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The Problem
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Given a large matrix A, and a function f, find diag(f(A)) ,or
trace(f(A)) = 32, f(A)i = iy £(N)

@ Some important examples of f

- A=A
- f(A) =

C )~ e
~ £(A) = log(A)



Applications

IEIRC  Compute Diagonals of AX/exp(A)
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e Count Triangles/Polygons—Higher distance paths, higher
powers of A
@ Network Centrality
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@ Statistics



Applications

Methods for Compute Diagonals of AL
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@ Uncertainty Quantification




Exact Methods
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What if we compute it exactly?

@ LU Decomposition
@ Eigendecomposition
@ Recursive Factorizations

@ Takahashi's Equations

All too slow for large matrices



Statistical Trace Estimator
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Exact methods infeasible, so we resort to statistical approaches

i=m _T
trace(f(A)) = E[z f(A)z] ~ w

diag(f(A)) = E[z 0 f(A)z] ~ () z 0 f(A)z) @ Zzl@zl
i=1



How to pick z? Random
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matrix

functions — Gaussian{z = from Gaussian Distribution }

— Hutchinson{z = 1, —1 probability 1/2 }

— Canoncial basis e; with random i

— Mixing of diagonals DFT ,e;,Hadamard,e; with random /

Estimator Variance of the Sample
Gaussian 2||All%

Hutchinson's | 2(||Al|2 — S°7_; A2)

Unit Vector | n>_"_ | A2 — trace?(A)




How to pick z? Deterministic
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— Hadamard,e; with i =1: n

H o H2k71 H2k71
1 —1] 77 |Hypr —Hys




Probing

Methods for

estimating the @ Color the associated graph of A, reorder nodes with the
et o same color to be adjacent

@ Can then recover the diagonal of an m-colorable matrix
1, ifieCy

0, otherwise.

@ If we color graph of f(A), then we can recover diag(f(A))

matrix
functions

with exactly m vectors x;" = {
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Probing f(A)
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e Computing f(A) is hard. If we had it, we would be done

e f(A) is dense. It takes too many colors to probe

@ Look at structure of polynomial px(A) approximating f(A)
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Problems With Probing-What We Address
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Problems With Probing-What We Address
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@ Probing vectors for A¥ not guaranteed to be a subset of
vectors for Ak+1

100 1000 100 1000

100 0100 100 1000

010 0100 010 0100
but

010 0010“010C0100

00 1 0010 00 1 0010

00 1 0001 00 1 000 1
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Hierarchical Coloring
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diagonal of

matrix — Colors must be nested
— Colors split into the same number of new colors
— Ensures reusability of probing vectors

functions
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Hierarchical Coloring via Multilevel

Mgl (2 How to color a arbitrary graph? Use multi-level strategy.

estimating the
diagonal of Problems if merging is done naively.
matrix
functions
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o] Jo) JoI JoJ ] Ce0e
| JoI JoI JeI JO) | JOI 1@
o] JoI JoI JoJ ) o] JoI

( JoJ Jo] JoJ e | JOX J@
@) Jo] Joi Jeof o] JoI
| JOY JoI J6I JO) | 10 )@

0000080
L JoJ oI JoI

Two green nodes still at distance-2 after 3 lev

15 /24



Hierarchical Coloring via Multilevel
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Hierarchical Coloring via Multilevel
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Ensure Hierarchical Coloring
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extimating the @ Create Mixed-Radix Coordinate
et o @ Interpret as color at each level
@ Ensures colorings are hierarchical

functions

<1,0>
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Statistical Considerations
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functions How well should we expect to do with HP?

Pure statistical is O(%)
Hierarchical Probing depends on structure, g(x) describes
fall-off of elements
o g(x)=c
- o)
0 g(x)=1-—x
- 0(3)

If there is no structure Hierarchical Probing does as well as the
statistical methods
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Different Coloring Methods

Methods for Top eigenvectors can be used to divide graph into bipartite

estimating the | |
diagonal of 1 1
i groups In multiple ways
functions

[-Eigenvecto

[=Coloring From Probing
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Conclusion
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@ Exploits structure of matrix
@ Statistical bounds

@ More efficient than classical probing
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