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Outline

I Second order reverse mode of Automatic Differentiation

I Vertex elimination for evaluating the Gradient and the Hessian

I The correspondence between second order reverse mode and vertex

elimination

I Discussion and board picture
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AD Fundamentals

I Automatic Differentiation (AD) is a technique that augments a
computer program so that the augmented program computes the
derivatives as well as the values of the function defined by the original
program.

I Scalar Objective Function f : Rn → R1

I Implemented as a computer program

I The evaluation is on a sequence of decomposed elemental functions
For k = 1, 2, · · · , l

vk = ϕk(vi ){vi :vi≺vk}
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AD Fundamentals

I Automatic Differentiation (AD) is a technique that augments a
computer program so that the augmented program computes the
derivatives as well as the values of the function defined by the original
program.

I Scalar Objective Function f : Rn → R1

I Implemented as a computer program

I The evaluation is on a sequence of decomposed elemental functions
For k = 1, 2, · · · , l

vk = ϕk(vi ){vi :vi≺vk}

I y = pow(pow(x*x, 2.0), x), (x > 0, y = x4x)
I v0 <<= x
I v1 = ϕ1(v0) = v0 ∗ v0

I v2 = ϕ2(v1) = pow(v1, 2.0)
I v3 = ϕ3(v2, v0) = pow(v2, v0)
I v3 >>= y
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AD Fundamentals

I Automatic Differentiation (AD) is a technique that augments a
computer program so that the augmented program computes the
derivatives as well as the values of the function defined by the original
program.

I Scalar Objective Function f : Rn → R1

I Implemented as a computer program

I The evaluation is on a sequence of decomposed elemental functions
For k = 1, 2, · · · , l

vk = ϕk(vi ){vi :vi≺vk}

I Indexing convention :
I Independent variables : v1−n, · · · , v0

I Intermediate variables : v1, · · · , vl−1

I Dependent variable : vl
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Second Order Reverse Mode : Story Line

I First Proposed by Gower and Mello1

I Called Edge Pushing initially
I From the closed form of second order derivative for composite functions

I Wang, Gebremedhin, and Pothen provided a second perspective by
adopting live variable analysis 2 from compiler theory.

I Better complexity bound
I Correct Implementation
I Further improved with preaccumulation

I The new proof can be extended into general high orders.

1Gower, Robert Mansel, and Margarida P. Mello. Hessian matrices via automatic
differentiation. Universidade Estadual de Campinas, Instituto de Matemtica, Estatstica e
Computao Cientfica, 2010.

2Wang, Mu, Assefaw Gebremedhin, and Alex Pothen. ”Capitalizing on live variables:
new algorithms for efficient Hessian computation via automatic differentiation.”
Mathematical Programming Computation (2016): 1-41.
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Reverse Mode of AD

I Function evaluation : evaluate each elemental function

for k = 1, 2, · · · , l
vk = ϕk(vi ){vi :vi≺vk}

I Reverse mode of AD : process sequence of elemental functions in

reverse order

for k = l , l − 1, · · · , 1

do something with vk = ϕk(vi ){vi≺vk}

I Equivalent function fk(Sk) : a function defined by the elemental

functions ϕl , · · · , ϕk that have been processed at the end of step k ,

in reverse mode

I f = ϕl ◦ · · · ◦ ϕk︸ ︷︷ ︸
fk (Sk )

◦ϕk−1 ◦ · · · ◦ ϕ1.

I The independent variables of fk are denoted by Sk .
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Reverse Mode of AD

For k = l , l − 1, · · · , 1

do something with vk = ϕk(vi ){vi :vi≺vk}

I fk(Sk) = fk+1(Sk+1 \ {vk}, vk = ϕk(vi ){vi :vi≺vk})
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Reverse Mode of AD

For k = l , l − 1, · · · , 1

do something with vk = ϕk(vi ){vi :vi≺vk}

I fk(Sk) = fk+1(Sk+1 \ {vk}, vk = ϕk(vi ){vi :vi≺vk})

I First order chain rule : ∂fk
∂vi

= ∂fk+1

∂vi
+ ∂vk

∂vi

∂fk+1

∂vk
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Reverse Mode of AD

For k = l , l − 1, · · · , 1

For all vi ≺ vk :
∂fk
∂vi

= ∂fk+1

∂vi
+ ∂vk

∂vi

∂fk+1

∂vk

I fk(Sk) = fk+1(Sk+1 \ {vk}, vk = ϕk(vi ){vi :vi≺vk})

I First order chain rule : ∂fk
∂vi

= ∂fk+1

∂vi
+ ∂vk

∂vi

∂fk+1

∂vk
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Reverse Mode of AD

For k = l , l − 1, · · · , 1

For all vi ≺ vk :
∂fk
∂vi

= ∂fk+1

∂vi
+ ∂vk

∂vi

∂fk+1

∂vk

I fk(Sk) = fk+1(Sk+1 \ {vk}, vk = ϕk(vi ){vi :vi≺vk})

I Second order chain rule :
∂2fk
∂vi∂vj

= ∂2fk+1

∂v∂u + ∂vk
∂vi

∂2fk+1

∂vj∂vk
+ ∂vk

∂vj

∂2fk+1

∂vi∂vk

+∂vk
∂vi

∂vk
∂vj

∂2fk+1

∂vk∂vk
+ ∂2vk

∂vi∂vi

∂fk+1

∂vk
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Reverse Mode of AD

For k = l , l − 1, · · · , 1

For all vi ≺ vk :
∂fk
∂vi

= ∂fk+1

∂vi
+ ∂vk

∂vi

∂fk+1

∂vk
→ v̄i+ = ∂vk

∂vi
v̄k

For all unordered pairs (vi , vj), vi ≺ vk or vj ≺ vk :
∂2fk

∂vi∂vj
= ∂2fk+1

∂v∂u + ∂vk
∂vi

∂2fk+1

∂vj∂vk
+ ∂vk

∂vj

∂2fk+1

∂vi∂vk

+∂vk
∂vi

∂vk
∂vj

∂2fk+1

∂vk∂vk
+ ∂2vk

∂vi∂vi

∂fk+1

∂vk

I fk(Sk) = fk+1(Sk+1 \ {vk}, vk = ϕk(vi ){vi :vi≺vk})
I Adjoint variable v̄i :

I Holds the value of ∂fk
∂vi

after the step k
I Incremental updates in implementation
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Reverse Mode of AD

For k = l , l − 1, · · · , 1

For all vi ≺ vk :
∂fk
∂vi

= ∂fk+1

∂vi
+ ∂vk

∂vi

∂fk+1

∂vk
→ v̄i+ = ∂vk

∂vi
v̄k

For all unordered pairs (vi , vj), vi ≺ vk or vj ≺ vk :
∂2fk

∂vi∂vj
= ∂2fk+1

∂v∂u + ∂vk
∂vi
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∂vj∂vk
+ ∂vk

∂vj

∂2fk+1

∂vi∂vk

+∂vk
∂vi

∂vk
∂vj

∂2fk+1

∂vk∂vk
+ ∂2vk

∂vi∂vi

∂fk+1

∂vk

I fk(Sk) = fk+1(Sk+1 \ {vk}, vk = ϕk(vi ){vi :vi≺vk})
I Adjoint variable v̄i :

I Holds the value of ∂fk
∂vi

after the step k
I Incremental updates in implementation

I More implementation details for second order for exploiting sparsity
and symmetry.
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Reverse Mode of AD

For k = l , l − 1, · · · , 1

For all vi ≺ vk :
∂fk
∂vi

= ∂fk+1

∂vi
+ ∂vk

∂vi

∂fk+1

∂vk
→ v̄i+ = ∂vk

∂vi
v̄k

For all unordered pairs (vi , vj), vi ≺ vk or vj ≺ vk :
∂2fk

∂vi∂vj
= ∂2fk+1

∂v∂u + ∂vk
∂vi

∂2fk+1

∂vj∂vk
+ ∂vk

∂vj

∂2fk+1

∂vi∂vk

+∂vk
∂vi

∂vk
∂vj

∂2fk+1

∂vk∂vk
+ ∂2vk

∂vi∂vi

∂fk+1

∂vk

I fk(Sk) = fk+1(Sk+1 \ {vk}, vk = ϕk(vi ){vi :vi≺vk})

I General high order chain rule → general high order reverse mode

I Taking advantage of symmetry becomes more important
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Reverse Mode of AD : Implementation

I Second order reverse mode : Initially implemented as LivarH in

ADOL-C

I https://github.com/CSCsw/LivarH

I ReverseAD : an operator overloading implementation of general high

order reverse mode in C++11.

I https://github.com/wangmu0701/ReverseAD

I Available for experimentation

I Monotonic indexing for variables on the trace

vi ≺ vk =⇒ index(vi ) < index(vj)

I Not satisfied by ADOL-C

I An immature fix was provided for LivarH
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Reverse Mode of AD : Performance

I The FeasNewt Benchmark (T. S. Munson and P. D. Hovland, 2005)

I A mesh optimization problem with sparse Hessian matrix.

I Compared with compression-and-recovery approach implemented in
ADOL-C + ColPack

n : 2,598 12,597 39,379
#nnz in H : 46,488 253,029 828,129

Direct
#colors : 54 62 65

runtime(S) : 3.77 39.34 137.07

Indirect
#colors : 31 30 31

runtime(S) : 3.56 31.07 119.04

ReverseAD runtime(S) : 0.51 3.37 12.40
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From Analytical to Combinatorial

I The second (high) order reverse mode is derived from a purely

analytical point of view.

I Same as the original derivation of Edge Pushing.

I There are combinatorial models for AD algorithms based on the

concept of Computational Graph G of the objective function.

I Edge Elimination

I Vertex Elimination

I Face Elimination

I Closely related to the classical linear algebra problem of sparse

Gaussian elimination.
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Computational Graph

I Computational graph : G = (V ,E )
I Variables are vertices : V = {vi |1− n ≤ i ≤ l}
I Precedence relations are directed edges :

E = {vi → vk |vi ≺ vk , 1− n ≤ i < k ≤ l}
I Edge weights : c(i , k)

.
= w(vi , vk) = ∂vk

∂vi

I v1 = ϕ1(v0) = v0 ∗ v0

I v2 = ϕ2(v1) = pow(v1, 2.0)

I v3 = ϕ3(v2, v0) = pow(v2, v0)

v3

v2

v1

v0

c(0, 3) = ∂v3
∂v0

= log v2 · v3

c(1, 2) = ∂v2
∂v1

= 2 · v1

c(2, 3) = ∂v3
∂v2

= v3
v2
· v0

c(0, 1) = ∂v1
∂v0

= 2 · v0
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Vertex Elimination

Repeat

I Pick intermediate node vj

I For all (i , k), s.t, i ≺ j ≺ k do

c(i , k)+ = c(i , j) ∗ c(j , k)

I Remove vj from V

Until V has no intermediate vertices

v3

v2

v1

v0

c(0, 3) c(1, 2)

c(2, 3)

c(0, 1)

I Proposed by Griewank and Reese, and studied extensively by
Naumann and students
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Vertex Elimination

Repeat

I Pick intermediate node vj

I For all (i , k), s.t, i ≺ j ≺ k do

c(i , k)+ = c(i , j) ∗ c(j , k)

I Remove vj from V

Until V has no intermediate vertices

v3

v0

c(0, 3)
+c(0, 1) · c(1, 2) · c(2, 3)

I Proposed by Griewank and Reese, and studied extensively by
Naumann and students

I Any elimination order will give the same final results.
I The time complexity (number of edge weights computed) varies with

the ordering. Minimizing the space complexity also is likely to be
intractable.

I NP-hard to determine the optimal ordering.
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Vertex Elimination for Hessian

I The vertex elimination algorithm applies on G , gives ∇ · f .

I To evaluate the Hessian of f we need the computational graph of the
gradient Gg , i.e, the computational graph of evaluating ∇ · f .

I Gg can be constructed from first order non-incremental reverse mode

Function evaluation :

for k = 1, 2, · · · , l
vk = ϕk(vi ){vi :vi≺vk}

First order (nonincremental) reverse mode :

Initialize :
v̄l = 1.0, v̄l−1 = · · · = 0

for i = l − 1, · · · , 1, 0, · · · , 1− n
v̄i =

∑
vi≺vk

∂vk
∂vi

v̄k

v̄i = ϕ̄i (∪vi≺vk{vj : vj ≺ vk} ∪ {vk})
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Computational Graph of the Gradient
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Function evaluation :

I for k = 1, 2, · · · , l
vk = ϕk (vi ){vi :vi≺vk}

First order (nonincremental) reverse mode :

I Initialize :

v̄l = 1.0, v̄l−1 = · · · = 0

I for i = l − 1, · · · , 1, 0, · · · , 1− n

v̄i =
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vi≺vk

∂vk
∂vi

v̄k

v̄i = ϕ̄i (∪vi≺vk {vj : vj ≺ vk} ∪ {vk})

Vg = V ∪ V̄ , Eg = EG ∪ EḠ ∪ EC
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Function evaluation :

I for k = 1, 2, · · · , l
vk = ϕk (vi ){vi :vi≺vk}

First order (nonincremental) reverse mode :

I Initialize :
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c(i , j̄) =
∑

vi ,vj≺vk

∂2vk
∂vi∂vj

v̄k

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 13 / 21



Equivalence

I Vertex elimination on the gradient graph Gg gives the Hessian
(combinatorial approach).

I Second order reverse mode gives the Hessian (analytical approach).

Second order reverse mode:
I Initialize :

v̄l = 1.0, v̄l−1 = · · · = 0

I for k = l, l − 1, · · · , 1
for each unordered pair (vi , vj )
hk (vi , vj ) = hk+1(vi , vj )

+
∂vk
∂vi

hk+1(vj , vk ) +
∂vk
∂vj

hk+1(vi , vk )

+
∂vk
∂vi

∂vk
∂vj

hk+1(vk , vk ) +
∂2vk
∂vi∂vj

v̄k

Vertex Elimination on Gg
I Pick intermediate node vj

I For all (i, k), s.t, i ≺ j ≺ k do
c(i, k)+ = c(i, j) ∗ c(j, k)

I Remove vj from V

I Repeat until V has no intermediate vertices

Theorem

If vertex elimination is performed on Gg in a symmetric
reverse topological ordering, i.e, (vk , v̄k) are eliminated in
pairs, in the order k = l , l − 1, · · · , 1, then the two
algorithms correspond step-by-step.
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Theorem

I The two algorithms perform the same computations, and thus

maintain the same intermediate results after each step.

I With two minor tweaks of vertex elimination on Gg

I Tweak one : parallel edges in EC

I Break the edge c(i , j̄) =
∑

vi ,vj≺vk

∂2vk
∂vi∂vj

v̄k

I Into parallel edges ck(i , j̄) = ∂2vk
∂vi∂vj

v̄k

I Tweak two : new set of edges EH :

I Rule 1 : all added edges are added into EH

I Rule 2 : After eliminating (vk , v̄k), move all ck(i , j̄) from EC to EH

I Claim : EH corresponds to the nonzeros in the Hessian of fk(Sk) after

each step.
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Discussion

I Second order reverse mode is equivalent to a special form of vertex

elimination on the computational graph of the gradient Gg .

I May not be the optimal form of vertex elimination due to the

structure of Gg . But, in practice it can be implemented with efficient

storage and memory access.

I Second order reverse mode does not require the graph Gg to be formed.

I Can be implemented with a single reverse sweep.

I Can incorporate checkpointing to overcome memory/disk limits

I Possibilities of optimizing second order reverse mode by exploiting

structural properties

I Out-of-order processing of vk = ϕk(vi ){vi :vi≺vk}
I Benefit must outweigh the optimization overhead
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Future Work : Broad Picture

I This work reveals the correspondence between analytical and
combinatorial points of view of AD algorithms.

I First order forward/reverse mode corresponds to edge elimination on G
with specific elimination ordering.

I Second order reverse mode corresponds to vertex elimination on Gg

with reverse symmetric elimination ordering.
I Is there a generalization to high orders?

I The analytical form of the high order reverse mode is the
implementation of high order chain rule.

I What is the generalization of the combinatorial form of high order
reverse mode?

I What is the computational graph of the Hessian GH?

I What is the elimination technique that we should perform on GH?
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Vertex Elimination as Gaussian Elimination

I We can build a matrix as C = [cij ]1−n≤i ,j≤l .

I cij = ∂vi
∂vj

as the edge weight in G ,when vj ≺ vi
I cii = −1, diagonal elements

I Other elements are zero

C =


n l −m m

n −I 0 0

l −m B L− I 0

m R T −I


I C is a lower triangular matrix

I The Jacobian ∇ · f = R + T · (L− I)−1 · B is the Schur complement

I Can use a Gaussian elimination procedure to compute it.
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Adjacency Matrix for Gg

H =



n l −m m m l −m n

n −I 0 0
l −m B L− I 0
m R T −I
m 0 0 0 −I 0 0

l −m Z Y 0 T′ L′ − I 0
n X Z′ 0 R′ B′ −I


I C′ is the transpose of C along the antidiagonal.

I The Hessian is the Schur complement of X with the rest of the matrix
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