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Network analysis:

m Study structural properties of networks

m Applications: social network analysis, internet, bioinformatics,
marketing...

Centrality
m Ranking nodes

m Closeness centrality: average distance between a node and the
others

m Simple and very popular, but

m assumes information flows through
shortest paths only

® assumes information is inseparable
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Electrical closeness
m Information flows through the network like electrical current
m All paths taken into account

However, requires to either invert the Laplacian matrix or solve n?
linear systems

> expensive for large networks

Our contribution

m [wo approximation algorithms
m Both require solution of Laplacian linear systems
> LAMG implementation in NetworKit

m Properties of electrical closeness and shortest-paths closeness
in real-world networks
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Current-flow closeness centrality AT
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Shortest-path closeness

m Ranks nodes according to average shortest-path distance to
other nodes

n—1 y
Csp(V) = J
Zwe V\{v} sp(v, w)
m Assumptions on the data
Current-flow closeness [Brandes and Fleischer, 2005]
m dsp(v, w) replaced with commute time:
w

der(v, w) = H(v, w) + H(w, v)

m Proportional to potential difference (effective resistance) in
electrical network

m All paths are taken into account
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Current-flow closeness

n—1
CCF(V) ZWEV\{V} dCF(Vs W) ] ; )
Graph Laplacian
mL=D-A Vv — | +1
®m It can be shown: 0
byw = | ...
der(V, W) = pyw(V) — Pvw(W) 0
w —|—1
where
vaw = bvw O

) Solve the system Lp,y = b,y Yw € V\ {v}
m O(nmlog(1/T)) empirical running time
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Current-flow closeness
n—1
we V\{v} Pvw(V) — Pyw (W)

Ccr(V) = 5

Sampling-based approximation
m SetS-= {31 , So, .., Sk}, S C V
m Approximation:
n—1
R—
Zi=1 Pvs; (V) — Pys,(Si)

Ccr(V) =

S5
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® Johnson- Lindenstrauss Transform:

m project the system into lower-dymensional space spanned by
log n/e* random vectors

m approximated distances are within (1 + €) factor from exact ones

m Effective resistance dgr(u, v) can be expressed as distances
between vectors in {W1 /2B eu}ue\/ [Spielman, Srivastava, 2011]
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® Johnson- Lindenstrauss Transform:

m project the system into lower-dymensional space spanned by
log n/e* random vectors

m approximated distances are within (1 + €) factor from exact ones

m Effective resistance dgr(u, v) can be expressed as distances
between vectors in { W'/2BL1 eu}ue\/ [Spielman, Srivastava, 2011]

Moore-Penrose

Weight matrix | Incidence matrix Pseudoinverse of L

m X m m X hn nxn

Bergamini, Wegner, Lukarski, Meyerhenke — Estimating Current-Flow Closeness Centrality with a Multigrid Laplacian Solver 8
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® Johnson- Lindenstrauss Transform:

m project the system into lower-dymensional space spanned by
log n/e* random vectors

m approximated distances are within (1 + €) factor from exact ones

m Effective resistance dgr(u, v) can be expressed as distances
between vectors in {W1 /2B eu}ue\/ [Spielman, Srivastava, 2011]

m Approximation {QW'/2BLte,},cv, Q random projection matrix

i i ' 1 1
of size k x m with elements in {0, + =, ——=

m Rows of QW'/2BLT: k linear systems:

Lz; = {QW'/2B}
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Implementation
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m Laplacian linear systems used to solve many problems in
network analysis:

m Graph partitioning m Sparsification
= Approx. maximum flow = Graph drawing
a ..

m Important to have a fast solver implementation

m LAMG [Livne and Brandt, 2012]:

m Algebraic multigrid:

m lteratively solve coarser systems —
m Prolong solutions to original systems

m Designed for complex networks

> LAMG implementation in NetworKit
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m atool suite of high-performance network analysis algorithms

m parallel algorithms
_ _ _ IPython Notebook
m approximation algorithms | IP[y] /
\ [ matplotlib ] [ scipy ] [ numpy ] [ pandas ][ networkx ]
m features include ... —
m community detection (" Python . h
) Task-oriented Interface ] N
m centrality measures { Fﬁ:i;gizﬁt'y J
= graph generators _ ( Pythonized Classes ) )
m free software (oron e e 3 )
\ J

m Python package
with C++ backend

®m under continuous development { Data Structures } { Algorithms J Tests ]

m download from . )
http://networkit.iti.kit.edu

( C++/ OpenMP

/O

[©> LAMG solver implementation in NetworKit
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Experiments
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Approximation algorithms AT

m Comparison with exact algorithm: networks with up to 10° edges,
larger instances up to 56 millions edges

m SAMPLING: |S| € {10, 20, 50, 100,200,500}
m PROJECTING: € =0.5,0.2,0.1,0.05
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m Comparison with exact algorithm: networks with up to 10° edges,
larger instances up to 56 millions edges
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m Comparison with exact algorithm: networks with up to 10° edges,
larger instances up to 56 millions edges

m SAMPLING: |S| € {10, 20, 50, 100, 200,500}

. PF’\ nnnnnnnnn - N - N nNn_N 4 Nn_nNr-

m Approximation with 20 samples on average
~2 seconds

m Exact approach more than 20 minutes

= 10U o

® &a a &

10°
0.970 0.975 0.980 0.985 0.990 0.995 1.000

Accuracy (Spearmann coefficient)
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Differentiation among different nodes
m Real-world complex networks have small diameters
> Many nodes have similar shortest-path closeness
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Comparison with shortest-path closeness AT
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Resilience to noise
®m Add new edges to the graph

m Recompute ranking
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m Two approximation algorithms for current-flow closeness of one
node

m Current-flow closeness is an interesting alternative to shortest-
path closeness

[©> What about electrical betweenness?

m Finding the most central nodes faster?
(Shortest-path closeness: [Bergamini et al., ALENEX 2016])

m Group centrality
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m Two approximation algorithms for current-flow closeness of one
node

m Current-flow closeness is an interesting alternative to shortest-
path closeness

[©> What about electrical betweenness?

m Finding the most central nodes faster?
(Shortest-path closeness: [Bergamini et al., ALENEX 2016])

m Group centrality

Thank you for your
attention!
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m Graph as electrical network
m Edge {u, v}: resistor with conductance w,,
m Supplyb:V —-R
m b(s)=+1,b(t) = —1 > current flowing through the network
u Wuy v
S [
+1 1

m Potential pg(v) Vv eV
m Current g, flowing through {u, v}: (ps:(u) — pst(V)) - Wyy
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m Graph as electrical network
m Edge {u, v}: resistor with conductance w,,

m Supplyb:V =R

m b(s)=+1, b(t) = —1 > current flowing through the network

u W yv %

S t
+1 —1

7

Potential can be computed solving the linear system:

Lpst = bst
where L. =D — A
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