Enabling Implicit Time Integration for Compressible Flows by Partial Coloring: A Case Study of a Semi-matrix-free Preconditioning Technique

<u>H. Martin Bücker</u>, M. Ali Rostami Mathematics and Computer Science Friedrich Schiller University Jena

Michael Lülfesmann Düsseldorf, Germany

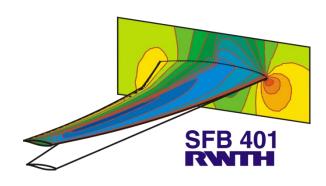
Outline

- Problem in Scientific Computing
- Combinatorial Model
- Heuristic Coloring Algorithm
- Experimental Results

QUADFLOW

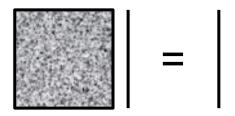
Josef Ballmann Mechanics

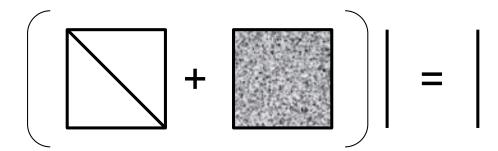
- Finite Volume
- Implicit Time Integration
- Unstructured Grids
- Adaptivity via Multiscale Analysis (Wolfgang Dahmen, Sigfried Müller, Mathematics, RWTH) ispen/.



Large Sparse Linear System

 $\left(\frac{|V|}{\Delta t}\mathbf{I} + \frac{\partial \mathbf{R}(\mathbf{u}^n)}{\partial \mathbf{u}^n}\right)\Delta \mathbf{u}^n = -\mathbf{R}(\mathbf{u}^n)$





Automatic Differentiation (AD)

Given $\mathbf{x}_0 \in \mathbb{R}^n$, code to evaluate $f: \mathbb{R}^n o \mathbb{R}^n$

and $n \times p$ seed matrix S,

generate code to evaluate matrix-matrix product

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \Big|_{\mathbf{x}=\mathbf{x}_0} \cdot S$$

Relative runtime overhead: p

Preconditioning (PC)

Let
$$J(\mathbf{x}_0) := \left. \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x}=\mathbf{x}_0}$$

Rather than
$$J\mathbf{y} = \mathbf{b}$$

Solve
$$M^{-1}J\mathbf{y} = M^{-1}\mathbf{b}$$

 $M \approx J$

Missing Connections: AD and PC

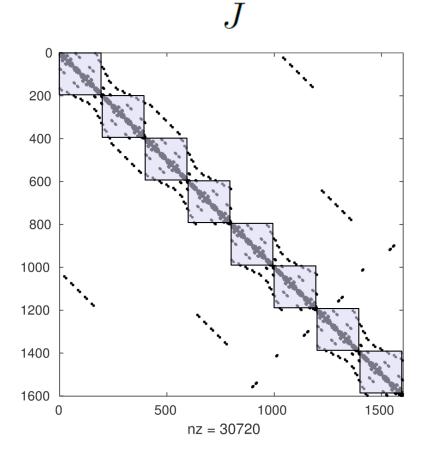
Automatic Differentiation:

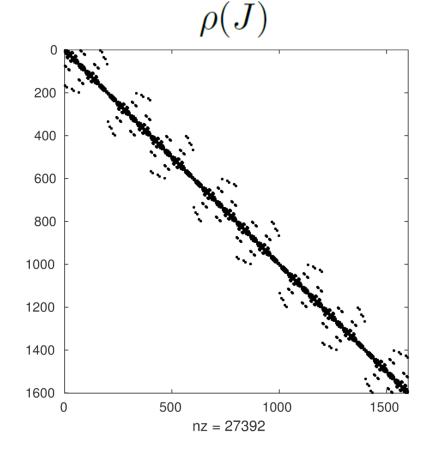
- Access to complete row/column
- Access to groups of complete rows/columns

Preconditioning:

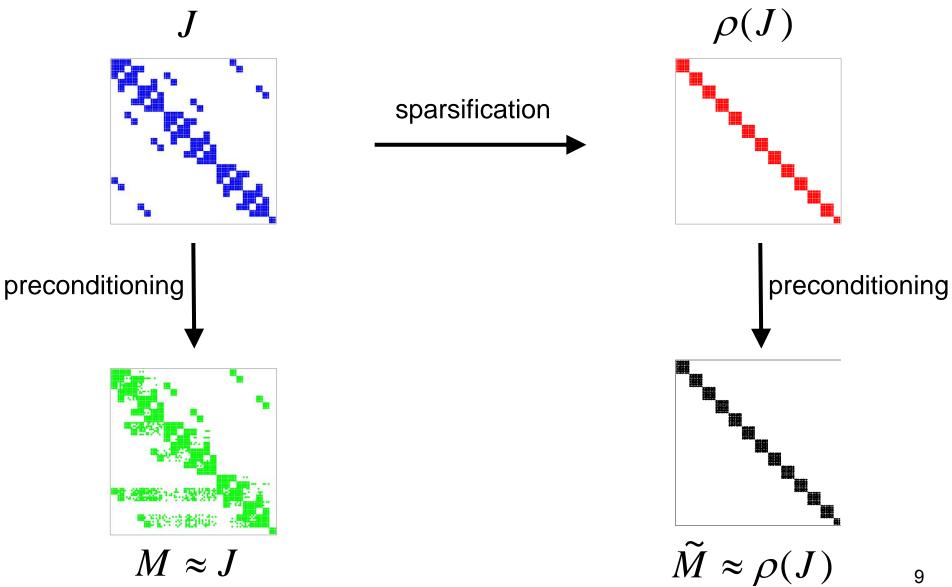
- Access to individual elements
- Access to chunks of rows/columns

Sparsification

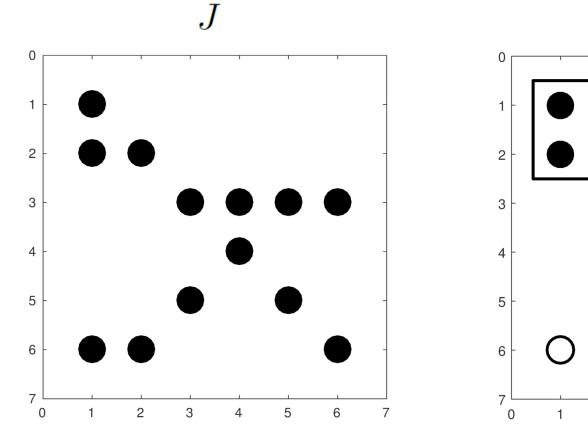


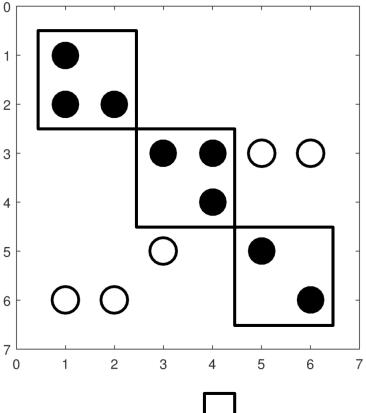


Main Idea



Full vs Partial





 $\rho($

J

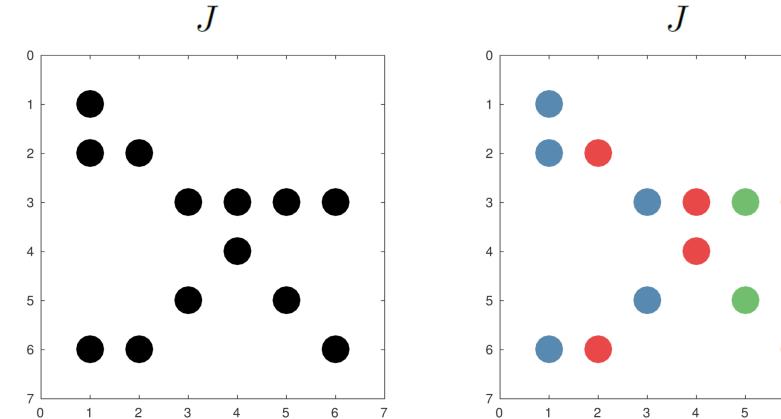
Scientific Computing Problem

Problem BLOCK SEED:

Let *J* be a sparse $n \times n$ Jacobian matrix with known nonzero pattern and let $\rho(J)$ denote its sparsification using $k \times k$ blocks on the diagonal of *J*. Find binary $n \times p$ seed matrix *S* with minimal number of columns *p* such that all nonzeros of $\rho(J)$ also appear in $J \cdot S$.

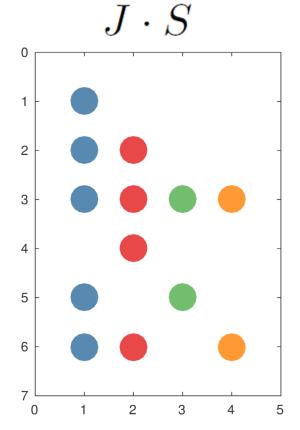
- Problem in Scientific Computing
- Combinatorial Model
- Heuristic Coloring Algorithm
- Experimental Results

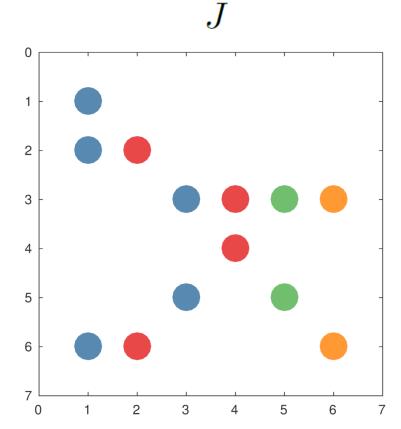
Full Coloring



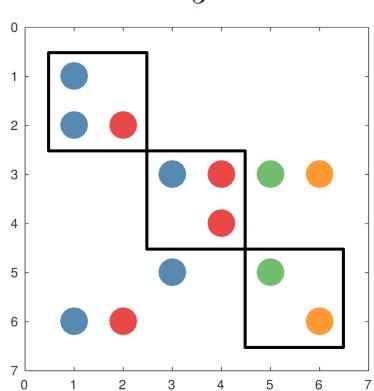
5 6 7

Full Coloring



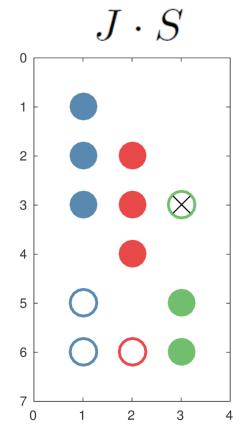


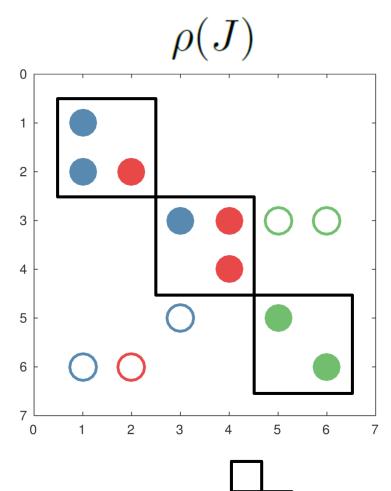
Partial Coloring



J

Partial Coloring





Definition: ρ -Orthogonality

J(:, i) structurally ρ -orthogonal to J(:, j)

• def

There is no row position ℓ in which $J(\ell, i)$ and $J(\ell, j)$ are nonzeros and at least one of them belongs to $\rho(J)$.

Definition: ρ -Column Intersection Graph

 $G_{\rho} = (V, E_{\rho})$ associated with a pair of $n \times n$ Jacobian matrices J and $\rho(J)$, where

•
$$V = \{v_1, v_2, ..., v_n\}$$
 v_i represents $J(:, i)$

• $(v_i, v_j) \in E_{\rho}$ iff J(:, i) and J(:, j) are not structurally ρ -orthogonal.

Combinatorial Problem

Problem MINIMUM BLOCK COLORING:

Find a coloring of the ρ -column intersection graph G_{ρ} with a minimal number of colors.

Equivalent to problem BLOCK SEED.

- Problem in Scientific Computing
- Combinatorial Model
- Heuristic Coloring Algorithm
- Experimental Results

Greedy Partial Coloring Heuristic

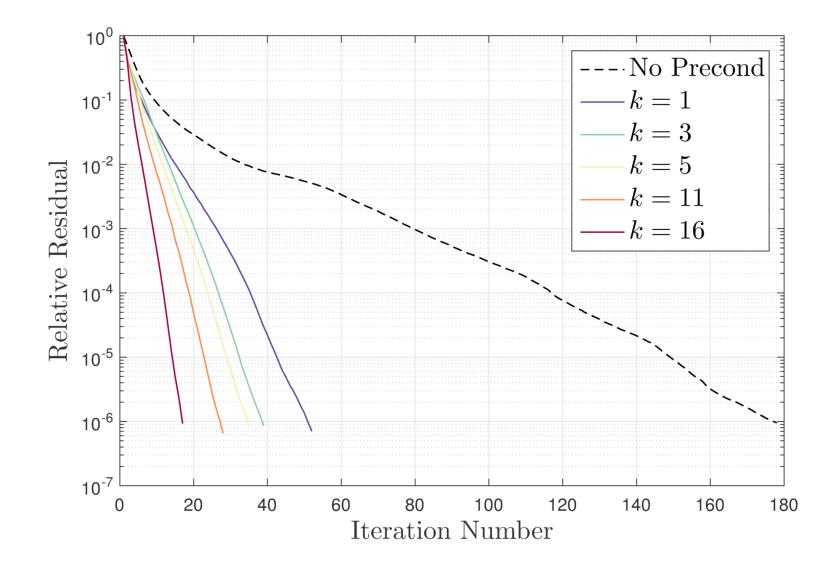
1: $n_c \leftarrow 1$, colors $\leftarrow []$ 2: $H_{J}(:,1) \leftarrow [0,0,\ldots,0]^{T}$ 3: $H_{\rho(J)}(:,1) \leftarrow [0,0,\ldots,0]^T$ 4: for i = 1 : n do for $j = 1 : n_c$ do 5:condA \leftarrow any $(H_J(:, j) + \rho(J)(:, i) > 1)$ 6: condB \leftarrow any $(H_{\rho(J)}(:,j) + J(:,i) > 1)$ 7: if ¬condA and ¬condB then 8: % Assign color j to column i of J 9: $H_J(:,j) \leftarrow H_J(:,j) + J(:,i)$ 10: $H_J(H_J > 1) \leftarrow 1$ 11: $H_{\rho(J)}(:,j) \leftarrow H_{\rho(J)}(:,j) + \rho(J)(:,i)$ 12: $H_{\rho(J)}(H_{\rho(J)} > 1) \leftarrow 1$ 13:colors \leftarrow [colors j] 14: $n_c \leftarrow \max(n_c, j+1)$ 15:Exit from loop over j and go next i16:17: $p = \max(\text{colors})$

18: return p, colors

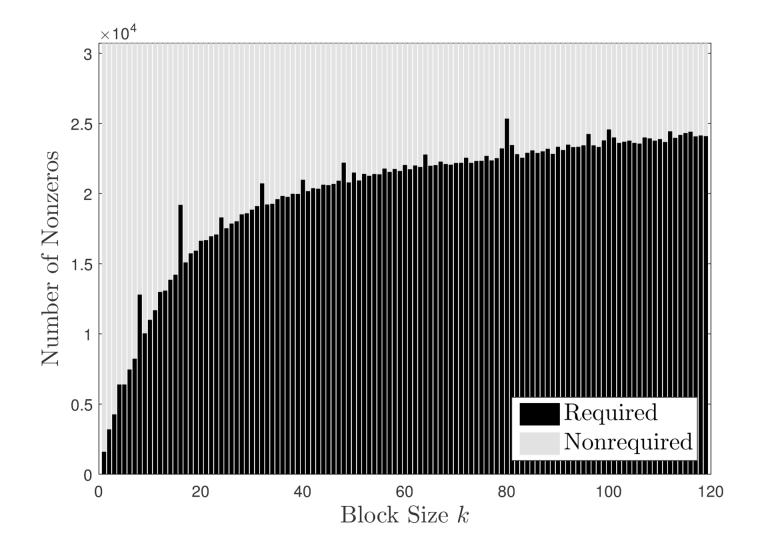
Outline

- Problem in Scientific Computing
- Combinatorial Model
- Heuristic Coloring Algorithm
- Experimental Results

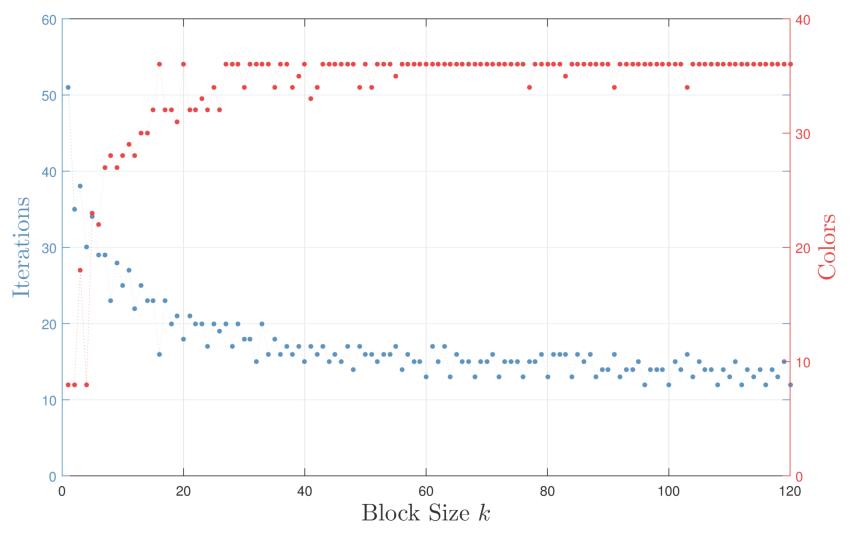
Convergence Behavior with GMRES, ILU(0)



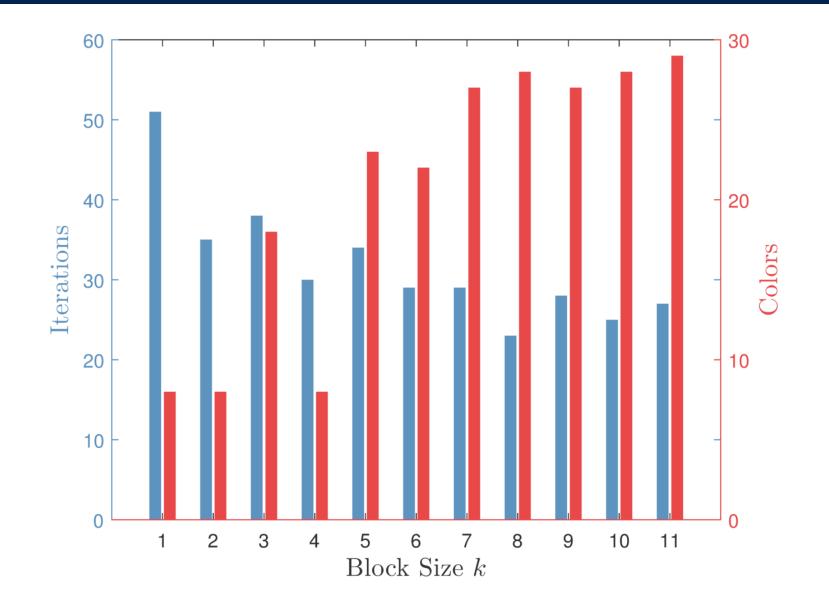
Number of Nonzeros



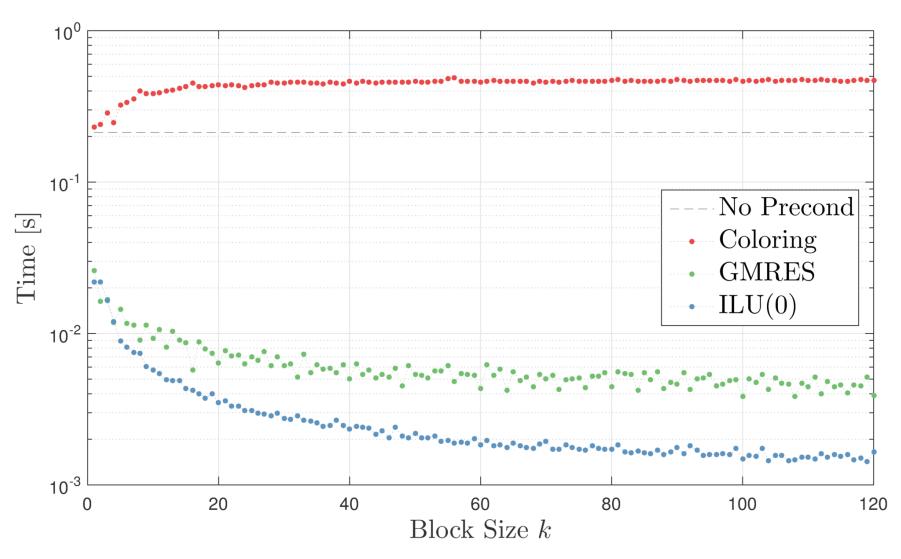
Iterations and Colors



Zoom into Previous Figure



Execution Times



Concluding Remarks

- Formulation of a combinatorial problem arising from preconditioning using automatic differentiation
- Graph model encoding this situation as a partial coloring problem
- Design of heuristic partial coloring algorithm
- Application to case study from CFD

Major References

- QUADFLOW: Bramkamp, Lamby, and Müller. An adaptive multiscale finite volume solver for unsteady and steady state ow computations. *Journal of Computational Physics*, 197(2):460-490, 2004.
- Sparsity: Gebremedhin, Manne, and Pothen. What color is your Jacobian? Graph coloring for computing derivatives. SIAM Review, 47(4):629-705, 2005
- Sparsification: Cullum and Tuma. Matrix-free preconditioning using partial matrix estimation. *BIT Numerical Mathematics*, 46(4):711-729, 2006.