
An Empirical Study of Cycle Toggling Based
Laplacian Solvers

Kevin Deweese1 John Gilbert1 Gary Miller2 Richard Peng3

Hao Ran Xu4 Shen Chen Xu2

1UCSB

2Carnegie Mellon 3Georgia Tech 4MIT

SIAM Workshop on Combinatorial Scientific Computing, 2016

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 1 / 30



Problem Description

Our focus: Solve the the system of equations Lx = b where L is a
graph Laplacian matrix

3 4

1 2
2

1

1 1
1


3 −2 −1 0
−2 4 −1 −1
−1 −1 3 −1
0 −1 −1 2



Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 2 / 30



Electrical Networks

Edge weights of Laplacians are
actually conductances, or inverse
resistances we = 1/re

Right hand side b contains current
demands at every vertex
Left hand side x contains potential, or
voltage at every vertex
Can also consider a flow, or current
on every edge

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 3 / 30



Applications

Graphs with regular degree structure,
2D/3D meshes

Finite element analysis
Electrical and thermal conductivity
Fluid flow modeling

Image processing
Image segmentation, inpainting,
regression, classification

Graphs with irregular degree,
problems in network analysis

Maximum flow problems
Graph sparsification
Spectral clustering

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 4 / 30



Solvers With Good Asymptotic Complexity

Primal (solves for vertex potentials)
Linear times polylog. Spielman and Teng, 2006
Nearly m log n. Koutis, Miller, and Peng, 2011
Nearly m log1/2 n. Cohen et al., 2016

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 5 / 30



Solvers With Good Asymptotic Complexity

Primal (solves for vertex potentials)
Linear times polylog. Spielman and Teng, 2006
Nearly m log n. Koutis, Miller, and Peng, 2011
Nearly m log1/2 n. Cohen et al., 2016

Dual (solves for edge flows)
A simple, nearly m log2 n, combinatorial algorithm. Kelner,
Orecchia, Sidford, and Zhu, 2013

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 5 / 30



Solvers With Good Asymptotic Complexity

Primal (solves for vertex potentials)
Linear times polylog. Spielman and Teng, 2006
Nearly m log n. Koutis, Miller, and Peng, 2011
Nearly m log1/2 n. Cohen et al., 2016

Dual (solves for edge flows)
A simple, nearly m log2 n, combinatorial algorithm. Kelner,
Orecchia, Sidford, and Zhu, 2013 Simplest

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 5 / 30



Our Goal

Provide some understanding of Kelner et al. (cycle toggling)
implementations
Introduce a useful class of test problems, heavy path graphs, for
exploring these methods
Examine performance behavior of different cycle toggling methods

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 6 / 30



Kelner et al.’s Method (Cycle Toggling)

Select cycle (with
probability proportional
to stretch) from a
fundamental cycle
basis
Update flows around
cycle

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 7 / 30



Kelner et al.’s Method (Cycle Toggling)

Select cycle (with
probability proportional
to stretch) from a
fundamental cycle
basis
Update flows around
cycle

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 7 / 30



Kelner et al.’s Method (Cycle Toggling)

Select cycle (with
probability proportional
to stretch) from a
fundamental cycle
basis
Update flows around
cycle

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 7 / 30



Kelner et al.’s Method (Cycle Toggling)

Select cycle (with
probability proportional
to stretch) from a
fundamental cycle
basis
Update flows around
cycle

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 7 / 30



Kelner et al.’s Method (Cycle Toggling)

Select cycle (with
probability proportional
to stretch) from a
fundamental cycle
basis
Update flows around
cycle

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 7 / 30



Kelner et al.’s Method (Cycle Toggling)

Select cycle (with
probability proportional
to stretch) from a
fundamental cycle
basis
Update flows around
cycle

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 7 / 30



Cycle Toggle Methods

total cost = number of cycle toggles × cost per cycle toggle

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 8 / 30



Cycle Toggle Methods

total cost = number of cycle toggles × cost per cycle toggle

proportional to tree stretch

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 8 / 30



Cycle Toggle Methods

total cost = number of cycle toggles × cost per cycle toggle

clever implementations

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 8 / 30



Heavy Path Graphs

Path graph + edges weighted such that the path is low-stretch tree
Used to explore fundamental questions of cycle toggling
approaches
Can be tuned to have various stretch and spectral properties

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 9 / 30



Cycle Toggle Methods

Support two operations
Query: (find voltage drop,

∑
e refe along cycles)

Update: (alter flow of the cycle by ∆)

We consider two strategies
Single level with fancy data structures
Multilevel divide-and-conquer

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 10 / 30



Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

Create BST
representing path
intervals
Store voltage drop,∑

rf at every
sub-interval
Initialize a lazy tag at
every interval to 0

0 1 2 3 4 5 6 7

0-7

0-4 4-7

0-2 2-4

0-1 1-2 2-3 3-4

4-6 6-7

4-5 5-6

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 11 / 30



Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

Query interval 1-4
Add sums of intervals
1-2 and 2-4

0 1 2 3 4 5 6 7

0-7

0-4 4-7

0-2 2-4

0-1 1-2 2-3 3-4

4-6 6-7

4-5 5-6

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 11 / 30



Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

Apply update ∆ to
interval 1-4 by updating
intervals 1-2, 2-4, and
all ancestor intervals
Set tag of intervals 1-4
and 1-2 to ∆

0 1 2 3 4 5 6 7

2-4

1-2

tag=Δ 

tag=Δ 

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 11 / 30



Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

Query interval 3-6
Encounter non-zero tag 0 1 2 3 4 5 6 7

0-7

0-4 4-7

0-2 2-4

0-1 1-2 2-3 3-4

4-6 6-7

4-5 5-6

tag=Δ 

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 11 / 30



Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

Push tag information to
children
Set tag to 0

0 1 2 3 4 5 6 7

0-7

0-4 4-7

0-2 2-4

0-1 1-2 2-3 3-4

4-6 6-7

4-5 5-6

tag=0 

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 11 / 30



Toggle Method 1: Single level with Data Structures

Can be extended to general graphs
BSTs can be combined with heavy light decomposition to yield
O(log2 n) per update
Can be improved to O(log n) with virtual trees

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 12 / 30



Toggle Method 2: Multilevel Divide-and-Conquer

Preselect a batch of K cycles to update
Use this knowledge to reduce problem size (contraction, path
compression)
Operate on the batch of cycles recursively
Updating a batch is O(n log n) if K is O(n)

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 13 / 30



Toggle Method 2: Multilevel Divide-and-Conquer

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 14 / 30



Toggle Method 2: Multilevel Divide-and-Conquer

Sample cycles

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 14 / 30



Toggle Method 2: Multilevel Divide-and-Conquer

Sample cycles
Contract graph on
selected cycles

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 14 / 30



Toggle Method 2: Multilevel Divide-and-Conquer

Sample cycles
Contract graph on
selected cycles
Remove degree-2
vertices

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 14 / 30



Toggle Method 2: Multilevel Divide-and-Conquer

Sample cycles
Contract graph on
selected cycles
Remove degree-2
vertices

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 14 / 30



Experimental Setup: Methods to Compare

Single level, general graphs
Single level, heavy path optimized
Multilevel, general graphs
Multilevel, heavy path optimized

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 15 / 30



Experimental Setup: Methods to Compare

Single level, general graphs
Single level, heavy path optimized
Multilevel, general graphs
Multilevel, heavy path optimized

Want to compare average cycle update time

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 15 / 30



Experimental Setup: Methods to Compare

Single level, general graphs
Single level, heavy path optimized
Multilevel, general graphs
Multilevel, heavy path optimized
Jacobi preconditioned conjugate gradient

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 15 / 30



Experimental Setup: Heavy Path Graphs

Fixed Cycle Length (2
and 1000)
Random Cycle Length
2D Mesh
3D Mesh

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 16 / 30



Experimental Setup: Heavy Path Graphs

Edge weights chosen for different stretch behavior
Uniform stretch: Stretch is 1 for every cycle
Exponential stretch: Stretch of every cycle is sampled from an
exponential distribution

Graph size in vertices 5 × 104, 105, 5 × 105, 106

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 17 / 30



Experimental Setup

Right hand sides
Random: Select x and form b = Lx
(-1,1): Route one unit of flow from one endpoint of path to the other

Residual tolerance 10−5

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 18 / 30



Performance Profile: Cycle Toggle Time

1 2 3 4 5 6 7 8 9 10

Relative Performance Distance

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

Te
st

P
ro

bl
em

s

Path-only
Single Level
General
Single Level

Path-only
Multilevel
General
Multilevel

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 19 / 30



Cycle Toggle Time

Path-only Path-only General General
Single Level Multilevel Single Level Multilevel

% of problems
solver is best 100 0 0 0

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 20 / 30



Cycle Toggle Time

Path-only Path-only General General
Single Level Multilevel Single Level Multilevel

% of problems
solver is best 100 0 0 0

% within factor
2 of best 100 60 20 0

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 20 / 30



Cycle Toggle Time

Path-only Path-only General General
Single Level Multilevel Single Level Multilevel

% of problems
solver is best 100 0 0 0

% within factor
2 of best 100 60 20 0

% within factor
10 of best 100 100 100 80

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 20 / 30



Performance Profile: Cycle Toggle Time

1 2 3 4 5 6 7 8 9 10

Relative Performance Distance

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

Te
st

P
ro

bl
em

s

Path-only
Single Level
General
Single Level

Path-only
Multilevel
General
Multilevel

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 21 / 30



PCG Comparison (to General Single Level)

101 102 103 104 105

PCG Time(s)

101

102

103

104

105
To

gg
le

Ti
m

e(
s)

Uniform Stretch
FixedLength-2
2D Mesh
Random

Exp Stretch
FixedLength-1k
3D Mesh

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 22 / 30



Weak Scaling

104 105 106

Path Length

10−7

10−6

10−5

A
ve

ra
ge

To
gg

le
Ti

m
e(

s)

Path-only
Single level
General
Single level

Path-only
Multilevel
General
Multilevel

3D Mesh Exponential Stretch

104 105 106

Path Length

10−7

10−6

10−5

A
ve

ra
ge

To
gg

le
Ti

m
e(

s)

Path-only
Single level
General
Single level

Path-only
Multilevel
General
Multilevel

Fixed Length 1k Uniform Stretch

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 23 / 30



Timing Breakdown of Recursive Toggling

103 104 105 106 107

Path Length

10−8

10−7

10−6

10−5

A
ve

ra
ge

To
gg

le
Ti

m
e(

s)

Restrict
Prolong

Update
Solve

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 24 / 30



Summary of Results

Heavy path graphs are a useful model to consider
Simplify implementation details
Cycle toggling outperforms PCG

Single level with fancy data structures performs better than
multilevel recursive
Check out our code and data at
https://github.com/sxu/cycleToggling

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 25 / 30



Future Work

Combine primal and dual solvers
Examine floating point ops required for recursive cycle updates
Further explore heavy path graphs

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 26 / 30



Thank You

Henning Meyerhenke

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 27 / 30



Heavy Light Decomposition

Arbitrarily root tree

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 28 / 30



Heavy Light Decomposition

Arbitrarily root tree
Mark child edges to largest
subtree as heavy
Maximal length paths of heavy
edges are called heavy chains

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 28 / 30



Heavy Light Decomposition

Arbitrarily root tree
Mark child edges to largest
subtree as heavy
Maximal length paths of heavy
edges are called heavy chains
Mark other edges as light

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 28 / 30



BST + HLD

A path from any vertex to the root intersects O(log n) heavy
chains and O(log n) light edges
O(1)-cost operations on light edges and O(log n)-cost operations
on heavy chains via binary search trees
Theoretical bound of O(log2 n) per operation, good running time
experimentally

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 29 / 30



Stretch Dependency

103 104 105 106 107 108

Total Stretch

103

104

105

106

107

108

C
yc

le
s

lo
g
ε−

1

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 30 / 30


	Motivation
	Problem
	Previous Work

	Background
	Experimental
	Setup
	Main Results


