
An Adaptive Parallel Algorithm
for Computing Connectivity

Chirag Jain, Patrick Flick, Tony Pan, Oded Green, Srinivas Aluru

1

SIAM Workshop on Combinatorial Scientific Computing (CSC16)
October 10, 2016

Connected Components

• Finding connected
components is at the heart of
many graph applications.

• Sequentially, we have linear
time O(|E|) solutions.

• Union-find

• BFS / DFS
G(V,E)

2

Introduction Methods Experiments

Scaling to Large Graphs
• Sizes of graph datasets continue

to grow in multiple scientific
domains

• Bioinformatics : Metagenomics
de-Bruijn graphs

• Iowa Prairie (3.3B reads) - JGI

• Social networks, WWW

• We need method that scales to
graphs with billions/trillion of edges

• irrespective of graph topology

Sequencing machines
generate ~109 DNA

reads in 1 day

> 109 content uploads
in 1 day

3

Introduction Methods Experiments

Background

4

A. Parallel connectivity
algorithms

1. Parallel BFS

2. Shiloach-Vishkin PRAM
algorithm (SV)

B. Recent prior work

Buluç	and	Madduri	“Parallel	breadth-first	search	…”	SC	11	
Beamer	et.	al.	"Distributed	memory	breadth-first	search	revisited	…”	IPDPSW	13

source

Introduction Methods Experiments

Background

5

A. Parallel connectivity
algorithms

1. Parallel BFS

2. Shiloach-Vishkin
PRAM algorithm (SV)

B. Recent prior work

Shiloach	and	Vishkin	“An	O(log	n)	parallel	connecLvity	algorithm”	1982

Introduction Methods Experiments

Background

Shiloach	and	Vishkin	“An	O(log	n)	parallel	connecLvity	algorithm”	19826

Pointer jumping for
faster convergence

O(log |V|) iterations
→ O(|E| log |V|) work

A. Parallel connectivity
algorithms

1. Parallel BFS

2. Shiloach-Vishkin
PRAM algorithm (SV)

B. Recent prior work

Introduction Methods Experiments

O(|V|) iterations

→ O(|E|.|V|) work

Label	PropagaLon Shiloach-Vishkin

Background

7

A. Parallel connectivity
algorithms

1. Parallel BFS

2. Shiloach-Vishkin PRAM
algorithm (SV)

B. Recent prior work

G(V,E)

Multistep algorithm

Part of popular graph analysis frameworks :
GraphX, PowerLyra, PowerGraph

1 Parallel BFS
iteration

Parallel
Label
Propagation

Slota	et.	al.	“A	Case	Study	of	Complex	Graph	Analysis	…”	IPDPS	2016	
Slota	et	al.	“BFS	and	coloring-based	parallel	…	IPDPS	2014

Introduction Methods Experiments

Flick	et.	al.	“A	parallel	connecLvity	algorithm	…”	SC	15

Contributions
1. Novel edge-based adaptation of Shiloach-Vishkin

algorithm for distributed memory parallel systems.

2. Fast heuristic to guide algorithm selection at run-time.

8

G(V,E)

Parallel SV

 Parallel BFS

1

2

Introduction Methods Experiments

Parallel SV algorithm

9

Current partition id

Vertex ids

• Initialization

• We work with an
array of tuples (call it
A) to keep partition
id of each vertex.

• O(|V|) partitions at
beginning

• Size of A :  
O(|V| + |E|)

Introduction Methods Experiments

u

v1

v2

u
v1 v2 u

v1 v2

v2v1u

v2uv1 u

v2v1u

v2uv1 u

Parallel SV algorithm

10 < ,

• Initialization

• We work with an
array of tuples (call it
A) to keep partition
id of each vertex.

• O(|V|) partitions at
beginning

• Size of A :  
O(|V| + |E|)

Introduction Methods Experiments

u

v1

v2

u
v1 v2 u

v1 v2

v2v1u

v2uv1 u

v2v1u

v2uv1 u

Current partition id

Vertex ids

Parallel SV algorithm

11

u

u u u

Current partition id

Vertex ids

• vertex ‘u’ is member of which all
partition ids?

• Sort A by ‘vertex id’ layer

Introduction Methods Experiments

u

Parallel SV algorithm

12

u

u u u

Current partition id

u

v w

u v w

• Which all vertices are member
of partition ?

• Sort A by ‘partition id’ layer

Current partition id

Introduction Methods Experiments

Vertex ids

• vertex ‘u’ is member of which all
partition ids?

• Sort A by ‘vertex id’ layer

u

v w

Parallel SV algorithm

13

u

u u u

Current partition id

u

v w

u v w

• Which all vertices are member
of partition ?

• Sort A by ‘partition id’ layer

Current partition id

Introduction Methods Experiments

Vertex ids

• vertex ‘u’ is member of which all
partition ids?

• Sort A by ‘vertex id’ layer

u

v w

Parallel SV algorithm

14

• In our implementation, we use parallel sample sort.

• Custom reduction operations to efficiently compute
minimums.

• Additional details:

• pointer jumping

• detect convergence of small components early, load
balance

• Runtime :

Introduction Methods Experiments

 Check our preprint

Flick	et.	al.	“A	parallel	connecLvity	algorithm	…”	SC	15

Contributions
1. Novel edge-based adaptation of Shiloach-Vishkin

algorithm for distributed memory parallel systems.

2. Fast heuristic to guide algorithm selection at run-time.

15

G(V,E)

Parallel SV

 Parallel BFS

1

2

Introduction Methods Experiments

Dynamic hybrid method

16

• Parallel BFS is close to work
efficient for a giant small world
graph component.

• Efficiency is lost when :

• Large number of small
components

• Large diameter of a graph
component

• How to decide which algorithm to
choose at runtime?

Introduction Methods Experiments

Dynamic hybrid method

17

Introduction Methods Experiments

Run Parallel-SV on
remaining graph

Curve fits power-
law distribution?

Compute degree
distribution of
input graph

1 BFS iteration

Yes

No

Experimental Setup
• Software : C++14, MPI, CombBLAS library for parallel BFS

• Hardware : Cray XC30 (Edison) at Lawrence Berkeley National
Laboratory

• 5,576 nodes, each with 2 x 12-core Intel Ivy processors and 64 GB
RAM

• 1 MPI process per physical core

• Timing :

• Exclude graph construction and I/O time

• Profiling starts after having block-distributed list of edges in memory

18 Buluç	and	Gilbert	“The	Combinatorial	BLAS:	Design	…”	IJHPCA	2011

Introduction Methods Experiments

Datasets

19

Introduction Methods Experiments

Datasets

Small world graphs
20

Introduction Methods Experiments

Datasets

21
Small world graphsLarge diameter graph

Introduction Methods Experiments

Datasets

22
Small world graphsLarge diameter graph

Large number of components

Introduction Methods Experiments

0

20

40

60

M1 M2 M3 G1 G2 G3 K1 K2
Datasets

Ti
m

e
(s

ec
)

Method

Dynamic

Static (Opp. Choice)

Time (sec)

Graphs

Dynamic Approach

23
Run BFS?

1.2x

0.9x

1.2x
4.1x

3.7x
4.7x

3.6x

4.0x

Timings against opposite choice, using 2K cores

Introduction Methods Experiments

0

20

40

60

M1 M2 M3 G1 G2 G3 K1 K2
Datasets

Ti
m

e
(s

ec
)

Method

Dynamic

Static (Opp. Choice)

Time (sec)

Graphs

Dynamic Approach

24

Proportion of time spent in prediction (using 2K cores)

Proportion
of time

Introduction Methods Experiments

Run BFS?

• Maximum speedup of ~8x
using 4096 cores (Ideal :16x)

• Sorting benchmark with 2B
integers achieves 8.06x
speedup as well.

25

●
●

● ● ●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

0

100

200

300

2.5

5.0

7.5

Tim
e (sec)

Speedup

256 512 1024 2048 4096
Number of cores (log scale)

Dataset
●● G1

G2

G3

K1

M1

M2

Number of cores (log scale)

Timings for the largest graph M4

Strong Scalability

Time (sec)

Speedup

Introduction Methods Experiments

v/s Multistep method

26

0

25

50

75

M1 M2 M3 G1 G2 G3 K1 K2
Datasets

Ti
m

e
(s

ec
)

Method

Our method

Multistep

Time (sec)
2.1x 1.1x

2.7x

24x

0.9x 1.1x

1.1x
1.9x

Diameter4K 4K 2K 25K 9 916 17
Graphs

Introduction Methods Experiments

v/s Best sequential method

27

• Performance comparison against Rem’s algorithm (based on
union-find)

• Using small graphs that fit in single node (64 GB RAM)

E.	W.	Dijkstra,	A	discipline	of	programming.	1976

Introduction Methods Experiments

Conclusions
1. Efficient distributed memory parallel connectivity

algorithm based on Shiloach-Vishkin approach.

2. Propose heuristic to guide algorithm selection at
runtime.

3. Efficient as well as generic, scales on a variety of large
graphs.

4. Significant performance gains against previous state-
of-the-art, particularly in case of large diameter graphs.

28

Thank you!
arxiv.org/abs/1607.06156

cjain @ gatech.edu

Reproducibility	IniLaLve	Award

github.com/ParBLiSS/
parconnect

https://arxiv.org/abs/1607.06156
mailto:cjain@gatech.edu?subject=
https://github.com/ParBLiSS/parconnect

