# Graph Partitioning Methods for Fast Parallel Quantum Molecular Dynamics

#### <u>Hristo Djidjev</u>, Georg Hahn, Sue Mniszewski Christian Negre, Anders Niklasson, Vivek Sandeshmuk

Ocober 10, 2016



UNCLASSIFIED

Slide 1



#### **Talk outline**

- Background and motivation of partitioning approach
  - Quantum MD background
  - Recursive polynomial expansion of Hamiltonian matrices
  - Partitioned evaluation of matrix polynomials
- Formulation of the GP problem and its application
  - CH-partitioning definition
  - Application to matrix polynomial evaluation
  - Correctness of approach
- Development of CH-partitioning algorithms
- Experimental analysis
- Conclusion



UNCLASSIFIED





## **Quantum MD background**

- Classical MD simulations
  - Atoms as bodies that move based on Newton's laws of motion
  - Forces between atoms calculated using interatomic potentials
  - Positions of atoms updated in small time steps
  - Interaction models use a priori knowledge of the system
  - Cannot explain events on atomic and subatomic level
- Quantum MD simulations
  - Based on laws of quantum mechanics
  - Density functional theory (DFT) most used model
  - Second-order spectral projection (SP2) approach
    - Density matrix as a function *f* of the Hamiltonian
    - Representing *f* as a recursive polynomial expansion



UNCLASSIFIED



## **Recursive polynomial matrix expansion**

- Given Hamiltonian *H*, compute density matrix *D*  $D = \lim_{n \to \infty} f_n(f_{n-1}(\dots f_0(H) \dots))$   $f_0(X) = \alpha I - \beta X$   $f_i(X) = \begin{cases} X^2, & \text{if } Tr[X] > N_i \\ 2X - X^2, & \text{otherwise} \end{cases}$
- The degree grows at an exponential rate, hence 20-30 iterations suffice
- Thresholding used to reduce MM complexity

$$D = \lim_{n \to \infty} f_n t_n (\dots f_0 t_0(H) \dots)$$



UNCLASSIFIED

Slide 4



## Parallel evaluation of matrix polynomial for D

- Large number of time steps (10<sup>4</sup>-10<sup>6</sup>) need parallelism
- Bottleneck operation  $Y = X^2$  for a sparse matrix X
- Sparse matrix algebra
  - Works well in sequential and shared-memory environment
  - Speedup of distributed implementation goes down with the # nodes due to communication overhead
- Partitioning based approach
  - Computational overhead (total number of operations higher)
  - Reduced communication overhead
  - Scalable parallelism



UNCLASSIFIED





## **Partitioned evaluation**

- Model the sparsity structure of *H* by a graph G = G(H)
- Partition G into (overlapping) graphs  $G_i$ 
  - *core* vertices of  $G_1, ..., G_p$  form a partition of V(G)
  - halo vertices are neighbors of core vertices & not in the core
  - CH-partitioning (core-halo)



- Send submatrix  $H_i$  of H defined by  $G_i$  to node i
- Compute polynomial  $P(H_i)$  by node i
- Copy core elements of  $P(H_i)$  to D := P(H)







## **The CH-partitioning problem**

- The partitioned algorithm correctly computes during the *i*-th iteration *D*(*H<sub>i</sub>*) assuming
  - Time step is small enough so that density matrix does not change a lot in one iteration
  - Graph used for partitioning is based on  $(D_{i-1}+H_i)^2$
  - Thresholding is used after each matrix computation
- CH-partitioning problem formulation:

Given an undirected graph G and  $q \ge 2$ , find a partition  $C_1, ..., C_q$  of V(G) with corr. halos  $H_1, ..., H_q$  that minimizes  $\sum_i (|C_i| + |H_i|)^3$  (or, alternatively,  $max\{|C_i| + |H_i|\}$ ).



UNCLASSIFIED

Slide 7



## **Partitioning algorithms**

- Standard graph partitioning
  - Related, but different than CH-graph partitioning



Standard graph partitioning



CH graph partitioning

- Solvers Metis, hMetis, KaHIP
- New algorithms
  - Kernighan-Lin based
  - Simulated annealing



UNCLASSIFIED





#### **Experimental setup**

• Test cases motivated by physical systems

| No. | Name                        | n     | m       | m/n   | Description                                  |
|-----|-----------------------------|-------|---------|-------|----------------------------------------------|
| 1   | polyethylene dense crystal  | 18432 | 4112189 | 223.1 | crystal molecule in water low threshold      |
| 2   | polyethylene sparse crystal | 18432 | 812343  | 44.1  | crystal molecule in water high threshold     |
| 3   | phenyl dendrimer            | 730   | 31147   | 42.7  | polyphenylene branched molecule              |
| 4   | polyalanine 189             | 31941 | 1879751 | 58.9  | poly-alanine protein solvated in water       |
| 5   | peptide 1aft                | 385   | 1833    | 4.76  | ribonucleoside-diphosphate reductase protein |
| 6   | polyethylene chain 1024     | 12288 | 290816  | 23.7  | chain of polymer molecule, almost 1-d        |
| 7   | polyalanine 289             | 41185 | 1827256 | 44.4  | large protein in water solvent               |
| 8   | peptide trp cage            | 16863 | 176300  | 10.5  | small protein dissolved in $H_2O$ molecules  |
| 9   | urea crystal                | 3584  | 109067  | 30.4  | organic compound                             |



Operated by Los Alamos National Security, LLC for NNSA

UNCLASSIFIED



## **Test matrices**



Phenyl dendrimer system with its molecular representation (left)

2D plot representation of the Hamiltonian (middle)

Thresholded density matrix (right)



UNCLASSIFIED





#### **Comparison of accuracies**



#### ■ METIS ■ METIS+SA ■ hMETIS ■ hMETIS+SA ■ KaHIP ■ KaHIP+SA

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for NNSA

NATIONAL LABORATORY

EST. 1943



## **Comaprison of running times**



■ METIS ■ METIS+SA ■ hMETIS ■ hMETIS+SA ■ KaHIP ■ KaHIP+SA

Operated by Los Alamos National Security, LLC for NNSA

EST. 1943



#### **QMD** running time comparison



Operated by Los Alamos National Security, LLC for NNSA



## Conclusion

- New graph partitioning problem with applications in materials science and sparse matrix polynomials
  - Parts overlap
  - Objective function not directly related to edge cut
- Several implementations
  - Classical GP algorithms + SA postprocessing
  - KaHIP+SA gives best quality
  - Metis+SA best running time and best overall
- Parallel QMD implementation based on CHP runs about 10 times faster than SM based version



UNCLASSIFIED

Slide 14

