

Estimating Current-Flow Closeness Centrality with a Multigrid Laplacian Solver

E. Bergamini, M. Wegner, D. Lukarski, H. Meyerhenke | October 12, 2016

SIAM WORKSHOP ON COMBINATORIAL SCIENTIFIC COMPUTING (CSC16) - ALBUQUERQUE, NM, USA

KIT - The Research University in the Helmholtz Association

www.kit.edu

Overview | Centrality in complex networks

Network analysis:

- Study structural properties of networks
- Applications: social network analysis, internet, bioinformatics, marketing...

Centrality

- Ranking nodes
- Closeness centrality: average distance between a node and the others
- Simple and very popular, but
 - assumes information flows through shortest paths only
 - assumes information is inseparable

Overview | Centrality in complex networks

Electrical closeness

- Information flows through the network like electrical current
- All paths taken into account

However, requires to either invert the Laplacian matrix or solve n^2 linear systems

expensive for large networks

Our contribution

- Two approximation algorithms
- Both require solution of Laplacian linear systems
- LAMG implementation in NetworKit
- Properties of electrical closeness and shortest-paths closeness in real-world networks

Current-flow closeness centrality

Shortest-path closeness

Ranks nodes according to average shortest-path distance to other nodes

$$C_{SP}(v) = \frac{n-1}{\sum_{w \in V \setminus \{v\}} d_{SP}(v, w)}$$

Assumptions on the data

Current-flow closeness [Brandes and Fleischer, 2005]

• $d_{SP}(v, w)$ replaced with commute time:

 $d_{\cap F}(v, w) = H(v, w) + H(w, v)$

- Proportional to potential difference (effective resistance) in electrical network
- All paths are taken into account

Current-flow closeness centrality

Current-flow closeness

$$C_{CF}(v) = \frac{n-1}{\sum_{w \in V \setminus \{v\}} d_{CF}(v, w)}$$

- L := D A
- It can be shown:

$$d_{CF}(v, w) = p_{vw}(v) - p_{vw}(w)$$

where

$$Lp_{vw} = b_{vw}$$

Solve the system $Lp_{vw} = b_{vw} \quad \forall w \in V \setminus \{v\}$ $\Theta(nm\log(1/\tau))$ empirical running time

$v \rightarrow \begin{vmatrix} 0 \\ +1 \\ 0 \\ b_{vw} = \begin{vmatrix} 0 \\ 0 \\ 0 \\ w \rightarrow \begin{vmatrix} -1 \\ 0 \\ -1 \\ 0 \\ 0 \end{vmatrix}$

Approximation

Sampling-based approximation

Current-flow closeness

$$C_{CF}(v) = \frac{n-1}{\sum_{w \in V \setminus \{v\}} p_{vw}(v) - p_{vw}(w)}$$

Sampling-based approximation

• Set
$$S = \{s_1, s_2, ..., s_k\}, S \subseteq V$$

Approximation:

Projection-based approximation

- Johnson- Lindenstrauss Transform:
 - project the system into lower-dymensional space spanned by $\log n/\epsilon^2$ random vectors
 - approximated distances are within $(1 + \epsilon)$ factor from exact ones
- Effective resistance $d_{CF}(u, v)$ can be expressed as distances between vectors in $\{W^{1/2}BL^{\dagger}e_u\}_{u \in V}$ [Spielman, Srivastava, 2011]

Projection-based approximation

- Johnson- Lindenstrauss Transform:
 - project the system into lower-dymensional space spanned by $\log n/\epsilon^2$ random vectors
 - approximated distances are within $(1 + \epsilon)$ factor from exact ones
- Effective resistance $d_{CF}(u, v)$ can be expressed as distances between vectors in $\{W^{1/2}BL^{\dagger}e_u\}_{u \in V}$ [Spielman, Srivastava, 2011]

Weight matrix $m \times m$

Incidence matrix $m \times n$

Moore-Penrose Pseudoinverse of L $n \times n$

Projection-based approximation

- Johnson- Lindenstrauss Transform:
 - project the system into lower-dymensional space spanned by $\log n/\epsilon^2$ random vectors
 - approximated distances are within $(1 + \epsilon)$ factor from exact ones
- Effective resistance $d_{CF}(u, v)$ can be expressed as distances between vectors in $\{W^{1/2}BL^{\dagger}e_u\}_{u \in V}$ [Spielman, Srivastava, 2011]
- Approximation $\{QW^{1/2}BL^{\dagger}e_u\}_{u \in V}$, *Q* random projection matrix of size $k \times m$ with elements in $\{0, +\frac{1}{\sqrt{k}}, -\frac{1}{\sqrt{k}}\}$
- Rows of $QW^{1/2}BL^{\dagger}$: k linear systems:

$$Lz_i = \{QW^{1/2}B\}$$

Implementation

Laplacian linear systems

- Laplacian linear systems used to solve many problems in network analysis:
 - Graph partitioning
 - Approx. maximum flow
 - ••
- Important to have a fast solver implementation
- LAMG [Livne and Brandt, 2012]:
 - Algebraic multigrid:
 - Iteratively solve coarser systems
 - Prolong solutions to original systems
 - Designed for complex networks
- LAMG implementation in NetworKit

Sparsification

Graph drawing

NetworKit

- a tool suite of high-performance network analysis algorithms
 - parallel algorithms
 - approximation algorithms
- **features** include ...
 - community detection
 - centrality measures
 - graph generators

free software

- Python package with C++ backend
- under continuous development
- download from http://networkit.iti.kit.edu

LAMG solver implementation in NetworKit

Experiments

Approximation algorithms

- Comparison with exact algorithm: networks with up to 10⁵ edges, larger instances up to 56 millions edges
- SAMPLING: $|S| \in \{10, 20, 50, 100, 200, 500\}$
- PROJECTING: $\epsilon = 0.5, 0.2, 0.1, 0.05$

Approximation algorithms

- Comparison with exact algorithm: networks with up to 10⁵ edges, larger instances up to 56 millions edges
- SAMPLING: $|S| \in \{10, 20, 50, 100, 200, 500\}$
- **PROJECTING:** $\epsilon = 0.5, 0.2, 0.1, 0.05$

Approximation algorithms

- Comparison with exact algorithm: networks with up to 10⁵ edges, larger instances up to 56 millions edges
- SAMPLING: $|S| \in \{10, 20, 50, 100, 200, 500\}$

Comparison with shortest-path closeness

Differentiation among different nodes

Real-world complex networks have small diameters

Many nodes have similar shortest-path closeness

Comparison with shortest-path closeness

Resilience to noise

- Add new edges to the graph
- Recompute ranking

Conclusions and future work

- Two approximation algorithms for current-flow closeness of one node
- Current-flow closeness is an interesting alternative to shortestpath closeness
 - What about electrical betweenness?
- Finding the most central nodes faster? (Shortest-path closeness: [Bergamini et al., ALENEX 2016])
- Group centrality

Conclusions and future work

- Two approximation algorithms for current-flow closeness of one node
- Current-flow closeness is an interesting alternative to shortestpath closeness
 - What about electrical betweenness?
- Finding the most central nodes faster? (Shortest-path closeness: [Bergamini et al., ALENEX 2016])
- Group centrality

Thank you for your attention!

Introduction | Laplacian and electrical networks

- Graph as electrical network
- Edge $\{u, v\}$: resistor with conductance ω_{uv}
- Supply $b: V \to \mathbb{R}$

• b(s) = +1, b(t) = -1 rightarrow current flowing through the network

- Potential $p_{st}(v) \quad \forall v \in V$
- Current e_{uv} flowing through $\{u, v\}$: $(p_{st}(u) p_{st}(v)) \cdot \omega_{uv}$

Introduction | Laplacian and electrical networks

- Graph as electrical network
- Edge $\{u, v\}$: resistor with conductance ω_{uv}
- Supply $b: V \to \mathbb{R}$

• b(s) = +1, b(t) = -1 rightarrow current flowing through the network

Potential can be computed solving the linear system:

$$Lp_{st} = b_{st}$$

where L := D - A