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Connected Components

• Finding connected 
components is at the heart of 
many graph applications. 

• Sequentially, we have linear 
time O(|E|) solutions.  

• Union-find 

• BFS / DFS
G(V,E)
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Scaling to Large Graphs
• Sizes of graph datasets continue 

to grow in multiple scientific 
domains 

• Bioinformatics : Metagenomics 
de-Bruijn graphs  

• Iowa Prairie (3.3B reads) - JGI 

• Social networks, WWW 

• We need method that scales to 
graphs with billions/trillion of edges  

• irrespective of graph topology

Sequencing machines   
generate ~109 DNA 

reads in 1 day

> 109 content uploads 
in 1 day
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Background
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A. Parallel connectivity 
algorithms 

1. Parallel BFS 

2. Shiloach-Vishkin PRAM 
algorithm (SV) 

B. Recent prior work

Buluç	and	Madduri	“Parallel	breadth-first	search	…”	SC	11	
Beamer	et.	al.	"Distributed	memory	breadth-first	search	revisited	…”	IPDPSW	13

source
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Background
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A. Parallel connectivity 
algorithms 

1. Parallel BFS 

2. Shiloach-Vishkin 
PRAM algorithm (SV)

B. Recent prior work

Shiloach	and	Vishkin	“An	O(log	n)	parallel	connecLvity	algorithm”	1982
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Background

Shiloach	and	Vishkin	“An	O(log	n)	parallel	connecLvity	algorithm”	19826

Pointer jumping for 
faster convergence

O(log |V|) iterations 
→ O(|E| log |V|) work

A. Parallel connectivity 
algorithms 

1. Parallel BFS 

2. Shiloach-Vishkin 
PRAM algorithm (SV)

B. Recent prior work
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O(|V|) iterations  

→ O(|E|.|V|) work

Label	PropagaLon Shiloach-Vishkin



Background
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A. Parallel connectivity 
algorithms 

1. Parallel BFS 

2. Shiloach-Vishkin PRAM 
algorithm (SV) 

B. Recent prior work

G(V,E)

Multistep algorithm

Part of popular graph analysis frameworks :  
GraphX, PowerLyra, PowerGraph

1 Parallel BFS  
iteration

Parallel 
Label  
Propagation

Slota	et.	al.	“A	Case	Study	of	Complex	Graph	Analysis	…”	IPDPS	2016	
Slota	et	al.	“BFS	and	coloring-based	parallel	…	IPDPS	2014
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Flick	et.	al.	“A	parallel	connecLvity	algorithm	…”	SC	15

Contributions
1. Novel edge-based adaptation of Shiloach-Vishkin 

algorithm for distributed memory parallel systems. 

2. Fast heuristic to guide algorithm selection at run-time.
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Parallel SV

 Parallel BFS   

1
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Parallel SV algorithm
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Current partition id

Vertex ids

• Initialization 

• We work with an 
array of tuples (call it 
A) to keep partition 
id of each vertex. 

• O(|V|) partitions at 
beginning 

• Size of A :  
O(|V| + |E|)
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Parallel SV algorithm
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• Initialization 

• We work with an 
array of tuples (call it 
A) to keep partition 
id of each vertex. 

• O(|V|) partitions at 
beginning 

• Size of A :  
O(|V| + |E|)
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Parallel SV algorithm
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u

u u u

Current partition id

Vertex ids

• vertex ‘u’ is member of which all 
partition ids? 

• Sort A by ‘vertex id’ layer
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Parallel SV algorithm
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u

u u u

Current partition id

u

v w

u v w

• Which all vertices are member 
of partition       ? 

• Sort A by ‘partition id’ layer

Current partition id
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Parallel SV algorithm
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Current partition id

u

v w

u v w

• Which all vertices are member 
of partition       ? 

• Sort A by ‘partition id’ layer

Current partition id
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Vertex ids

• vertex ‘u’ is member of which all 
partition ids? 

• Sort A by ‘vertex id’ layer

u
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Parallel SV algorithm
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• In our implementation, we use parallel sample sort. 

• Custom reduction operations to efficiently compute 
minimums. 

• Additional details: 

• pointer jumping 

• detect convergence of small components early, load 
balance 

• Runtime :
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Flick	et.	al.	“A	parallel	connecLvity	algorithm	…”	SC	15

Contributions
1. Novel edge-based adaptation of Shiloach-Vishkin 

algorithm for distributed memory parallel systems. 

2. Fast heuristic to guide algorithm selection at run-time.
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Parallel SV

 Parallel BFS   

1
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Dynamic hybrid method
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• Parallel BFS is close to work 
efficient for a giant small world 
graph component.  

• Efficiency is lost when : 

• Large number of small 
components 

• Large diameter of a graph 
component 

• How to decide which algorithm to 
choose at runtime?
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Dynamic hybrid method
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Run Parallel-SV on 
remaining graph

Curve fits power-
law distribution?

Compute degree 
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1 BFS iteration
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Experimental Setup
• Software : C++14, MPI, CombBLAS library for parallel BFS 

• Hardware : Cray XC30 (Edison)  at Lawrence Berkeley National 
Laboratory 

• 5,576 nodes, each with 2 x 12-core Intel Ivy processors and 64 GB 
RAM 

• 1 MPI process per physical core 

• Timing :  

• Exclude graph construction and I/O time 

• Profiling starts after having block-distributed list of edges in memory

18 Buluç	and	Gilbert	“The	Combinatorial	BLAS:	Design	…”	IJHPCA	2011
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Datasets
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Datasets

Small world graphs
20
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Datasets

21
Small world graphsLarge diameter graph
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Datasets
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Small world graphsLarge diameter graph

Large number of components
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Run BFS?

1.2x
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3.7x
4.7x

3.6x

4.0x

Timings against opposite choice, using 2K cores
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Proportion of time spent in prediction (using 2K cores)

Proportion 
of time 
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• Maximum speedup of ~8x 
using 4096 cores (Ideal :16x) 

• Sorting benchmark with 2B 
integers achieves 8.06x 
speedup as well.
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v/s Multistep method 
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v/s Best sequential method 
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• Performance comparison against Rem’s algorithm (based on 
union-find)  

• Using small graphs that fit in single node (64 GB RAM)

E.	W.	Dijkstra,	A	discipline	of	programming.	1976
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Conclusions
1. Efficient distributed memory parallel connectivity 

algorithm based on Shiloach-Vishkin approach. 

2. Propose heuristic to guide algorithm selection at 
runtime. 

3. Efficient as well as generic, scales on a variety of large 
graphs. 

4. Significant performance gains against previous state-
of-the-art, particularly in case of large diameter graphs.

28



Thank you!
arxiv.org/abs/1607.06156

cjain @ gatech.edu

Reproducibility	IniLaLve	Award

github.com/ParBLiSS/
parconnect

https://arxiv.org/abs/1607.06156
mailto:cjain@gatech.edu?subject=
https://github.com/ParBLiSS/parconnect

