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Problem Description

@ Our focus: Solve the the system of equations Lx = b where L is a
graph Laplacian matrix
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Electrical Networks

@ Edge weights of Laplacians are
actually conductances, or inverse
resistances we = 1/re

@ Right hand side b contains current VVV
demands at every vertex

@ Left hand side x contains potential, or § §
voltage at every vertex

@ Can also consider a flow, or current AVAVAY.

on every edge
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Applications

Graphs with regular degree structure,
2D/3D meshes
e Finite element analysis
@ Electrical and thermal conductivity
@ Fluid flow modeling
e Image processing
@ Image segmentation, inpainting,
regression, classification
Graphs with irregular degree,
problems in network analysis
o Maximum flow problems
o Graph sparsification
@ Spectral clustering
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Solvers With Good Asymptotic Complexity

Primal (solves for vertex potentials)
e Linear times polylog. Spielman and Teng, 2006
o Nearly mlog n. Koutis, Miller, and Peng, 2011
o Nearly mlog'/2 n. Cohen et al., 2016
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Dual (solves for edge flows)

o A simple, nearly mlog2 n, combinatorial algorithm. Kelner,
Orecchia, Sidford, and Zhu, 2013
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o Linear times polylog. Spielman and Teng, 2006
o Nearly mlog n. Koutis, Miller, and Peng, 2011
e Nearly mlog'/2 n. Cohen et al., 2016

Dual (solves for edge flows)

o A simple, nearly mlog2 n, combinatorial algorithm. Kelner,
Orecchia, Sidford, and Zhu, 2013 Simplest
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@ Provide some understanding of Kelner et al. (cycle toggling)
implementations

@ Introduce a useful class of test problems, heavy path graphs, for
exploring these methods

@ Examine performance behavior of different cycle toggling methods

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 6/30



Kelner et al.'s Method (Cycle Toggling)

@ Select cycle (with
probability proportional
to stretch) from a
fundamental cycle
basis

@ Update flows around
cycle
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Cycle Toggle Methods

total cost = number of cycle toggles x cost per cycle toggle
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Cycle Toggle Methods

total cost = number of cycle toggles x cost per cycle toggle

proportional to tree stretch
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Cycle Toggle Methods

total cost = number of cycle toggles x cost per cycle toggle

clever implementations
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Heavy Path Graphs

@ Path graph + edges weighted such that the path is low-stretch tree

@ Used to explore fundamental questions of cycle toggling
approaches
@ Can be tuned to have various stretch and spectral properties

~ - ~ - ~
- ~ - ~ - ~
.‘ ‘ ~.‘ . . .’ . \.
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Cycle Toggle Methods

Support two operations

e Query: (find voltage drop, > refe along cycles)
e Update: (alter flow of the cycle by A)

We consider two strategies

e Single level with fancy data structures
o Multilevel divide-and-conquer
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Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

@ Create BST
representing path
intervals

@ Store voltage drop,
> rf at every
sub-interval

@ Initialize a lazy tag at
every interval to 0

0-11-22-3 34 4-5 5-6
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Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

® Query interval1-4

@ Add sums of intervals 0 1 2 3 4 5 6 7
1-2 and 2-4

0-11-22-3 34 4-5 5-6

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 11/30



Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

@ Apply update A to
interval 1-4 by updating
intervals 1-2, 2-4, and

all ancestor intervals 0 1 2 3 4 5 6 7
@ Set tag of intervals 1-4
and 1-2to A
-4
tag=A
1-2tag=A
UCSB
e
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Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

@ Query interval 3-6 T el
@ Encounter non-zero tag
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Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

o Pushtaginformatonto \
children .~ o o e e e e o

@ Settagto 0
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Toggle Method 1: Single level with Data Structures

@ Can be extended to general graphs

@ BSTs can be combined with heavy light decomposition to yield
O(log? n) per update

@ Can be improved to O(log n) with virtual trees
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Toggle Method 2: Multilevel Divide-and-Conquer

@ Preselect a batch of K cycles to update

@ Use this knowledge to reduce problem size (contraction, path
compression)

@ Operate on the batch of cycles recursively
@ Updating a batch is O(nlog n) if K'is O(n)

13/30

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016



Toggle Method 2: Multilevel Divide-and-Conquer
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Toggle Method 2: Multilevel Divide-and-Conquer

@ Sample cycles
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Experimental Setup: Methods to Compare

@ Single level, general graphs

@ Single level, heavy path optimized
@ Multilevel, general graphs

@ Multilevel, heavy path optimized
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Experimental Setup: Methods to Compare

@ Single level, general graphs

@ Single level, heavy path optimized
@ Multilevel, general graphs

@ Multilevel, heavy path optimized

Want to compare average cycle update time
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Experimental Setup: Methods to Compare

@ Single level, general graphs

@ Single level, heavy path optimized

@ Multilevel, general graphs

@ Multilevel, heavy path optimized

@ Jacobi preconditioned conjugate gradient
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Experimental Setup: Heavy Path Graphs

@ Fixed Cycle Length (2 m— R R
and 1000) ' ' )

@ Random Cycle Length oo o ¢ -0 ¢ o
@ 2D Mesh ¢
@ 3D Mesh Lo b

A

- o—o—o—n

. : ' ! :
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Experimental Setup: Heavy Path Graphs

@ Edge weights chosen for different stretch behavior

e Uniform stretch: Stretch is 1 for every cycle
o Exponential stretch: Stretch of every cycle is sampled from an
exponential distribution

@ Graph size in vertices 5 x 104, 10°, 5 x 10°, 108
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Experimental Setup

@ Right hand sides

e Random: Select x and form b = Lx
@ (-1,1): Route one unit of flow from one endpoint of path to the other

@ Residual tolerance 102
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Performance Profile: Cycle Toggle Time
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Cycle Toggle Time

Path-only | Path-only General General
Single Level | Multilevel | Single Level | Multilevel

% of problems
solver is best 100 0 0 0
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Cycle Toggle Time

Path-only | Path-only General General
Single Level | Multilevel | Single Level | Multilevel

% of problems

solver is best 100 0 0 0
% within factor
2 of best 100 60 20 0
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e
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Cycle Toggle Time

Path-only | Path-only General General
Single Level | Multilevel | Single Level | Multilevel
% of problems
solver is best 100 0 0 0
% within factor
2 of best 100 60 20 0
% within factor
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Performance Profile: Cycle Toggle Time
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PCG Comparison (to General Single Level)
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Weak Scaling
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Timing Breakdown of Recursive Toggling
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Summary of Results

@ Heavy path graphs are a useful model to consider

o Simplify implementation details
e Cycle toggling outperforms PCG

@ Single level with fancy data structures performs better than
multilevel recursive

@ Check out our code and data at
https://github.com/sxu/cycleToggling
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Future Work

@ Combine primal and dual solvers
@ Examine floating point ops required for recursive cycle updates
@ Further explore heavy path graphs
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Heavy Light Decomposition

@ Arbitrarily root tree
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Heavy Light Decomposition

@ Arbitrarily root tree

@ Mark child edges to largest
subtree as heavy

@ Maximal length paths of heavy
edges are called heavy chains
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Heavy Light Decomposition

@ Arbitrarily root tree

@ Mark child edges to largest
subtree as heavy

@ Maximal length paths of heavy
edges are called heavy chains

@ Mark other edges as light
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BST + HLD

@ A path from any vertex to the root intersects O(log n) heavy
chains and O(log n) light edges

@ O(1)-cost operations on light edges and O(log n)-cost operations
on heavy chains via binary search trees

@ Theoretical bound of O(log? n) per operation, good running time
experimentally
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Stretch Dependency
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