.

Scaling fact

Any nonnegative matrix A with total support can be scaled with two
(unique) positive diagonal matrices R and C such that RAC is doubly
stochastic.

Let A be n X n with total support and positive and negative entries.

B = abs(A) is nonnegative and RBC is doubly stochastic.

We can write RBC = > «;P;.
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Motivation: Let’s generalize to any A

B = abs(A) and RBC = 3_F o;P;.
K
RAC =) a,Q;.
where Q; = [q},i)],,x,, is obtained from P; = [pj(,i)]nx,, as follows:

a5 = sen(ap)ply -

Generalizing Birkhoff-von Neumann decomposition

Any (real) matrix A with total support can be written as a convex
combination of a set of signed, scaled permutation matrices.

We can then use the same construct to define M (for splitting or for
defining the preconditioner).
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Motivation: Let’s generalize to any A (for having a

special solver)

Select only a few «;P; from the BvN decomposition:

A= a1P1+ asPr+ +o Py .
M = Oélpl —|—Oé3P3 —|—'-~—|—Oé,'P,‘

We have a greedy algorithm which finds «; in non-increasing order.

Find first 10-15 «;P;, take oy (the largest) into M, and add the others
as long as ay is greater than their sum.
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Experiments

@ All chemical, real, square matrices from the UFL collection (70
matrices) — nasty for Krylov subspace methods. Work with the
largest fully indecomposable block.

@ Two sets: Nonnegative and general

o (F)Gmres at most 3K iterations with 1.0e-6. Check output for
accuracy (> 1.0e-4 is not accurate).

@ Scaling algorithm of Knight and Ruiz'13 [IMA J. Numer. Anal],
with tolerance 1.0e-8.

o ILU with all suggested preprocessing.

@ LU of BvN based preconditioners with differing number of
permutation matrices, and the specialized solver (select a;P; in such
a way that a; > ) the rest).
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Experiments

Experiments

Number of failed instances
lonncgsthe genere
ILU(0) a7 47 nsights

LU(BvN): 24 19 @ The better scaling, the better the

LU(BvN)2 12 13 BvN decomposition as an

LU(BVN)a 25 33 approximation.

LU(BYN)s16 33 33 @ Inner splitting based solver can be

BvN-Solver 6 4 used with less accuracy than the

About 7 matrices for the solver. outer solver (fgmres).
Re-checked earlier results (be watchful of @ Usually, the more mattrices in M,
warnings) the better the number of iterations

@ ILU fails in 17 out of 28 nonnegative (not for the matrices for which

matrices, and in 14 general matrices. scaling algorithms have issues).

@ BvN-solver fails in 8 nonnegative,
and in 4 general matrices
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Experiments
Experiments (running times)

One of the hard cases (for scaling even) 'bayer08’, n = 1734, nnz=17363.

@ Scaling (15K iters): 1.52 seconds
@ BvN decomposition (finds 518 matchings): 0.70.
@ BvN-Solve: 162 iters, 3.27 seconds (7 matchings)

ILU: 35 iters. (set up time < 0.01 seconds), 0.13 seconds;
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Conclusions

What?: Find a set of permutation matrices with scaled entries to define a
preconditioner.

Why?: Exposes parallelism in applying the preconditioner.

How?: Scale the matrices and use Birkhoff-von Neumann decomposition;
even for matrices with positive and negative entries.

Future work: Reduce the running time of the construction; parallel
experiments.

Thank you for your attention.
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