Second Order Reverse Mode of AD :

A Vertex Elimination Perspective

Mu Wang, Alex Pothen and Paul Hovland

Computer Science, Purdue University
MCS Division, Argonne National Lab

Thanks : NSF, DOE, Intel

October 10, 2016

PURDUE

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 1/21

Second order reverse mode of Automatic Differentiation
Vertex elimination for evaluating the Gradient and the Hessian

The correspondence between second order reverse mode and vertex

elimination

Discussion and board picture

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 2/21

AD Fundamentals

Automatic Differentiation (AD) is a technique that augments a
computer program so that the augmented program computes the
derivatives as well as the values of the function defined by the original
program.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 3/21

AD Fundamentals

Automatic Differentiation (AD) is a technique that augments a
computer program so that the augmented program computes the
derivatives as well as the values of the function defined by the original
program.

Scalar Objective Function f : R" — R}

Implemented as a computer program

The evaluation is on a sequence of decomposed elemental functions
For k=1,2,---,1/
Vik = Sak(vi){v,-:v,--<vk}

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 3/21

AD Fundamentals

Automatic Differentiation (AD) is a technique that augments a
computer program so that the augmented program computes the
derivatives as well as the values of the function defined by the original
program.

Scalar Objective Function f : R" — R}

Implemented as a computer program
The evaluation is on a sequence of decomposed elemental functions
For k=1,2,---,/
Vik = SDk(Vi){v,-:v,-—<vk}

y = pow(pow(x*x, 2.0), x), (x >0,y = x¥)
Vo <<= X
vi = 1(v) = vo * v
Vo = pa(v1) = pow(vq,2.0)
vz = p3(v2, vo) = pow(v2, vo)
V3 >>=y

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 3/21

AD Fundamentals

Automatic Differentiation (AD) is a technique that augments a
computer program so that the augmented program computes the
derivatives as well as the values of the function defined by the original
program.

Scalar Objective Function f : R" — R}

Implemented as a computer program
The evaluation is on a sequence of decomposed elemental functions
For k=1,2,---,1/
Vik = Sak(vi){v,-:v,--<vk}
Indexing convention :

Independent variables : vi_,, -+, v
Intermediate variables : vq,--- ,vi_1
Dependent variable : v,

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 3/21

Second Order Reverse Mode : Story Line

First Proposed by Gower and Mello!

Called Edge_Pushing initially
From the closed form of second order derivative for composite functions

!Gower, Robert Mansel, and Margarida P. Mello. Hessian matrices via automatic
differentiation. Universidade Estadual de Campinas, Instituto de Matemtica, Estatstica e
Computao Cientfica, 2010.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 4 /21

Second Order Reverse Mode :

First Proposed by Gower and Mello!
Called Edge_Pushing initially
From the closed form of second order derivative for composite functions

Wang, Gebremedhin, and Pothen provided a second perspective by
adopting live variable analysis 2> from compiler theory.

Better complexity bound

Correct Implementation

Further improved with preaccumulation

!Gower, Robert Mansel, and Margarida P. Mello. Hessian matrices via automatic
differentiation. Universidade Estadual de Campinas, Instituto de Matemtica, Estatstica e
Computao Cientfica, 2010.

2Wang, Mu, Assefaw Gebremedhin, and Alex Pothen. " Capitalizing on live variables:
new algorithms for efficient Hessian computation via automatic differentiation.”
Mathematical Programming Computation (2016): 1-41.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 4 /21

Second Order Reverse Mode :

First Proposed by Gower and Mello!
Called Edge_Pushing initially
From the closed form of second order derivative for composite functions

Wang, Gebremedhin, and Pothen provided a second perspective by
adopting live variable analysis 2> from compiler theory.

Better complexity bound

Correct Implementation

Further improved with preaccumulation

The new proof can be extended into general high orders.

!Gower, Robert Mansel, and Margarida P. Mello. Hessian matrices via automatic
differentiation. Universidade Estadual de Campinas, Instituto de Matemtica, Estatstica e
Computao Cientfica, 2010.

2Wang, Mu, Assefaw Gebremedhin, and Alex Pothen. " Capitalizing on live variables:
new algorithms for efficient Hessian computation via automatic differentiation.”
Mathematical Programming Computation (2016): 1-41.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 4 /21

Reverse Mode of AD

Function evaluation : evaluate each elemental function
fork=1,2,---,1

Vi = SOk(Vi){v,-:v,-—<vk}

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 5/21

Reverse Mode of AD

Function evaluation : evaluate each elemental function
fork=1,2,---,/
Vik = SDk(Vi){v,-:v,-<vk}
Reverse mode of AD : process sequence of elemental functions in
reverse order
fork=11-1,---,1
do something with vi = ©x(Vi){y,<v,)

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 5/21

Reverse Mode of AD

Function evaluation : evaluate each elemental function
fork=1,2,---,/
Vie = Pk (Vi) fvivi<wie}
Reverse mode of AD : process sequence of elemental functions in
reverse order
fork=11-1,---,1
do something with vi = ©x(Vi){y,<v,)
Equivalent function f,(Sk) : a function defined by the elemental
functions ¢y, - - - , oy that have been processed at the end of step k,
in reverse mode
f=pio---oprope_y0--- 0.
z_ =
fi(Sk)

The independent variables of f; are denoted by Si.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 5/21

Reverse Mode of AD

Fork=11—-1,---,1

do something with vi = 0k (Vi) {v:v, v,

fi(Sk) = fur1(Skr \ {vk}, vie = (Vi) fvvi<vi})

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 6 /21

Reverse Mode of AD

Fork=11—-1,---,1

do something with vi = 0k (Vi) {v:v, v,

fi(Sk) = fra1(Sk1 \ {vic} ik = @k (Vi) {virvi<uiy)
fir1(Sk+1)

f="%10 " 0pki10PK 0 Pk—10+-0p1
f=@o- 0pry10pKopPK_10---0p1
fi(Sk)

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 6 /21

Reverse Mode of AD

Fork=11—-1,---,1

do something with vi = 0k (Vi) {v:v, v,

fi(Sk) = fur1(Skr \ {vk}, vie = (Vi) fvvi<vi})

. . . Ofi _ Ofiia | Qv Ofkin
First order chain rule : av. = v, T ov v

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 6 /21

Reverse Mode of AD

Fork=11—-1,---,1

For all v; < v :
Ofc _ Ofina + Avi Ofky1
OV,' - c')v,- 6v,- 8vk

fi(Sk) = fur1(Skr \ {vk}, vie = (Vi) fvvi<vi})

Ofi _ Ofiy1 | Ovi Ofiin

First order chain rule : Bv. = v v Ov

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 6 /21

Reverse Mode of AD

Fork=11—-1,---,1

For all v; < v :
of, __ Ofiua + Ovy Ofii1
OV,' - c')v,- 6v,- 8vk

f(Sk) = fr1 (Skn \ {vi}s vk = 0 (Vi) {vv=<i})
Second order chain rule :
Pf _ Pfin + O %1 | Ove Pl
ovidv; — 0Ovou dv; OvjOvi dvj Ov;0vi
vy Ovi O*fiia vy Ofiia
dv; dvj OvOvy ov;0v; Ovy

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 6 /21

Reverse Mode of AD

Fork=11—-1,---,1

For all v; < v :

Ovi Ofiq1

Ofc __ Ofinn
OV,' - c')v,- + 6v,- 8vk
For all unordered pairs (v;, vj), v < vk or vj < v :
i fis + O O fia 4 O O firy
ov;dv; — 0vou ovi Ov;Ovi v Ov;Ovy
v, Ovi, O fisa 8v, Ofii1
OviOv; Ovi

Ov; Ovj OviOvk

fi(Sk) = fur1(Skr \ {vk}, vie = (Vi) fvvi<vi})

Second order chain rule :

Pf _ Pfin + O %1 | Ove Pl
ovidv; — 0Ovou dv; OvjOvi dvj Ov;0vi
v dvie Pfiiy 0%v Ofiy1
8v,6v,- 8vk

v Ovj OvOvy

Wang et.al (Purdue University)

Second Order Reverse AD October 10, 2016

6/21

Reverse Mode of AD

Fork=11—-1,---,1

For all v; < v :
Ofi _ Ofis1 | Qv Ok = _ Qv -
OV,' - c')v,- + 6v,- 8vk _> VI+ - Ov,- Vi
For all unordered pairs (v;, vj), vi < vk or v; < v
&f _ fin + O O fia 4 O O firy
ov;dv; — 0vou ovi Ov;Ovi v Ov;Ovy
v, Ovi, O fisa 8v, Ofii1
Ov; Ovj OviOvk OviOv; Ovi

fi(Sk) = fra1(Sk1 \ {vic} ik = @k (Vi) {virvi<uiy)
Adjoint variable v; :
Holds the value of dfk after the step k
Incremental updates in implementation

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 6 /21

Reverse Mode of AD

For k=11-1,
For all v; < v :

Ofir1 | Ovi Ofiyr = 0w

c')v,- + _> VI+ - Ov,-

of _
OV,' -

1

(7Vk =
6v,- 8vk

For all unordered pairs (v;, vj), vi < vk or v; < v

52f,

v o2 st

0% vy *fi1
+ v avou t oy, aviow,

Ov;Ov;

~ Ovou

ovi Ov;Ovi
v i

v, Ovi, O fisa
OviOv; Ovi

Ov; Ovj OviOvk

fi(Sk) = fur1(Skr \ {vk}, vie = (Vi) fvvi<vi})

Adjoint variable v; :

Holds the value of dfk after the step k
Incremental updates in implementation
More implementation details for second order for exploiting sparsity

and symmetry.

Wang et.al (Purdue University)

October 10, 2016 6 /21

Second Order Reverse AD

Reverse Mode of AD

Fork=11—-1,---,1

For all v; < v :
Ofi _ Ofis1 | Qv Ok = _ Qv -
OV,' - c')v,- + 6v,- 8vk _> VI+ - Ov,- Vi
For all unordered pairs (v;, vj), v < vk or vj < v :
&f _ fin + O O fia 4 O O firy
ov;dv; — 0vou ovi Ov;Ovi v Ov;Ovy
v, Ovi, O fisa 8v, Ofii1
Ov; Ovj OviOvk OviOv; Ovi

fi(Sk) = fra1(Sk1 \ {vic} ik = @k (Vi) {virvi<uiy)
General high order chain rule — general high order reverse mode

Taking advantage of symmetry becomes more important

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 6 /21

Reverse Mode of AD : Implementation

Second order reverse mode : Initially implemented as LivarH in
ADOL-C

https://github.com/CSCsw/LivarH

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 7/21

https://github.com/CSCsw/LivarH
https://github.com/wangmu0701/ReverseAD

Reverse Mode of AD : Implementation

Second order reverse mode : Initially implemented as LivarH in
ADOL-C

https://github.com/CSCsw/LivarH
ReverseAD : an operator overloading implementation of general high
order reverse mode in C++11.

https://github.com/wangmu0701/ReverseAD
Available for experimentation

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 7/21

https://github.com/CSCsw/LivarH
https://github.com/wangmu0701/ReverseAD

Reverse Mode of AD : Implementation

Second order reverse mode : Initially implemented as LivarH in
ADOL-C

https://github.com/CSCsw/LivarH
ReverseAD : an operator overloading implementation of general high
order reverse mode in C++11.

https://github.com/wangmu0701/ReverseAD

Available for experimentation
Monotonic indexing for variables on the trace

vi < vk = index(v;) < index(v;)
Not satisfied by ADOL-C

An immature fix was provided for LivarH

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 7/21

https://github.com/CSCsw/LivarH
https://github.com/wangmu0701/ReverseAD

Reverse Mode of AD : Performance

The FeasNewt Benchmark (T. S. Munson and P. D. Hovland, 2005)
A mesh optimization problem with sparse Hessian matrix.

Compared with compression-and-recovery approach implemented in
ADOL-C + ColPack

n: 2,598 | 12,597 | 39,379

#nnz in H : 46,488 | 253,029 | 828,129
Direct #colors : 54 62 65
runtime(S) : 3.77 39.34 | 137.07

Indirect #colors : 31 30 31
runtime(S) : 3.56 31.07 | 119.04

ReverseAD | runtime(S) : 0.51 3.37 12.40

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 8/21

From Analytical to Combinatorial

The second (high) order reverse mode is derived from a purely
analytical point of view.

Same as the original derivation of Edge Pushing.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 9/21

From Analytical to Combinatorial

The second (high) order reverse mode is derived from a purely
analytical point of view.

Same as the original derivation of Edge Pushing.

There are combinatorial models for AD algorithms based on the
concept of Computational Graph G of the objective function.
Edge Elimination
Vertex Elimination

Face Elimination

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 9/21

From Analytical to Combinatorial

The second (high) order reverse mode is derived from a purely
analytical point of view.

Same as the original derivation of Edge Pushing.
There are combinatorial models for AD algorithms based on the
concept of Computational Graph G of the objective function.

Edge Elimination
Vertex Elimination

Face Elimination

Closely related to the classical linear algebra problem of sparse

Gaussian elimination.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 9/21

Computational Graph

Computational graph : G = (V, E)
Variables are vertices : V ={v|]1—n<i</}
Precedence relations are directed edges :
EZ{V;-)VHV,’%Vk,l—n§i<k§/}

— Ove

Edge weights : c(i, k) = w(v;, v) = 5

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 10 / 21

Computational Graph

Computational graph : G = (V, E)
Variables are vertices : V ={v|]1—n<i</}
Precedence relations are directed edges :
EZ{V;-)VHV,’%Vk,l—n§i<k§/}

Edge weights : c(i, k) = w(v;, vk) = %

c(2,3)= g2
v3©,

. =,
3 @
.
L
(o) =w*w .

Vi = ¢1(v) = Vo))
 n(on) = pow{on, 20 «0.9)= 52 a2 = %
v2 = p2(v1) = pow(v1,2.0) —logva-vs @ =2y

.

= 3(v2, o) = pow(va, vo) K @
. --_ 7
" ov

Wang et.al (Purdue University) Second Order Reverse AD

October 10, 2016 10 / 21

Vertex Elimination

Repeat
Pick intermediate node v;
For all (i,k), s.t, i < j < k do
c(i, k)+ = c(i,j) * c(j, k)
Remove v; from V

Until V has no intermediate vertices

Proposed by Griewank and Reese, and studied extensively by
Naumann and students

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 11 /21

Vertex Elimination

Repeat
Pick intermediate node v;
For all (i,k), s.t, i < j < k do
c(i, k)+ = c(i,j) * c(j, k)
Remove v; from V

Until V has no intermediate vertices

Proposed by Griewank and Reese, and studied extensively by
Naumann and students

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 11 /21

Vertex Elimination

Repeat
D
.

Pick intermediate node v;

For all (i,k), s.t, i <j < k do N
c(i, k)+ = c(i, j) * c(j, k) '.' i(f(‘g’_)l) (1,2) c(2,3)
.

Remove v; from V N
.

Until V has no intermediate vertices

Proposed by Griewank and Reese, and studied extensively by
Naumann and students

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 11 /21

Vertex Elimination

Repeat

Pick intermediate node v;

._)@

For all (i,k), s.t, i <j < k do N
c(i, k)+ = c(i, j) * c(j, k) '.' i(f(‘g’_)l) (1,2) c(2,3)
.

Remove v; from V N

.

Until V has no intermediate vertices

Proposed by Griewank and Reese, and studied extensively by
Naumann and students

Any elimination order will give the same final results.

The time complexity (number of edge weights computed) varies with

the ordering. Minimizing the space complexity also is likely to be
intractable.

NP-hard to determine the optimal ordering.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 11 /21

Vertex Elimination for Hessian

The vertex elimination algorithm applies on G, gives V - f.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 12 /21

Vertex Elimination for Hessian

The vertex elimination algorithm applies on G, gives V - f.

To evaluate the Hessian of f we need the computational graph of the
gradient Gg, i.e, the computational graph of evaluating V - f.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 12 /21

Vertex Elimination for Hessian

The vertex elimination algorithm applies on G, gives V - f.

To evaluate the Hessian of f we need the computational graph of the
gradient Gg, i.e, the computational graph of evaluating V - f.

Gg can be constructed from first order non-incremental reverse mode

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 12 /21

Vertex Elimination for Hessian

The vertex elimination algorithm applies on G, gives V - f.

To evaluate the Hessian of f we need the computational graph of the
gradient Gg, i.e, the computational graph of evaluating V - f.

Gg can be constructed from first order non-incremental reverse mode

Function evaluation :
fork=1,2,---,1/
Vi = @k(vi){v,v:v,v—<vk}
First order (nonincremental) reverse mode :

Initialize :
\7/21.0,\7/_1:"':0
fori=/—-1,---,1,0,---,1—n
_ v —
Vi = Z T\‘//’;Vk
Vi < Vg

Vi = 0i(Uy<vdvy o vj < v U{w})

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 12 /21

Computational Graph of the Gradient

Function evaluation :

fork=1,2,---,1/

@ Vi = ok (Vi) {v;vi<vi}
First order (nonincremental) reverse mode :
Initialize :
@ v=10,Vyy_1=---=0
@ fori=1-1,---,1,0,---,1—n
_ vy -
Vi= Y Fky
vi<vg
® % = @0 0y £ v < v U ()

@ Ve=VUV, Eg=EgUEzU

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 13 /21

Computational Graph of the Gradient

Function evaluation :

fork=1,2,---,1/

@ Vi = ok (Vi) {v;vi<vi}
First order (nonincremental) reverse mode :
Initialize :
@ v=10,Vyy_1=---=0
@ fori=1-1,---,1,0,---,1—n
_ vy -
Vi= Y Fky
vi<vg
® % = @0 0y £ v < v U ()

@ Ve=VUV, Eg=EgUEzU

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 13 /21

Computational Graph of the Gradient

Function evaluation :
fork=1,2,---,/
Vik = ok (Vi) {; < v}
First order (nonincremental) reverse mode :

Initialize :

//:1.0,//,1:"':0

@ fori=/l—-1,---,1,0,---,1—n
_ vy

@ Vi = Z v Vk
vi<ve !
Vi = Gi(Uvi=v{vi - vi < vk U{vied)
@5(2.3)
A T Vg=VUV, Eg=EcUE:U
s f\ Ec:(vi,w) € Eg < v; < v
.c (0,3) (1,2
Vi = @k (Vi) {v;vi< v)

Ceemet ’@ (i, k) = 9%

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 13 /21

Computational Graph of the Gradient

Function evaluation :
fork=1,2,---,/

Vk = ‘Pk(vi){v;:v,-<vk}

(TS @ First order (nonincremental) reverse mode :
“¢(0,3) (2, Initialize :
5 @ vv=10,vj_1=---=0
) fori=/—-1,---,1,0,---,1—n
c(3,2 _ v
3.2) vi= Y 2ug
vi<ve !

Vi = @i(Uy=w vy 1 vj < ik U{w})

“~@ Ve=VUV, Eg = EgUEZU
. Ez: (Wi, V) €EEp <= W <V <= vi < v

"--c-(O.l) =@i(Uy<v{vj 1 vj < e U{w})
c(k,7) = 52

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 13 /21

Computational Graph of the Gradient

Function evaluation :
fork=1,2,---,/
Vk = ‘Pk(vi){v;:v,-<vk}

.51 . .
T @ First order (nonincremental) reverse mode :
N Initialize :
%c(0,3) c(2,1x _ _
. V/:]..O,V/,l:"':O
k ,,@ fori=/—1,---,1,0,---,1—n
€(3.2) =Y %y

Vi = @i(Uy=w vy o vj < ik U{wc})

Ve=VUV, Eg=E;UEzU

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 13 /21

Equivalence

Vertex elimination on the gradient graph G, gives the Hessian
(combinatorial approach).

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 14 /21

Equivalence

Vertex elimination on the gradient graph G, gives the Hessian
(combinatorial approach).
Second order reverse mode gives the Hessian (analytical approach).

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 14 /21

Equivalence

Vertex elimination on the gradient graph G, gives the Hessian
(combinatorial approach).
Second order reverse mode gives the Hessian (analytical approach).

Second order reverse mode: Vertex Elimination on G,

Initialize : L .

7 =10,7j_1=--=0 Pick intermediate node vj

For all (i, k), s.t, i < j < k do

fork=11—1,---,1 ’ st i .

for each unordered pair (v;, v;) c(i, k)+ = c(i,j) * c(, k)

hie(vi, vi) = by (vis v)) Remove v; from V
o el
+ d\\//,,(i1 (vjs vid) + T\‘//jfthrl(Vi, Vi) Repeat until V has no intermediate vertices

2
Avy Ay 9%vy
+87v,~87vjﬂhk+1(vk’ vk) + va

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 14 /21

Equivalence

Vertex elimination on the gradient graph G, gives the Hessian
(combinatorial approach).

Second order reverse mode gives the Hessian (analytical approach).

Second order reverse mode: Vertex Elimination on G,

Initialize : L .

7 =10,7j_1=--=0 Pick intermediate node vj

For all (i, k), s.t, i < j < k do

fork=11—1,---,1 ’ st i .

for each unordered pair (v;, v;) c(i, k)+ = c(i,j) * c(, k)

hie(vi, vi) = by (vis v)) Remove v; from V
o el
+ d\\//,,(i1 (vjs vid) + T\‘//jfthrl(Vi, Vi) Repeat until V has no intermediate vertices

2
Avy Ay 9%vy
+87v,~87vjﬂhk+1(vk’ vk) + va

If vertex elimination is performed on Gg in a symmetric
reverse topological ordering, i.e, (v, V) are eliminated in
pairs, in the order k =1,/ —1,--- .1, then the two

algorithms correspond step-by-step.
Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016

14 /21

The two algorithms perform the same computations, and thus
maintain the same intermediate results after each step.

With two minor tweaks of vertex elimination on Gg

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 15 /21

The two algorithms perform the same computations, and thus
maintain the same intermediate results after each step.

With two minor tweaks of vertex elimination on Gg
Tweak one : parallel edges in E¢
P 2 -
Break the edge c(i,j) = >, aavigkvj Vi

Vi, Vi< Vk

P 2 -
Into parallel edges c*(i,j) = %vk
iOVj

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 15 /21

The two algorithms perform the same computations, and thus
maintain the same intermediate results after each step.

With two minor tweaks of vertex elimination on Gg
Tweak one : parallel edges in E¢
P 2 -
Break the edge c(i,j) = >, aavigkvj Vi

Vi, Vi< Vk
k(: 7y _ 0*vi =
Into parallel edges c*(i,)) = e Vk

Tweak two : new set of edges Ey :

Rule 1 : all added edges are added into Ey
Rule 2 : After eliminating (vk, 7), move all c*(i,}) from Ec to Ey

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 15 /21

The two algorithms perform the same computations, and thus
maintain the same intermediate results after each step.

With two minor tweaks of vertex elimination on Gg
Tweak one : parallel edges in E¢
P 2 -
Break the edge c(i,j) = >, aavigkvj Vi

Vi, Vi< Vk
k(: 7y _ 0*vi =
Into parallel edges c*(i,)) = e Vk

Tweak two : new set of edges Ey :

Rule 1 : all added edges are added into Ey

Rule 2 : After eliminating (vk, 7), move all c*(i,}) from Ec to Ey
Claim : Ey corresponds to the nonzeros in the Hessian of f(Sk) after
each step.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 15 /21

Discussion

Second order reverse mode is equivalent to a special form of vertex

elimination on the computational graph of the gradient G,.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 16 / 21

Discussion

Second order reverse mode is equivalent to a special form of vertex
elimination on the computational graph of the gradient G,.

May not be the optimal form of vertex elimination due to the
structure of Gg.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 16 / 21

Discussion

Second order reverse mode is equivalent to a special form of vertex
elimination on the computational graph of the gradient G,.

May not be the optimal form of vertex elimination due to the
structure of Gg. But, in practice it can be implemented with efficient
storage and memory access.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 16 / 21

Discussion

Second order reverse mode is equivalent to a special form of vertex
elimination on the computational graph of the gradient G,.
May not be the optimal form of vertex elimination due to the

structure of Gg. But, in practice it can be implemented with efficient
storage and memory access.

Second order reverse mode does not require the graph G, to be formed.

Can be implemented with a single reverse sweep.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 16 / 21

Discussion

Second order reverse mode is equivalent to a special form of vertex
elimination on the computational graph of the gradient G,.
May not be the optimal form of vertex elimination due to the

structure of Gg. But, in practice it can be implemented with efficient
storage and memory access.

Second order reverse mode does not require the graph G, to be formed.
Can be implemented with a single reverse sweep.
Can incorporate checkpointing to overcome memory/disk limits

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 16 / 21

Discussion

Second order reverse mode is equivalent to a special form of vertex
elimination on the computational graph of the gradient G,.
May not be the optimal form of vertex elimination due to the

structure of Gg. But, in practice it can be implemented with efficient
storage and memory access.

Second order reverse mode does not require the graph G, to be formed.

Can be implemented with a single reverse sweep.

Can incorporate checkpointing to overcome memory/disk limits
Possibilities of optimizing second order reverse mode by exploiting
structural properties

Out-of-order processing of vk = @ (Vi){v:vi<w}

Benefit must outweigh the optimization overhead

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 16 / 21

Future Work : Broad Picture

This work reveals the correspondence between analytical and
combinatorial points of view of AD algorithms.

First order forward/reverse mode corresponds to edge elimination on G
with specific elimination ordering.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 17 /21

Future Work : Broad Picture

This work reveals the correspondence between analytical and
combinatorial points of view of AD algorithms.
First order forward/reverse mode corresponds to edge elimination on G
with specific elimination ordering.
Second order reverse mode corresponds to vertex elimination on G,
with reverse symmetric elimination ordering.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 17 /21

Future Work : Broad Picture

This work reveals the correspondence between analytical and
combinatorial points of view of AD algorithms.
First order forward/reverse mode corresponds to edge elimination on G
with specific elimination ordering.
Second order reverse mode corresponds to vertex elimination on G,
with reverse symmetric elimination ordering.
Is there a generalization to high orders?

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 17 /21

Future Work : Broad Picture

This work reveals the correspondence between analytical and
combinatorial points of view of AD algorithms.
First order forward/reverse mode corresponds to edge elimination on G
with specific elimination ordering.
Second order reverse mode corresponds to vertex elimination on G,
with reverse symmetric elimination ordering.
Is there a generalization to high orders?

The analytical form of the high order reverse mode is the
implementation of high order chain rule.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 17 /21

Future Work : Broad Picture

This work reveals the correspondence between analytical and
combinatorial points of view of AD algorithms.
First order forward/reverse mode corresponds to edge elimination on G
with specific elimination ordering.
Second order reverse mode corresponds to vertex elimination on G,
with reverse symmetric elimination ordering.
Is there a generalization to high orders?
The analytical form of the high order reverse mode is the
implementation of high order chain rule.

What is the generalization of the combinatorial form of high order
reverse mode?

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 17 /21

Future Work : Broad Picture

This work reveals the correspondence between analytical and
combinatorial points of view of AD algorithms.
First order forward/reverse mode corresponds to edge elimination on G
with specific elimination ordering.
Second order reverse mode corresponds to vertex elimination on G,
with reverse symmetric elimination ordering.
Is there a generalization to high orders?
The analytical form of the high order reverse mode is the
implementation of high order chain rule.
What is the generalization of the combinatorial form of high order
reverse mode?
What is the computational graph of the Hessian Gg?

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 17 /21

Future Work : Broad Picture

This work reveals the correspondence between analytical and
combinatorial points of view of AD algorithms.
First order forward/reverse mode corresponds to edge elimination on G
with specific elimination ordering.
Second order reverse mode corresponds to vertex elimination on G,
with reverse symmetric elimination ordering.
Is there a generalization to high orders?

The analytical form of the high order reverse mode is the
implementation of high order chain rule.

What is the generalization of the combinatorial form of high order
reverse mode?

What is the computational graph of the Hessian Gg?
What is the elimination technique that we should perform on Gy?

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 17 /21

References

Griewank, Andreas, and Andrea Walther. Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. SIAM, 2008.

Griewank, Andreas, and Shawn Reese. On the calculation of Jacobian matrices by the
Markowitz rule. In Andreas Griewank and George F. Corliss, editors, Automatic
Differentiation of Algorithms: Theory, Implementation, and Application, pages 126-135.
SIAM, Philadelphia, PA, 1991.

Naumann, Uwe. Optimal Jacobian Accumulation is NP-complete. Mathematical
Programming, 112(2):427-441, 2008.

Gower, Robert Mansel, and Margarida P. Mello. Hessian matrices via automatic
differentiation. Universidade Estadual de Campinas, Instituto de Matemtica, Estatstica e
Computao Cientfica, 2010.

Wang, Mu, Assefaw Gebremedhin, and Alex Pothen. Capitalizing on live variables: new
algorithms for efficient Hessian computation via automatic differentiation. Mathematical
Programming Computation (2016): 1-41.

Wang, Mu, Alex Pothen and Paul Hovland. Edge Pushing is Equivalent to Vertex
Elimination for Computing Hessians. SIAM CSC16.

Wang, Mu and Alex Pothen. Evaluating High Order Derivative Tensors in Reverse Mode
of Automatic Differentiation. AD2016

Wang, Mu, and Alex Pothen. High Order Reverse Mode of AD : Theory and
Implementation. In preparation.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 18 / 21

Backup Slides

placeholder

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 19 /21

Vertex Elimination as Gaussian Elimination

We can build a matrix as C = [¢jili—n<i j<I-

cj = g;j{ as the edge weight in G,when v; < v;

c;; = —1, diagonal elements
Other elements are zero

C is a lower triangular matrix
The Jacobian V- f = R+ T - (L —I)~! - B is the Schur complement

Can use a Gaussian elimination procedure to compute it.

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 20 /21

Adjacency Matrix for G,

/l—m m m [|—m n

n
n [—I 0 0 i
/I-m| B L-1I 0
m R T -1
H= m 0 0 0o - 0 0
I—m | Z Y 0 T L'-1 0
n X 7z o R B I

C’ is the transpose of C along the antidiagonal.
The Hessian is the Schur complement of X with the rest of the matrix

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 21 /21

