
SIAM WORKSHOP ON COMBINATORIAL SCIENTIFIC COMPUTING (CSC16) – ALBUQUERQUE, NM, USA

Estimating Current-Flow Closeness Centrality

with a Multigrid Laplacian Solver

E. Bergamini, M. Wegner, D. Lukarski, H. Meyerhenke | October 12, 2016

KIT - The Research University in the Helmholtz Association www.kit.edu

http://www.kit.edu


Bergamini, Wegner, Lukarski, Meyerhenke – Estimating Current-Flow Closeness Centrality with a Multigrid Laplacian Solver 1

Overview | Centrality in complex networks
Network analysis:

Study structural properties of networks

Applications: social network analysis, internet, bioinformatics,
marketing...

Centrality

Ranking nodes

Closeness centrality: average distance between a node and the
others

Simple and very popular, but

assumes information flows through
shortest paths only

assumes information is inseparable
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Overview | Centrality in complex networks

Electrical closeness

Information flows through the network like electrical current

All paths taken into account
However, requires to either invert the Laplacian matrix or solve n2

linear systems

expensive for large networks

Our contribution

Two approximation algorithms

Both require solution of Laplacian linear systems

LAMG implementation in NetworKit

Properties of electrical closeness and shortest-paths closeness
in real-world networks
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Current-flow closeness centrality
Shortest-path closeness

Ranks nodes according to average shortest-path distance to
other nodes

cSP (v ) =
n � 1P

w2V\{v} dSP (v , w)

Assumptions on the data

Current-flow closeness [Brandes and Fleischer, 2005]

dSP (v , w) replaced with commute time:

dCF (v , w) = H(v , w) + H(w , v )

Proportional to potential difference (effective resistance) in
electrical network

All paths are taken into account

v

w
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Current-flow closeness centrality

Current-flow closeness

cCF (v ) =
n � 1P

w2V\{v} dCF (v , w)

Graph Laplacian

L := D � A

It can be shown:

dCF (v , w) = pvw (v ) � pvw (w)

where
Lpvw = bvw

Solve the system Lpvw = bvw 8w 2 V \ {v}
⇥(nm log(1/⌧)) empirical running time

bvw =
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Approximation
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Sampling-based approximation

Current-flow closeness

cCF (v ) =
n � 1P

w2V\{v} pvw (v ) � pvw (w)

Sampling-based approximation

Set S = {s1, s2, ..., sk}, S ✓ V

Approximation:

c̃CF (v ) :=
k
n
· n � 1
Pk

i=1 pvsi (v ) � pvsi (si )

v
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Projection-based approximation

Johnson- Lindenstrauss Transform:

project the system into lower-dymensional space spanned by
log n/✏2 random vectors

approximated distances are within (1+✏) factor from exact ones

Effective resistance dCF (u, v ) can be expressed as distances
between vectors in {W 1/2BL†eu}u2V [Spielman, Srivastava, 2011]
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Projection-based approximation

Johnson- Lindenstrauss Transform:

project the system into lower-dymensional space spanned by
log n/✏2 random vectors

approximated distances are within (1+✏) factor from exact ones

Effective resistance dCF (u, v ) can be expressed as distances
between vectors in {W 1/2BL†eu}u2V [Spielman, Srivastava, 2011]

Weight matrix
m ⇥ m

Incidence matrix
m ⇥ n

Moore-Penrose
Pseudoinverse of L

n ⇥ n

Weight matrix
m ⇥ m
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Projection-based approximation

Johnson- Lindenstrauss Transform:

project the system into lower-dymensional space spanned by
log n/✏2 random vectors

approximated distances are within (1+✏) factor from exact ones

Effective resistance dCF (u, v ) can be expressed as distances
between vectors in {W 1/2BL†eu}u2V [Spielman, Srivastava, 2011]

Approximation {QW 1/2BL†eu}u2V , Q random projection matrix
of size k ⇥ m with elements in {0, + 1p

k
,� 1p

k
}

Rows of QW 1/2BL†: k linear systems:

Lzi = {QW 1/2B}
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Implementation
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Laplacian linear systems

Laplacian linear systems used to solve many problems in
network analysis:

Graph partitioning
Approx. maximum flow
...

Important to have a fast solver implementation

LAMG [Livne and Brandt, 2012]:
Algebraic multigrid:
Iteratively solve coarser systems
Prolong solutions to original systems
Designed for complex networks

Sparsification
Graph drawing

LAMG implementation in NetworKit
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NetworKit

a tool suite of high-performance network analysis algorithms
parallel algorithms
approximation algorithms

features include . . .
community detection
centrality measures
graph generators

free software
Python package
with C++ backend
under continuous development
download from
http://networkit.iti.kit.edu

LAMG solver implementation in NetworKit
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Experiments
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Approximation algorithms

Comparison with exact algorithm: networks with up to 105 edges,
larger instances up to 56 millions edges

SAMPLING: |S| 2 {10, 20, 50, 100, 200, 500}
PROJECTING: ✏ = 0.5, 0.2, 0.1, 0.05



Bergamini, Wegner, Lukarski, Meyerhenke – Estimating Current-Flow Closeness Centrality with a Multigrid Laplacian Solver 15
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Approximation algorithms

Comparison with exact algorithm: networks with up to 105 edges,
larger instances up to 56 millions edges

SAMPLING: |S| 2 {10, 20, 50, 100, 200, 500}
PROJECTING: ✏ = 0.5, 0.2, 0.1, 0.05

Approximation with 20 samples on average
⇡2 seconds

Exact approach more than 20 minutes
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Comparison with shortest-path closeness

Differentiation among different nodes

Real-world complex networks have small diameters

Many nodes have similar shortest-path closeness
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Comparison with shortest-path closeness

Resilience to noise

Add new edges to the graph

Recompute ranking
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Conclusions and future work

Two approximation algorithms for current-flow closeness of one
node

Current-flow closeness is an interesting alternative to shortest-
path closeness

What about electrical betweenness?

Finding the most central nodes faster?
(Shortest-path closeness: [Bergamini et al., ALENEX 2016])

Group centrality
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Conclusions and future work

Two approximation algorithms for current-flow closeness of one
node

Current-flow closeness is an interesting alternative to shortest-
path closeness

What about electrical betweenness?

Finding the most central nodes faster?
(Shortest-path closeness: [Bergamini et al., ALENEX 2016])

Group centrality

Thank you for your
attention!
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Introduction | Laplacian and electrical networks

Graph as electrical network

Edge {u, v}: resistor with conductance !uv

Supply b : V ! R
b(s) = +1, b(t) = �1 current flowing through the network

s t
+1 �1

!uv

Potential pst (v ) 8v 2 V

Current euv flowing through {u, v}: (pst (u) � pst (v )) ·!uv

u v
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Introduction | Laplacian and electrical networks

Graph as electrical network

Edge {u, v}: resistor with conductance !uv

Supply b : V ! R
b(s) = +1, b(t) = �1 current flowing through the network

s t
+1 �1

!uvu v

Potential can be computed solving the linear system:

Lpst = bst

where L := D � A


