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Problem Description

Our focus: Solve the the system of equations Lx = b where L is a
graph Laplacian matrix
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Electrical Networks

Edge weights of Laplacians are
actually conductances, or inverse
resistances we = 1/re

Right hand side b contains current
demands at every vertex
Left hand side x contains potential, or
voltage at every vertex
Can also consider a flow, or current
on every edge
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Applications

Graphs with regular degree structure,
2D/3D meshes

Finite element analysis
Electrical and thermal conductivity
Fluid flow modeling

Image processing
Image segmentation, inpainting,
regression, classification

Graphs with irregular degree,
problems in network analysis

Maximum flow problems
Graph sparsification
Spectral clustering
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Solvers With Good Asymptotic Complexity

Primal (solves for vertex potentials)
Linear times polylog. Spielman and Teng, 2006
Nearly m log n. Koutis, Miller, and Peng, 2011
Nearly m log1/2 n. Cohen et al., 2016
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Dual (solves for edge flows)
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Solvers With Good Asymptotic Complexity

Primal (solves for vertex potentials)
Linear times polylog. Spielman and Teng, 2006
Nearly m log n. Koutis, Miller, and Peng, 2011
Nearly m log1/2 n. Cohen et al., 2016

Dual (solves for edge flows)
A simple, nearly m log2 n, combinatorial algorithm. Kelner,
Orecchia, Sidford, and Zhu, 2013 Simplest
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Our Goal

Provide some understanding of Kelner et al. (cycle toggling)
implementations
Introduce a useful class of test problems, heavy path graphs, for
exploring these methods
Examine performance behavior of different cycle toggling methods
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Kelner et al.’s Method (Cycle Toggling)

Select cycle (with
probability proportional
to stretch) from a
fundamental cycle
basis
Update flows around
cycle
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Cycle Toggle Methods

total cost = number of cycle toggles × cost per cycle toggle
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Cycle Toggle Methods

total cost = number of cycle toggles × cost per cycle toggle

proportional to tree stretch
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Cycle Toggle Methods

total cost = number of cycle toggles × cost per cycle toggle

clever implementations
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Heavy Path Graphs

Path graph + edges weighted such that the path is low-stretch tree
Used to explore fundamental questions of cycle toggling
approaches
Can be tuned to have various stretch and spectral properties
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Cycle Toggle Methods

Support two operations
Query: (find voltage drop,

∑
e refe along cycles)

Update: (alter flow of the cycle by ∆)

We consider two strategies
Single level with fancy data structures
Multilevel divide-and-conquer
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Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

Create BST
representing path
intervals
Store voltage drop,∑

rf at every
sub-interval
Initialize a lazy tag at
every interval to 0
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Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

Query interval 1-4
Add sums of intervals
1-2 and 2-4
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Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

Apply update ∆ to
interval 1-4 by updating
intervals 1-2, 2-4, and
all ancestor intervals
Set tag of intervals 1-4
and 1-2 to ∆
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Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

Query interval 3-6
Encounter non-zero tag 0 1 2 3 4 5 6 7
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Toggle Method 1: Single Level with Data Structures

Balanced binary search trees can be used to provide O(log n) query
and update operations on intervals of a path graph.

Push tag information to
children
Set tag to 0
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Toggle Method 1: Single level with Data Structures

Can be extended to general graphs
BSTs can be combined with heavy light decomposition to yield
O(log2 n) per update
Can be improved to O(log n) with virtual trees
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Toggle Method 2: Multilevel Divide-and-Conquer

Preselect a batch of K cycles to update
Use this knowledge to reduce problem size (contraction, path
compression)
Operate on the batch of cycles recursively
Updating a batch is O(n log n) if K is O(n)
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Toggle Method 2: Multilevel Divide-and-Conquer
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Toggle Method 2: Multilevel Divide-and-Conquer

Sample cycles
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Toggle Method 2: Multilevel Divide-and-Conquer

Sample cycles
Contract graph on
selected cycles

Deweese et al. Cycle Toggling Laplacian Solvers CSC 2016 14 / 30



Toggle Method 2: Multilevel Divide-and-Conquer

Sample cycles
Contract graph on
selected cycles
Remove degree-2
vertices
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Experimental Setup: Methods to Compare

Single level, general graphs
Single level, heavy path optimized
Multilevel, general graphs
Multilevel, heavy path optimized
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Experimental Setup: Methods to Compare

Single level, general graphs
Single level, heavy path optimized
Multilevel, general graphs
Multilevel, heavy path optimized

Want to compare average cycle update time
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Experimental Setup: Methods to Compare

Single level, general graphs
Single level, heavy path optimized
Multilevel, general graphs
Multilevel, heavy path optimized
Jacobi preconditioned conjugate gradient
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Experimental Setup: Heavy Path Graphs

Fixed Cycle Length (2
and 1000)
Random Cycle Length
2D Mesh
3D Mesh
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Experimental Setup: Heavy Path Graphs

Edge weights chosen for different stretch behavior
Uniform stretch: Stretch is 1 for every cycle
Exponential stretch: Stretch of every cycle is sampled from an
exponential distribution

Graph size in vertices 5 × 104, 105, 5 × 105, 106
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Experimental Setup

Right hand sides
Random: Select x and form b = Lx
(-1,1): Route one unit of flow from one endpoint of path to the other

Residual tolerance 10−5
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Performance Profile: Cycle Toggle Time
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Cycle Toggle Time

Path-only Path-only General General
Single Level Multilevel Single Level Multilevel

% of problems
solver is best 100 0 0 0
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Cycle Toggle Time

Path-only Path-only General General
Single Level Multilevel Single Level Multilevel

% of problems
solver is best 100 0 0 0

% within factor
2 of best 100 60 20 0

% within factor
10 of best 100 100 100 80
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PCG Comparison (to General Single Level)
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Weak Scaling
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Timing Breakdown of Recursive Toggling
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Summary of Results

Heavy path graphs are a useful model to consider
Simplify implementation details
Cycle toggling outperforms PCG

Single level with fancy data structures performs better than
multilevel recursive
Check out our code and data at
https://github.com/sxu/cycleToggling
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Future Work

Combine primal and dual solvers
Examine floating point ops required for recursive cycle updates
Further explore heavy path graphs
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Thank You

Henning Meyerhenke
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Heavy Light Decomposition

Arbitrarily root tree
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Heavy Light Decomposition

Arbitrarily root tree
Mark child edges to largest
subtree as heavy
Maximal length paths of heavy
edges are called heavy chains
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Heavy Light Decomposition

Arbitrarily root tree
Mark child edges to largest
subtree as heavy
Maximal length paths of heavy
edges are called heavy chains
Mark other edges as light
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BST + HLD

A path from any vertex to the root intersects O(log n) heavy
chains and O(log n) light edges
O(1)-cost operations on light edges and O(log n)-cost operations
on heavy chains via binary search trees
Theoretical bound of O(log2 n) per operation, good running time
experimentally
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Stretch Dependency
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