Exploiting Matrix Reuse and Data Locality in Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication on Many-Core Architectures

Ozan Karsavuran¹

Kadir Akbudak (speaker) ²

Cevdet Aykanat¹

sites.google.com/site/kadircs kadir.cs@gmail.com

¹Bilkent University, Turkey

²KAUST, KSA

SIAM Workshop on Combinatorial Scientific Computing (CSC), Albuquerque, NM, USA, October 10-12, 2016

O. Karsavuran, K. Akbudak, and C. Aykanat, Locality-Aware Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication on Many-Core Architectures, IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 27(6), pp. 1713-1726, 2016, available at

ieeexplore.ieee.org/document/7152923/

1 Introduction:
$$y = AA^T x$$

- Parallel SpAA^T based on 1D partitioning of A and A^T matrices
 Quality criteria for efficient parallelization of SpAA^T
 Proposed SpAA^T algorithms
 - Experiments

 \Box Introduction: $y = AA^T x$

Thread-level parallelization of $y = AA^T x$ (SpAA^T)

• $y = AA^T x$ is computed as two Sparse Matrix-Vector Multiplies (SpMV)

Sparse Matrix-Transpose-Vector Multiply (SpA^T)

• v = Az

Sparse Matrix-Vector

- Multiply (SpA)• Thread-level parallelization of repeated and consecutive SpA and SpA^{T} that involve the same sparse matrix A
- Examples:
 - Linear Programming (LP) problems via interior point methods
 - nonsymmetric systems via
 - Bi-CG, CGNE, Lanczos Bi-ortagonalization
 - least squares problem via LSQR
 - linear feasibility problem via Surrogate Constraints method
 - Krylov-based balancing algorithms used as preconditioners for sparse eigensolvers
 - web page ranking via HITS algorithm

Open problems

- Utilize the opportunity of reusing A-matrix nonzeros?
- Obtain close performance for both z = A^Tx and y = Az at the same time?
 - Single storage of A for both $z = A^T x$ and y = Az
 - Storage of A^T for $z = A^T x$ and a separate storage of A for y = Az

Related work

- Optimized Sparse Kernel Interface (OSKI), Berkeley
 - Serial
 - Each row/column is reused.

- Compressed Sparse Blocks (CSB) by Buluc et. al. [10]
 - Parallel
 - Same data structure for both ${\rm Sp}A$ and ${\rm Sp}A^{\mathcal{T}}$ operations without any performance degradation
 - $\bullet~$ Two phase, i.e., $\mathrm{Sp}A$ and $\mathrm{Sp}A^{\mathcal{T}}$ are not performed simultaneously

 \Box Parallel SpAA^T based on 1D partitioning of A and A^T matrices

 \Box Parallel SpAA^T based on 1D partitioning of A and A^T matrices

Contributions

- Identify five quality criteria (QC), which have impact on performance of parallel SpAA^T
- Singly-bordered block-diagonal (SB) form based methods: *sb*CRp and sbRCp Matrix A partitioned in to four and the subma- Z_3

trices are processed by four threads.

 Z_4

For *sb*CRp (SB-based Column-Row parallel algorithm), we permute matrix A into a rowwise SB form, which induces a columnwise SB form of matrix A^{T}

 Z_2

For *sb*RCp (SB-based Row-Column parallel algorithm), we permute matrix A into a columnwise SB form, which induces a rowwise SB form of matrix A^{T}

• Achieve (a) (z-vector reuse) and (b) (A-matrix reuse).

 Objectives of minimizing the size of the row/column border in the SB form of $A \approx$ achieve QC (c), (d), and (e) in *sb*CRp/*sb*RCp. 6/14

 \Box Parallel SpAA^T based on 1D partitioning of A and A^T matrices

 \Box Quality criteria for efficient parallelization of $SpAA^T$

Quality criteria for efficient parallelization of $\mathrm{SpAA^{T}}$

Quality Criteria	RRp	CRp	RCp	<i>sb</i> CRp	<i>sb</i> RCp
(a) Reusing z-vector entries generated in $z = A^T x$ and	d \times	\checkmark	×	\checkmark	\checkmark^{1}
then read in $y = A z$					
(b) Reusing matrix nonzeros (together with their in dices) in $z = A^T x$ and $y = A z$	I- ×	\checkmark	×	\checkmark	$\sqrt{2}$
(c) Exploiting temporal locality in reading input vector	or \times^3	\times^3	\times^3	\checkmark	\checkmark
entries in row-parallel SpMVs					
(d) Exploiting temporal locality in updating output vec tor entries in column-parallel SpMVs		\times^3	\times^3	\checkmark	\checkmark
(e) Minimizing the number of concurrent writes per formed by different threads in column-paralle SpMVs	~- √ el	×	×	\checkmark	\checkmark
Z1 Z2 Z3 Z4					

Matrix reuse and data locality in parallel y = A z and $z = A^T x$ — Parallel SpAA^T based on 1D partitioning of A and A^T matrices — Proposed SpAA^T algorithms

- Maintaining balance on the number of nonzeros at each slice
 - Reducing parallel time under arbitrary task scheduling
- Reducing border size

Reducing # of cache misses due to loss of temporal locality

 $\lambda(c_j) = |\{A_k : c_j \text{ has at least one nonzero at } A_k, \ orall k \in 1, \dots, K\}|$

Matrix A partitioned in to three and the submatrices are processed by three threads.

Reducing # of concurrent writes

 $\lambda(r_i) = |\{A_k: r_i \text{ has at least one nonzero at } A_k, \forall k \in 1, \dots, K\}|$

8/14

 \Box Parallel SpAA^T based on 1D partitioning of A and A^T matrices

 \square Proposed SpAA^T algorithms

Merits of Singly-Bordered Block Diagonal (SB) Form on CRp SB Form

- Exploits temporal locality in reading x-vector entries in row parallel $z = A^T x$
- Exploits temporal locality in updating *y*-vector entries in column-parallel *y* = *A z*

Minimizing border size in the SB form

Minimizing number of concurrent writes by different threads in column-parallel y = A z

 \Box Parallel SpAA^T based on 1D partitioning of A and A^T matrices

 \square Proposed SpAA^T algorithms

Iterative Methods		CRp	<i>sb</i> CRp	<i>sb</i> RCp	
	Directly applicable				
LP [1, 2]	$z \leftarrow A^T x$ $y \leftarrow Az$	\checkmark	√	√	
Directly (no dependency since inner product can be delayed)					
CGNE [3]	$ \begin{array}{c} z \leftarrow q - Ax \\ \beta \leftarrow (z, z)/(q, q) \\ y \leftarrow A^T z \end{array} $	~	\checkmark	\checkmark	
Directly (linear vector operations without synchronization)					
LSQR [4]	$z \leftarrow Ax w \leftarrow f(z) y \leftarrow A^T w$	√	\checkmark	\checkmark	
Surrogate Constraints ^[5, 6]	$z \leftarrow Ax w \leftarrow f(z) y \leftarrow A^T w$	~	~	~	
Independent SpMVs (the two for loops of <i>sb</i> RCp can be fused.)					
BiCG [3]	$z \leftarrow Ax$ $y \leftarrow A^T w$	√	√	~	
Lanczos Bi-orthogonalization [3]	$z \leftarrow Ax$ $y \leftarrow A^T w$	\checkmark	\checkmark	\checkmark	
HITS [7, 8]	$z \leftarrow Ax \\ y \leftarrow A^T w$	\checkmark	\checkmark	√	
Krylov-based Balancing [9]	$z \leftarrow Ax \\ y \leftarrow A^T x$	√	√	√	
Not applicable due to inner product and inter-dependency					
CGNR [3]	$\begin{array}{c} \overline{z \leftarrow Ax} \\ \alpha \leftarrow y _2^2 / z _2^2 \\ y \leftarrow A^T \alpha w \end{array}$	×	×	×	

11/14

 \square Parallel SpAA^T based on 1D partitioning of A and A^T matrices

Experiments

Performance Results on Intel Xeon Phi

- Average results of 28 sparse matrices from UFL
 - $\bullet~$ Up to 20M nonzeros, 3.5M rows/cols
- Baseline methods
 - RRp, CRp, RCp (OpenMP)
 - RRp with vendor-provided MKL
 - Reverse Cuthill-McKee for QC (c) and (d)
- Proposed methods
 - sbCRp, sbRCp (OpenMP, PaToH-3runs)
- Highly-tuned SpMV libs can be integrated.
- Normalized wrt RRp with original ordering web-BerkStan

Normalized parallel $\mathrm{SpAA}^{\mathrm{T}}$ times							
R	Rp	MKL		Best of CRp/RCp			
org	RCM	org	RCM	org	RCM	SB	
1.00	0.76	1.42	1.16	1.16	0.96	0.58	

*Smaller the better

**Best of 1, 2, 3, and 4 threads per core

 \square Parallel SpAA^T based on 1D partitioning of A and A^T matrices

Experiments

Performance Profiles

- Proposed methods: sbCRp, sbRCp
- Double storage of A:
 - RRp, MKL
 - Original order, RCM ordering
- Single storage of A:
 - CRp, RCp
 - Original order, RCM ordering

 \Box Parallel SpAA^T based on 1D partitioning of A and A^T matrices

Experiments

Performance Results on Xeon

- Two E5-2643 processors @3.30GHz
- 8 cores in total
- 16 threads with HyperThreading

Normalized parallel SpAA^T times							
	RRp		MKL		Best of CRp/RCp		
Matrix	org	RCM	org	RCM	org	RCM	SB
degme	1.00	1.21	1.22	1.11	0.69	0.97	0.58
LargeRegFile	1.00	1.02	1.53	1.38	0.75	1.12	0.45
Stanford	1.00	0.48	0.77	0.57	3.09	0.40	0.31
web-BerkStan	1.00	0.93	1.29	1.82	1.70	1.88	0.91

*Smaller the better

Preprocessing overhead in terms of number of ${\rm SpAA^{T}}$ operations using RRp			
Matrix	<i>sb</i> CRp/ <i>sb</i> RCp		
degme	136		
LargeRegFile	143		
Stanford	2		
web-BerkStan	12		

- References

References:

- N. Karmarkar, "A new polynomial-time algorithm for linear programming," Proc. 16th annual ACM symposium on Theory of computing, pp. 302–311, 1984.
- [2] S. Mehrotra, "On the implementation of a primal-dual interior point method," SIAM Journal on Optimization, vol. 2, no. 4, pp. 575–601, 1992.
- [3] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
- [4] C. C. Paige and M. A. Saunders, "LSQR: An algorithm for sparse linear equations and sparse least squares," ACM Transactions on Mathematical Software (TOMS), vol. 8, no. 1, pp. 43–71, 1982.
- [5] K. Yang and K. G. Murty, "New iterative methods for linear inequalities," Journal of Optimization Theory and Applications, vol. 72, no. 1, pp. 163–185, 1992.
- [6] B. Uçar, C. Aykanat, M. Ç. Pınar, and T. Malas, "Parallel image restoration using surrogate constraint methods," *Journal of Parallel and Distributed Computing*, vol. 67, no. 2, pp. 186–204, 2007.
- [7] J. M. Kleinberg, "Authoritative sources in a hyperlinked environment," Journal of the ACM (JACM), vol. 46, no. 5, pp. 604–632, 1999.
- [8] X. Yang, S. Parthasarathy, and P. Sadayappan, "Fast sparse matrix-vector multiplication on GPUs: Implications for graph mining," Proc. VLDB Endow., vol. 4, no. 4, pp. 231–242, Jan. 2011.
- [9] T.-Y. Chen and J. W. Demmel, "Balancing sparse matrices for computing eigenvalues," *Linear Algebra and its Applications*, vol. 309, no. 13, pp. 261 287, 2000.
- [10] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson, "Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks," *Proc. 21st symposium on Parallelism* in Algorithms and Architectures, pp. 233–244, 2009.
- [11] K. Akbudak, E. Kayaaslan, and C. Aykanat, "Hypergraph partitioning based models and methods for exploiting cache locality in sparse matrix-vector multiplication," *SIAM Journal on Scientific Computing*, vol. 35, no. 3, pp. C237–C262, 2013.