Exploiting Matrix Reuse and Data Locality in Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication on Many-Core Architectures

Kadir Akbudak

Ozan Karsavuran ${ }^{1} \quad \underset{\text { sites.google.com/site/kadircs }}{ }{ }^{\text {(speaker }}{ }^{2}$ Cevdet Aykanat ${ }^{1}$ sites.google.com/site/kadircs kadir.cs@gmail.com
${ }^{1}$ Bilkent University, Turkey

$$
{ }^{2} \text { KAUST, KSA }
$$

SIAM Workshop on Combinatorial Scientific Computing (CSC), Albuquerque, NM, USA, October 10-12, 2016
O. Karsavuran, K. Akbudak, and C. Aykanat, Locality-Aware Parallel Sparse Matrix-Vector and Matrix-Transpose-Vector Multiplication on Many-Core Architectures,
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 27(6), pp. 1713-1726, 2016, available at ieeexplore.ieee.org/document/7152923/
(1) Introduction: $y=A A^{T} x$
(2) Open problems \& Related work
(3) Parallel $\mathrm{SpAA}^{\mathrm{T}}$ based on 1D partitioning of A and A^{T} matrices

- Quality criteria for efficient parallelization of $\mathrm{SpAA}^{\mathrm{T}}$
- Proposed SpA ${ }^{\mathrm{T}}$ algorithms
- Experiments

4 References

Thread-level parallelization of $y=A A^{T} x\left(\mathrm{SpAA}^{\mathrm{T}}\right)$

- $y=A A^{T} x$ is computed as two Sparse Matrix-Vector Multiplies (SpMV)
- $z=A^{T} x$ and then

Sparse Matrix-
Transpose-Vector
Multiply ($\mathrm{Sp} A^{T}$)

- $y=A z$

Sparse Matrix-Vector Multiply ($\mathrm{Sp} A$)

- Thread-level parallelization of repeated and consecutive $\operatorname{Sp} A$ and $\mathrm{Sp} A^{T}$ that involve the same sparse matrix A
- Examples:
- Linear Programming (LP) problems via interior point methods
- nonsymmetric systems via
- Bi-CG, CGNE, Lanczos Bi-ortagonalization
- least squares problem via LSQR
- linear feasibility problem via Surrogate Constraints method
- Krylov-based balancing algorithms used as preconditioners for sparse eigensolvers
- web page ranking via HITS algorithm

Open problems

- Utilize the opportunity of reusing A-matrix nonzeros?
- Obtain close performance for both $z=A^{T} x$ and $y=A z$ at the same time?
- Single storage of A for both $z=A^{T} x$ and $y=A z$
- Storage of A^{T} for $z=A^{T} x$ and a separate storage of A for $y=A z$

Related work

- Optimized Sparse Kernel Interface (OSKI), Berkeley
- Serial
- Each row/column is reused.

- Compressed Sparse Blocks (CSB) by Buluc et. al. [10]
- Parallel
- Same data structure for both $\operatorname{Sp} A$ and $\operatorname{Sp} A^{T}$ operations without any performance degradation
- Two phase, i.e., $\operatorname{Sp} A$ and $\operatorname{Sp} A^{T}$ are not performed simultaneously

Thread-level baseline parallelization of $\mathrm{SpAA}^{\mathrm{T}}$

Column-Column parallel

Column-Row parallel

Z

Row-Row parallel

Z

x_{1}	x_{2}	x_{3}	x_{4}

Row-Column parallel

RED color: concurrent accesses by multiple threads.
Four baseline SpAA ${ }^{\mathrm{T}}$ algorithms for computing $y=A z$ after $z=A^{T} x$ by four threads $5 / 14$

Contributions

- Identify five quality criteria (QC), which have impact on performance of parallel $\mathrm{SpAA}^{\mathrm{T}}$
- Singly-bordered block-diagonal (SB) form based methods: sbCRp and $s b R C p$

| z_{1} | z_{2} | z_{3} | z_{4} |
| :--- | :--- | :--- | :--- | trices are processed by four threads.

For sbCRp (SB-based Column-Row parallel algorithm), we permute matrix A into a rowwise SB form, which induces a columnwise SB form of matrix A^{T}

z_{1}	z_{2}	z_{3}	z_{4}	z_{B}

For sbRCp (SB-based Row-Column parallel algorithm), we permute matrix A into a columnwise SB form, which induces a rowwise SB form of matrix A^{T}

- Achieve (a) (z-vector reuse) and (b) (A-matrix reuse).
- Objectives of minimizing the size of the row/column border in the SB form of $A \approx$ achieve QC (c), (d), and (e) in $s b C R p / s b R C p$.

Quality criteria for efficient parallelization of $\mathrm{SpAA}^{\mathrm{T}}$

Quality Criteria \quad RRp \quad CRp \quad RCp		$s b C R p$	$s b R C p$

(a) Reusing z-vector entries generated in $z=A^{T} x$ and $\times \quad \checkmark \quad \times \quad \checkmark \quad \downarrow^{1}$ then read in $y=A z$
(b) Reusing matrix nonzeros (together with their in- $\times \quad \checkmark \quad \times \quad \checkmark \quad \downarrow^{2}$ dices) in $z=A^{T} x$ and $y=A z$
(c) Exploiting temporal locality in reading input vector x^{3} entries in row-parallel SpMVs
(d) Exploiting temporal locality in updating output vec tor entries in column-parallel SpMVs
(e) Minimizing the number of concurrent writes per- $\checkmark \times \times \times \quad \times \quad \checkmark$ formed by different threads in column-parallel SpMVs

- Maintaining balance on the number of nonzeros at each slice
- Reducing parallel time under arbitrary task scheduling
- Reducing border size

Reducing \# of cache misses due to loss of temporal locality
$\lambda\left(c_{j}\right)=\mid\left\{A_{k}:\right.$
c_{j} has at least one nonzero at A_{k}, $\forall k \in 1, \ldots, K\} \mid$

$X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8}$

$\times \times$	$\times \times$	$\times \times$	$\times \times$

Matrix A partitioned in to three and the submatrices are processed by three threads.

Reducing \# of concurrent writes

$$
\lambda\left(r_{i}\right)=\mid\left\{A_{k}: r_{i} \text { has at least one nonzero at } A_{k}, \forall k \in 1, \ldots, K\right\} \mid
$$

\boxed{L} Parallel $\operatorname{SpAA}{ }^{T}$ based on 1D partitioning of A and A^{T} matrices

-Proposed $\mathrm{SpAA}^{\mathrm{T}}$ algorithms
Merits of Singly-Bordered Block Diagonal (SB) Form on CRp SB Form

z_{1}	z_{2}	z_{3}	z_{4}

z_{1}	z_{2}	z_{3}	z_{4}

x_{1}	x_{2}	x_{3}	x_{4}	x_{B}

Concurrent accesses
Whole x and y vectors
Only x_{B} and y_{B} subvectors

- Exploits temporal locality in reading x-vector entries in row parallel $z=A^{T} x$
- Exploits temporal locality in updating y-vector entries in column-parallel $y=A z$

Minimizing border

 size in the SB formMinimizing number of concurrent writes by different threads in column-parallel $y=A z$

-Parallel SpAA ${ }^{\mathrm{T}}$ based on 1D partitioning of A and A^{T} matrices

-Proposed $\mathrm{SpAA}^{\mathrm{T}}$ algorithms

Require: $A_{k k}$ and $A_{B k}$ matrices; x, y, and z vectors
1: for $k \leftarrow 1$ to K in parallel do
2: $\quad z_{k} \leftarrow A_{k k}^{T} x_{k}$
$\left.\begin{array}{ll}\text { 3: } & z_{k} \leftarrow z_{k k}+A_{B k}^{T} x_{B}\end{array}\right\} z_{k} \leftarrow C_{k}^{T} x$
4: $\quad y_{k} \leftarrow A_{k k} z_{k}$
5: $\left.\quad y_{B} \leftarrow y_{B}+A_{B k} z_{k} \triangleright \begin{array}{c}\text { concurrent } \\ \text { writes }\end{array}\right\} \quad y \leftarrow C_{k} z_{k}$
6: end for

Singly-bordered block-diagonal (SB) form

Singly-bordered block-diagonal (SB) form

z_{1}	z_{2}	z_{3}	z_{4}	z_{B}

x_{1}	x_{2}	x_{3}	x_{4}

$A \quad s b R C p$

A^{T}

SB-based Row-Column parallell 4

Matrix reuse and data locality in parallel $y=A z$ and $z=A^{T} x$

- Parallel SpA ${ }^{T}$ based on 1D partitioning of A and A^{T} matrices

- Proposed $\mathrm{SpAA}^{\mathrm{T}}$ algorithms

Performance Results on Intel Xeon Phi

- Average results of 28 sparse matrices from UFL
- Up to 20 M nonzeros, 3.5 M rows/cols
- Baseline methods
- RRp, CRp, RCp (OpenMP)
- RRp with vendor-provided MKL
- Reverse Cuthill-McKee for QC (c) and (d)
- Proposed methods

Normalized parallel SpAA ${ }^{\text {T }}$ times

RRp		MKL		Best of CRp/RCp		
org	RCM	org	RCM	org	RCM	SB
1.00	0.76	1.42	1.16	1.16	0.96	0.58

*Smaller the better
**Best of 1, 2, 3, and 4 threads per core

- Highly-tuned SpMV libs can be integrated.
- Normalized wrt RRp with original ordering web-BerkStan

Performance Profiles

- Proposed methods: sbCRp, sbRCp
- Double storage of A :
- RRp, MKL
- Original order, RCM ordering
- Single storage of A :
- CRp, RCp
- Original order, RCM ordering

Performance Results on Xeon

- Two E5-2643 processors @3.30GHz
- 8 cores in total
- 16 threads with HyperThreading

Normalized parallel $\mathrm{SpAA}^{\mathrm{T}}$ times

Matrix	RRp		MKL		$\begin{aligned} & \text { Best of } \\ & \text { CRp/RCp } \end{aligned}$		
	org	RCM	org	RCM	org	RCM	SB
degme	1.00	1.21	1.22	1.11	0.69	0.97	0.58
LargeRegFile	1.00	1.02	1.53	1.38	0.75	1.12	0.45
Stanford	1.00	0.48	0.77	0.57	3.09	0.40	0.31
web-BerkStan	1.00	0.93	1.29	1.82	1.70	1.88	0.91

*Smaller the better
Preprocessing overhead in terms of number of $\mathrm{SpAA}^{\mathrm{T}}$ operations using RRp Matrix $s b C R p / s b R C p$
degme 136

LargeRegFile 143
Stanford 2
web-BerkStan 12

References

References:

[1] N. Karmarkar, "A new polynomial-time algorithm for linear programming," Proc. 16th annual ACM symposium on Theory of computing, pp. 302-311, 1984.
[2] S. Mehrotra, "On the implementation of a primal-dual interior point method," SIAM Journal on Optimization, vol. 2, no. 4, pp. 575-601, 1992.
[3] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[4] C. C. Paige and M. A. Saunders, "LSQR: An algorithm for sparse linear equations and sparse least squares," ACM Transactions on Mathematical Software (TOMS), vol. 8, no. 1, pp. 43-71, 1982.
[5] K. Yang and K. G. Murty, "New iterative methods for linear inequalities," Journal of Optimization Theory and Applications, vol. 72, no. 1, pp. 163-185, 1992.
[6] B. Uçar, C. Aykanat, M. C.. Pınar, and T. Malas, "Parallel image restoration using surrogate constraint methods," Journal of Parallel and Distributed Computing, vol. 67, no. 2, pp. 186-204, 2007.
[7] J. M. Kleinberg, "Authoritative sources in a hyperlinked environment," Journal of the ACM (JACM), vol. 46, no. 5, pp. 604-632, 1999.
[8] X. Yang, S. Parthasarathy, and P. Sadayappan, "Fast sparse matrix-vector multiplication on GPUs: Implications for graph mining," Proc. VLDB Endow., vol. 4, no. 4, pp. 231-242, Jan. 2011.
[9] T.-Y. Chen and J. W. Demmel, "Balancing sparse matrices for computing eigenvalues," Linear Algebra and its Applications, vol. 309, no. 13, pp. 261 - 287, 2000.
[10] A. Buluc, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson, "Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks," Proc. 21st symposium on Parallelism in Algorithms and Architectures, pp. 233-244, 2009.
[11] K. Akbudak, E. Kayaaslan, and C. Aykanat, "Hypergraph partitioning based models and methods for exploiting cache locality in sparse matrix-vector multiplication," SIAM Journal on Scientific Computing, vol. 35, no. 3, pp. C237-C262, 2013.

