

Methods for estimating the diagonal of matrix functions

Methods for estimating the diagonal of matrix functions

Jesse Laeuchli Andreas Stathopoulos

CSC 2016

The Problem

Methods for estimating the diagonal of matrix functions

Given a large matrix A, and a function f, find $\mathrm{diag}(f(A))$, or $\mathrm{trace}(f(A)) = \sum_{i=1}^n f(A)_{ii} = \sum_{i=1}^n f(\lambda_i)$

- Some important examples of f
 - $f(A) = A^{-1}$
 - $-f(A) = A^k$
 - f(A) = exp(A)
 - f(A) = log(A)

Applications

Methods for estimating the diagonal of matrix functions Compute Diagonals of $A^k/\exp(A)$

- Count Triangles/Polygons–Higher distance paths, higher powers of A
- Network Centrality

Applications

Methods for estimating the diagonal of matrix functions

Compute Diagonals of A^{-1}

Statistics

Applications

Methods for estimating the diagonal of matrix functions

Compute Diagonals of A^{-1}

Uncertainty Quantification

Exact Methods

Methods for estimating the diagonal of matrix functions

What if we compute it exactly?

- LU Decomposition
- Eigendecomposition
- Recursive Factorizations
- Takahashi's Equations

All too slow for large matrices

Statistical Trace Estimator

Methods for estimating the diagonal of matrix functions

Exact methods infeasible, so we resort to statistical approaches

$$\begin{split} \operatorname{trace}(f(A)) &= \textbf{E}[z^{\mathrm{T}}f(A)z] \approx \frac{\sum_{i=0}^{i=m} z_{i}^{\mathrm{T}}f(A)z_{i}}{m} \\ \operatorname{diag}(f(A)) &= \textbf{E}[z\odot f(A)z] \approx (\sum_{i=1}^{m} z_{i}\odot f(A)z_{i}) \oslash (\sum_{i=1}^{m} z_{i}\odot z_{i}) \\ \begin{bmatrix} \textbf{a} \\ \textbf{b} \end{bmatrix} \odot \begin{bmatrix} \textbf{c} \\ \textbf{d} \end{bmatrix} &= \begin{bmatrix} \textbf{a}*\textbf{c} \\ \textbf{b}*\textbf{d} \end{bmatrix}, \begin{bmatrix} \textbf{a} \\ \textbf{b} \end{bmatrix} \oslash \begin{bmatrix} \textbf{c} \\ \textbf{d} \end{bmatrix} &= \begin{bmatrix} \textbf{a}/\textbf{c} \\ \textbf{b}/\textbf{d} \end{bmatrix} \end{split}$$

How to pick z? Random

Methods for estimating the diagonal of matrix functions

Random Methods

- Gaussian $\{z = \text{from Gaussian Distribution }\}$
- Hutchinson $\{z = 1, -1 \text{ probability } 1/2 \}$
- Canoncial basis e_i with random i
- Mixing of diagonals DFT_ne_i , Hadamard_ne_i with random i

Estimator	Variance of the Sample
Gaussian	$ 2 A _F^2$
Hutchinson's	$2(\ A\ _F^2 - \sum_{i=1}^n A_{ii}^2)$
Unit Vector	$n\sum_{i=1}^{n}A_{ii}^{2}-\operatorname{trace}^{2}(A)$

How to pick z? Deterministic

- Deterministic
 - Hadamard_n e_i with i = 1 : n

$$H_1 = \begin{bmatrix} 1 \end{bmatrix} H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} H_{2^k} = \begin{bmatrix} H_{2^{k-1}} & H_{2^{k-1}} \\ H_{2^{k-1}} & -H_{2^{k-1}} \end{bmatrix} = H_2 \otimes H_{2^{k-1}}$$

Probing

- Color the associated graph of A, reorder nodes with the same color to be adjacent
- Can then recover the diagonal of an m-colorable matrix with exactly m vectors $x_i^m = \begin{cases} 1, & \text{if } i \in C_m \\ 0, & \text{otherwise.} \end{cases}$
- If we color graph of f(A), then we can recover diag(f(A))

Probing f(A)

- Computing f(A) is hard. If we had it, we would be done
- f(A) is dense. It takes too many colors to probe
- Look at structure of polynomial $p_k(A)$ approximating f(A)

Problems With Probing-What We Address

Methods for estimating the diagonal of matrix functions

• Even lower order A^k expensive to compute and store

Problems With Probing-What We Address

Methods for estimating the diagonal of matrix functions

• Probing vectors for A^k not guaranteed to be a subset of vectors for A^{k+1}

Hierarchical Coloring

- What is Hierarchical Coloring?
 - Colors must be nested
 - Colors split into the same number of new colors
 - Ensures reusability of probing vectors

 1	3	5	7	2	4	6	8	
 1	3	5	7	2	4	6	8	

Hierarchical Coloring via Multilevel

Methods for estimating the diagonal of matrix functions How to color a arbitrary graph? Use multi-level strategy. Problems if merging is done naively.

Two green nodes still at distance-2 after 3 levels

Hierarchical Coloring via Multilevel

Methods for estimating the diagonal of matrix functions

Our strategy, merge distance 1 nodes, and distance 2 neighbourhoods

Hierarchical Coloring via Multilevel

Methods for estimating the diagonal of matrix functions

Example Graph. One level of merging

Ensure Hierarchical Coloring

- Create Mixed-Radix Coordinate
- Interpret as color at each level
- Ensures colorings are hierarchical

Statistical Considerations

Methods for estimating the diagonal of matrix functions

How well should we expect to do with HP? Pure statistical is $O(\frac{1}{1/5})$

Hierarchical Probing depends on structure, g(x) describes fall-off of elements

$$g(x) = c$$

$$- O(\frac{1}{\sqrt{s}})$$

$$g(x) = 1 - x$$

$$- O(\frac{1}{5})$$

If there is no structure Hierarchical Probing does as well as the statistical methods

Different Coloring Methods

Methods for estimating the diagonal of matrix functions Top eigenvectors can be used to divide graph into bipartite groups in multiple ways

Covariance Matrix

Methods for estimating the diagonal of matrix functions

Uncertainty Quantification

Methods for estimating the diagonal of matrix functions

Wiki-Vote

Conclusion

- Exploits structure of matrix
- Statistical bounds
- More efficient than classical probing