
Matrix reuse and data locality in parallel y = A z and z = AT x

Exploiting Matrix Reuse and Data Locality in
Sparse Matrix-Vector and Matrix-Transpose-Vector

Multiplication on Many-Core Architectures

Ozan Karsavuran1
Kadir Akbudak

(speaker)
sites.google.com/site/kadircs

kadir.cs@gmail.com

2 Cevdet Aykanat1

1Bilkent University, Turkey

2KAUST, KSA

SIAM Workshop on Combinatorial Scientific Computing (CSC),
Albuquerque, NM, USA, October 10-12, 2016

O. Karsavuran, K. Akbudak, and C. Aykanat, Locality-Aware Parallel Sparse Matrix-Vector and
Matrix-Transpose-Vector Multiplication on Many-Core Architectures,

IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 27(6), pp. 1713-1726, 2016, available at

ieeexplore.ieee.org/document/7152923/

1 / 14

http://ieeexplore.ieee.org/document/7152923/

Matrix reuse and data locality in parallel y = A z and z = AT x

1 Introduction: y =AATx

2 Open problems & Related work

3 Parallel SpAAT based on 1D partitioning of A and AT matrices
Quality criteria for efficient parallelization of SpAAT

Proposed SpAAT algorithms
Experiments

4 References

2 / 14

Matrix reuse and data locality in parallel y = A z and z = AT x

Introduction: y =AATx

Thread-level parallelization of y =AATx (SpAAT)
y = AAT x is computed as two Sparse Matrix-Vector Multiplies (SpMV)

z = AT x and then

x

ATz
Sparse Matrix-
Transpose–Vector

Multiply (SpAT)

y = Az

z

Ay Sparse Matrix-Vector

Multiply (SpA)
Thread-level parallelization of repeated and consecutive SpA and
SpAT that involve the same sparse matrix A
Examples:

Linear Programming (LP) problems via interior point methods
nonsymmetric systems via

Bi-CG, CGNE, Lanczos Bi-ortagonalization

least squares problem via LSQR
linear feasibility problem via Surrogate Constraints method
Krylov-based balancing algorithms used as preconditioners for
sparse eigensolvers
web page ranking via HITS algorithm 3 / 14

Matrix reuse and data locality in parallel y = A z and z = AT x

Open problems & Related work

Open problems

Utilize the opportunity of reusing A-matrix nonzeros?

Obtain close performance for both z = AT x and y = Az at the
same time?

Single storage of A for both z = AT x and y = Az
Storage of AT for z = AT x and a separate storage of A for y = Az

Related work

Optimized Sparse Kernel Interface (OSKI), Berkeley
Serial

Each row/column is reused.

z

Ay

x

ATz

Compressed Sparse Blocks (CSB) by Buluc et. al. [10]

Parallel

Same data structure for both SpA and SpAT operations without any
performance degradation

Two phase, i.e., SpA and SpAT are not performed simultaneously

4 / 14

Matrix reuse and data locality in parallel y = A z and z = AT x

Parallel SpAAT based on 1D partitioning of A and AT matrices

Thread-level baseline parallelization of SpAAT

C1

z1

C2

z2

C3

z3

C4

z4

y = CT
1

x1

CT
2

x2

CT
3

x3

CT
4

x4

z =

A CCp AT

Column-Column parallel

R4y4

R3y3

R2y2

R1y1

=

z

RT
4

z4

RT
3

z3

RT
2

z2

RT
1

z1

=

x

A RRp AT

Row-Row parallel

C1

z1

C2

z2

C3

z3

C4

z4

y =

CT
4

z4

CT
3

z3

CT
2

z2

CT
1

z1

=

x

A CRp AT

Column-Row parallel

R4y4

R3y3

R2y2

R1y1

=

z

RT
1

x1

RT
2

x2

RT
3

x3

RT
4

x4

z =

A RCp AT

Row-Column parallel
YELLOW scale tone: exclusive accesses by a single thread

RED color: concurrent accesses by multiple threads.
Four baseline SpAAT algorithms for computing y = A z after z = AT x by four threads.5 / 14

Matrix reuse and data locality in parallel y = A z and z = AT x

Parallel SpAAT based on 1D partitioning of A and AT matrices

Contributions
Identify five quality criteria (QC), which have impact on performance
of parallel SpAAT

Singly-bordered block-diagonal (SB) form based methods: sbCRp and
sbRCp Matrix A partitioned in to four and the subma-

trices are processed by four threads.

For sbCRp (SB-based Column-Row parallel algorithm),
we permute matrix A into a rowwise SB form, which
induces a columnwise SB form of matrix AT

A11

AB1

z1

y1

A22

AB2

z2

y2

A33

AB3

z3

y3

A44

AB4

z4

y4

yB

=

A11 AB1y1

z1

A22 AB2y2

z2

A33 AB3y3

z3

A44 AB4y4

z4 zB

=

For sbRCp (SB-based Row-Column parallel algorithm),
we permute matrix A into a columnwise SB form,
which induces a rowwise SB form of matrix AT

Achieve (a) (z-vector reuse) and (b) (A-matrix reuse).
Objectives of minimizing the size of the row/column border in the SB
form of A ≈ achieve QC (c), (d), and (e) in sbCRp/sbRCp. 6 / 14

Matrix reuse and data locality in parallel y = A z and z = AT x

Parallel SpAAT based on 1D partitioning of A and AT matrices

Quality criteria for efficient parallelization of SpAAT

Quality criteria for efficient parallelization of SpAAT

Quality Criteria RRp CRp RCp sbCRp sbRCp

(a) Reusing z-vector entries generated in z = AT x and
then read in y = A z

× X × X X –1

(b)Reusing matrix nonzeros (together with their in-
dices) in z = AT x and y = A z

× X × X X –2

(c) Exploiting temporal locality in reading input vector
entries in row-parallel SpMVs

×3 ×3 ×3 X X

(d)Exploiting temporal locality in updating output vec-
tor entries in column-parallel SpMVs

− ×3 ×3 X X

(e) Minimizing the number of concurrent writes per-
formed by different threads in column-parallel
SpMVs

X × × X X

C1

z1

C2

z2

C3

z3

C4

z4

y =

CT
4

z4

CT
3

z3

CT
2

z2

CT
1

z1

=

x

A CRp AT

Column-Row parallel

X: satisfied X –1: satisfied except zB border subvectors
−: not applicable X –2: satisfied except AkB border submatrices
×: not satisfied ×3: may be satisfied through row/column reordering

7 / 14

Matrix reuse and data locality in parallel y = A z and z = AT x

Parallel SpAAT based on 1D partitioning of A and AT matrices

Proposed SpAAT algorithms

Maintaining balance on the number of nonzeros at each slice
Reducing parallel time under arbitrary task scheduling

Reducing border size

Reducing # of cache misses due to loss
of temporal locality

λ(cj) = |{Ak :

cj has at least one nonzero at Ak ,

∀k ∈ 1, . . . ,K}|

r2
r1

x1x2

××
c1c2

r4
r3

x3x4

××
c3c4

r6
r5

x5x6

××
c5c6

x7x8

××
c7c8

∑
λ(cj) = 3 + 5

×

×

×

×
×

×
×
×
×

r4
r1

x1x2

××
c1c2

r3
r2

x3x4

××
c3c4

r6
r5

x5x6

××
c5c6

x7x8

××
c7c8

∑
λ(cj) = 3 + 3

×
×

×

×

×

×

×

×
×

Matrix A partitioned in to three and the
submatrices are processed by three threads.

Reducing # of concurrent writes

λ(ri) = |{Ak : ri has at least one nonzero at Ak ,∀k ∈ 1, . . . ,K}|

8 / 14

Matrix reuse and data locality in parallel y = A z and z = AT x

Parallel SpAAT based on 1D partitioning of A and AT matrices

Proposed SpAAT algorithms

Merits of Singly-Bordered Block Diagonal (SB) Form on CRp

C1

z1

C2

z2

C3

z3

C4

z4

y =

CT
4

z4

CT
3

z3

CT
2

z2

CT
1

z1

=

x

A CRp AT

SB Form

A11

AB1

z1

y1

A22

AB2

z2

y2

A33

AB3

z3

y3

A44

AB4

z4

y4

yB

=

AT
11 AT

B1
z1

x1

AT
22 AT

B2
z2

x2

AT
33 AT

B3
z3

x3

AT
44A

T
B4

z4

x4 xB

=

A sbCRp AT

Concurrent accesses
Whole x and y vectors Only xB and yB subvectors

Exploits temporal locality in reading x-vector entries in row
parallel z = AT x

Exploits temporal locality in updating y -vector entries in
column-parallel y = A z

Minimizing border
size in the SB form

Minimizing number of concurrent writes by
different threads in column-parallel y = A z

9 / 14

Matrix reuse and data locality in parallel y = A z and z = AT x

Parallel SpAAT based on 1D partitioning of A and AT matrices

Proposed SpAAT algorithms

Require: Akk and ABk matrices; x , y , and z vectors
1: for k ← 1 to K in parallel do
2: zk ← AT

kk xk
3: zk ← zk + AT

Bk xB
4: yk ← Akk zk
5: yB ← yB + ABk zk B Concurrent

writes
6: end for

zk ← CT
k x

y ← Ck zk

Singly-bordered block-diagonal (SB) form

A11

AB1

z1

y1

A22

AB2

z2

y2

A33

AB3

z3

y3

A44

AB4

z4

y4

yB

=

AT
11 AT

B1
z1

x1

AT
22 AT

B2
z2

x2

AT
33 AT

B3
z3

x3

AT
44A

T
B4

z4

x4 xB

=

A sbCRp AT

SB-based Column-Row parallel

Require: Akk and AkB matrices; x , y , and z vectors
1: for k ← 1 to K in parallel do
2: zk ← AT

kk xk
3: zB ← zB + AT

kB xk B Concurrent
writes

4: yk ← Akk zk
5: end for
6: for k ← 1 to K in parallel do

7: yk ← yk + AkB zB
8: end for

z ← RT
k xk

yk ← Rk z

Singly-bordered block-diagonal (SB) form

A11 A1By1

z1

A22 A2By2

z2

A33 A3By3

z3

A44A4By4

z4 zB

=

AT
11

AT
1B

x1

z1

AT
22

AT
2B

x2

z2

AT
33

AT
3B

x3

z3

AT
44

AT
4B

x4

z4

zB

=

A sbRCp AT

SB-based Row-Column parallel10 / 14

Matrix reuse and data locality in parallel y = A z and z = AT x

Parallel SpAAT based on 1D partitioning of A and AT matrices

Proposed SpAAT algorithms

Iterative Methods CRp sbCRp sbRCp

Directly applicable

LP [1, 2]
z ← AT x
y ← Az

X X X

Directly (no dependency since inner product can be delayed)

CGNE [3]
z ← q − Ax

β ← (z , z)/(q, q)
y ← AT z

X X X

Directly (linear vector operations without synchronization)

LSQR [4]
z ← Ax
w ← f (z)
y ← ATw

X X X

Surrogate
Constraints

[5, 6]
z ← Ax
w ← f (z)
y ← ATw

X X X

Independent SpMVs (the two for loops of sbRCp can be fused.)

BiCG [3]
z ← Ax
y ← ATw

X X X

Lanczos
Bi-orthogonalization

[3]
z ← Ax
y ← ATw

X X X

HITS [7, 8]
z ← Ax
y ← ATw

X X X

Krylov-based
Balancing

[9]
z ← Ax
y ← AT x

X X X

Not applicable due to inner product and inter-dependency

CGNR [3]

z ← Ax
α← ||y ||22/||z ||22
y ← AT αw

× × ×

11 / 14

Matrix reuse and data locality in parallel y = A z and z = AT x

Parallel SpAAT based on 1D partitioning of A and AT matrices

Experiments

Performance Results on Intel Xeon Phi
Average results of 28 sparse matrices from UFL

Up to 20M nonzeros, 3.5M rows/cols

Baseline methods
RRp, CRp, RCp (OpenMP)
RRp with vendor-provided MKL
Reverse Cuthill-McKee for QC (c) and (d)

Proposed methods
sbCRp, sbRCp (OpenMP, PaToH-3runs)

Highly-tuned SpMV libs can be integrated.
Normalized wrt RRp with original ordering

Normalized parallel SpAAT times

Best of
RRp MKL CRp/RCp

org RCM org RCM org RCM SB
1.00 0.76 1.42 1.16 1.16 0.96 0.58

*Smaller the better
**Best of 1, 2, 3, and 4 threads per core

web-BerkStan

sbCRp

Original Columnwise SB form

Stanford

sbRCp

Original Sparse Matrix Rowwise SB form

12 / 14

Matrix reuse and data locality in parallel y = A z and z = AT x

Parallel SpAAT based on 1D partitioning of A and AT matrices

Experiments

Performance Profiles

Proposed methods:
sbCRp, sbRCp

Double storage of A:

RRp, MKL
Original order, RCM
ordering

Single storage of A:

CRp, RCp
Original order, RCM
ordering

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

best of sbCRp/sbRCp
best of RRp/MKL
best of CRp/RCp

P
er

ce
n

ta
ge

of
te

st
in

st
an

ce
s

Parallel SpAAT time relative to the best
13 / 14

Matrix reuse and data locality in parallel y = A z and z = AT x

Parallel SpAAT based on 1D partitioning of A and AT matrices

Experiments

Performance Results on Xeon

Two E5-2643
processors
@3.30GHz

8 cores in total

16 threads with
HyperThreading

Normalized parallel SpAAT times

Best of
RRp MKL CRp/RCp

Matrix org RCM org RCM org RCM SB
degme 1.00 1.21 1.22 1.11 0.69 0.97 0.58
LargeRegFile 1.00 1.02 1.53 1.38 0.75 1.12 0.45
Stanford 1.00 0.48 0.77 0.57 3.09 0.40 0.31
web-BerkStan 1.00 0.93 1.29 1.82 1.70 1.88 0.91

*Smaller the better

Preprocessing overhead in terms of
number of SpAAT operations using RRp

Matrix sbCRp/sbRCp
degme 136
LargeRegFile 143
Stanford 2
web-BerkStan 12

14 / 14

Matrix reuse and data locality in parallel y = A z and z = AT x

References

References:
[1] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” Proc. 16th annual ACM

symposium on Theory of computing, pp. 302–311, 1984.

[2] S. Mehrotra, “On the implementation of a primal-dual interior point method,” SIAM Journal on
Optimization, vol. 2, no. 4, pp. 575–601, 1992.

[3] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[4] C. C. Paige and M. A. Saunders, “LSQR: An algorithm for sparse linear equations and sparse least squares,”
ACM Transactions on Mathematical Software (TOMS), vol. 8, no. 1, pp. 43–71, 1982.

[5] K. Yang and K. G. Murty, “New iterative methods for linear inequalities,” Journal of Optimization Theory
and Applications, vol. 72, no. 1, pp. 163–185, 1992.

[6] B. Uçar, C. Aykanat, M. Ç. Pınar, and T. Malas, “Parallel image restoration using surrogate constraint
methods,” Journal of Parallel and Distributed Computing, vol. 67, no. 2, pp. 186–204, 2007.

[7] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,” Journal of the ACM (JACM), vol. 46,
no. 5, pp. 604–632, 1999.

[8] X. Yang, S. Parthasarathy, and P. Sadayappan, “Fast sparse matrix-vector multiplication on GPUs:
Implications for graph mining,” Proc. VLDB Endow., vol. 4, no. 4, pp. 231–242, Jan. 2011.

[9] T.-Y. Chen and J. W. Demmel, “Balancing sparse matrices for computing eigenvalues,” Linear Algebra and
its Applications, vol. 309, no. 13, pp. 261 – 287, 2000.

[10] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson, “Parallel sparse matrix-vector and
matrix-transpose-vector multiplication using compressed sparse blocks,” Proc. 21st symposium on Parallelism
in Algorithms and Architectures, pp. 233–244, 2009.

[11] K. Akbudak, E. Kayaaslan, and C. Aykanat, “Hypergraph partitioning based models and methods for
exploiting cache locality in sparse matrix-vector multiplication,” SIAM Journal on Scientific Computing,
vol. 35, no. 3, pp. C237–C262, 2013.

14 / 14

	Introduction: y=AATx
	Open problems & Related work
	Parallel SpAAT based on 1D partitioning of A and AT matrices
	Quality criteria for efficient parallelization of SpAAT
	Proposed SpAAT algorithms
	Experiments

	References

