Second Order Reverse Mode of AD : A Vertex Elimination Perspective

Mu Wang, Alex Pothen and Paul Hovland

Computer Science, Purdue University MCS Division, Argonne National Lab

Thanks: NSF, DOE, Intel
October 10, 2016

PURDUE

Outline

- Second order reverse mode of Automatic Differentiation
- Vertex elimination for evaluating the Gradient and the Hessian
- The correspondence between second order reverse mode and vertex elimination
- Discussion and board picture

AD Fundamentals

- Automatic Differentiation (AD) is a technique that augments a computer program so that the augmented program computes the derivatives as well as the values of the function defined by the original program.
Scalar Objective Function $f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{1}$
Implemented as a computer program
The evaluation is on a sequence of decomposed elemental functions For $k=1,2$,

AD Fundamentals

- Automatic Differentiation (AD) is a technique that augments a computer program so that the augmented program computes the derivatives as well as the values of the function defined by the original program.
- Scalar Objective Function $f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{1}$
- Implemented as a computer program
- The evaluation is on a sequence of decomposed elemental functions

$$
\begin{aligned}
& \text { For } k=1,2, \cdots, I \\
& \quad v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}
\end{aligned}
$$

AD Fundamentals

- Automatic Differentiation (AD) is a technique that augments a computer program so that the augmented program computes the derivatives as well as the values of the function defined by the original program.
- Scalar Objective Function $f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{1}$
- Implemented as a computer program
- The evaluation is on a sequence of decomposed elemental functions For $k=1,2, \cdots$, l

$$
v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i}<v_{k}\right\}}
$$

$\begin{aligned}-\mathrm{y} & =\operatorname{pow}(\operatorname{pow}(x \\ & \nabla v_{0} \ll=x\end{aligned}$
$\left(x>0, y=x^{4 x}\right)$

- $v_{1}=\varphi_{1}\left(v_{0}\right)=v_{0} * v_{0}$
- $v_{2}=\varphi_{2}\left(v_{1}\right)=\operatorname{pow}\left(v_{1}, 2.0\right)$
- $v_{3}=\varphi_{3}\left(v_{2}, v_{0}\right)=\operatorname{pow}\left(v_{2}, v_{0}\right)$
- $v_{3} \gg=y$

AD Fundamentals

- Automatic Differentiation (AD) is a technique that augments a computer program so that the augmented program computes the derivatives as well as the values of the function defined by the original program.
- Scalar Objective Function $f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{1}$
- Implemented as a computer program
- The evaluation is on a sequence of decomposed elemental functions

$$
\begin{aligned}
& \text { For } k=1,2, \cdots, I \\
& \quad v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}
\end{aligned}
$$

- Indexing convention :
- Independent variables: v_{1-n}, \cdots, v_{0}
- Intermediate variables: v_{1}, \cdots, v_{l-1}
- Dependent variable : v_{l}

Second Order Reverse Mode : Story Line

- First Proposed by Gower and Mello ${ }^{1}$
- Called Edge_Pushing initially
- From the closed form of second order derivative for composite functions

Wang, Gebremedhin, and Pothen provided a second perspective by
adopting live variable analysis ${ }^{2}$ from compiler theory.
Better complexity bound
Correct Implementation
Further improved with preaccumulation
The new proof can be extended into general high orders.

[^0]Wang, Mu, Assefaw Gebremedhin, and Alex Pothen.
Capitalizing on live variables: new algorithms for efficient Hessian computation via automatic differentiation.
Mathematical Programming Computation (2016): 1-41

Second Order Reverse Mode : Story Line

- First Proposed by Gower and Mello ${ }^{1}$
- Called Edge_Pushing initially
- From the closed form of second order derivative for composite functions
- Wang, Gebremedhin, and Pothen provided a second perspective by adopting live variable analysis ${ }^{2}$ from compiler theory.
- Better complexity bound
- Correct Implementation
- Further improved with preaccumulation

The new proof can be extended into general high orders.

[^1]
Second Order Reverse Mode : Story Line

- First Proposed by Gower and Mello ${ }^{1}$
- Called Edge_Pushing initially
- From the closed form of second order derivative for composite functions
- Wang, Gebremedhin, and Pothen provided a second perspective by adopting live variable analysis ${ }^{2}$ from compiler theory.
- Better complexity bound
- Correct Implementation
- Further improved with preaccumulation
- The new proof can be extended into general high orders.

[^2]
Reverse Mode of AD

- Function evaluation : evaluate each elemental function

$$
\text { for } \begin{aligned}
& k=1,2, \cdots, l \\
& \quad v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i}<v_{k}\right\}}
\end{aligned}
$$

Reverse mode of AD : process sequence of elemental functions in reverse order

do something with $v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i} \nprec v_{k}\right.}$
Equivalent function $f_{k}\left(S_{k}\right)$: a function defined by the elemental
functions $\varphi_{1}, \cdots, \varphi_{k}$ that have been processed at the end of step k,
in reverse mode

Reverse Mode of AD

- Function evaluation : evaluate each elemental function

$$
\text { for } \begin{aligned}
& k=1,2, \cdots, l \\
& \qquad v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i}<v_{k}\right\}}
\end{aligned}
$$

- Reverse mode of AD : process sequence of elemental functions in reverse order

$$
\text { for } \begin{aligned}
k & =I, I-1, \cdots, 1 \\
& \text { do something with } v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i} \prec v_{k}\right\}}
\end{aligned}
$$

Equivalent function $f_{k}\left(S_{k}\right)$: a function defined by the elemental functions $\varphi_{1}, \cdots, \varphi_{k}$ that have been processed at the end of step k,
in reverse mode

Reverse Mode of AD

- Function evaluation : evaluate each elemental function

$$
\text { for } \begin{aligned}
& k=1,2, \cdots, l \\
& \quad v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}
\end{aligned}
$$

- Reverse mode of AD : process sequence of elemental functions in reverse order

$$
\begin{aligned}
& \text { for } k=I, I-1, \cdots, 1 \\
& \quad \text { do something with } v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i} \prec v_{k}\right\}}
\end{aligned}
$$

- Equivalent function $f_{k}\left(S_{k}\right)$: a function defined by the elemental functions $\varphi_{1}, \cdots, \varphi_{k}$ that have been processed at the end of step k, in reverse mode
- $f=\underbrace{\varphi_{1} \circ \cdots \circ \varphi_{k}}_{f_{k}\left(S_{k}\right)} \circ \varphi_{k-1} \circ \cdots \circ \varphi_{1}$.
- The independent variables of f_{k} are denoted by S_{k}.

Reverse Mode of AD

For $k=I, I-1, \cdots, 1$
do something with $v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}$

- $f_{k}\left(S_{k}\right)=f_{k+1}\left(S_{k+1} \backslash\left\{v_{k}\right\}, v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i}<v_{k}\right\}}\right)$

Reverse Mode of AD

For $k=I, I-1, \cdots, 1$ do something with $v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}$

$$
\begin{aligned}
& v f_{k}\left(S_{k}\right)=f_{k+1}\left(S_{k+1} \backslash\left\{v_{k}\right\}, v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}\right) \\
& f=\overbrace{\varphi_{1} \circ \cdots \circ \varphi_{k+1} \circ \varphi_{k} \circ \varphi_{k-1} \circ \cdots \circ \varphi_{1}}^{f_{k+1}\left(S_{k+1}\right)} \Rightarrow \underbrace{\varphi_{1} \circ \cdots \circ \varphi_{k+1} \circ \varphi_{k}}_{f_{k}\left(S_{k}\right)} \circ \varphi_{k-1} \circ \cdots \circ \varphi_{1}
\end{aligned}
$$

Reverse Mode of AD

For $k=I, I-1, \cdots, 1$ do something with $v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i}<v_{k}\right\}}$

- $f_{k}\left(S_{k}\right)=f_{k+1}\left(S_{k+1} \backslash\left\{v_{k}\right\}, v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}\right)$
- First order chain rule : $\frac{\partial f_{k}}{\partial v_{i}}=\frac{\partial f_{k+1}}{\partial v_{i}}+\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial f_{k+1}}{\partial v_{k}}$

Reverse Mode of AD

For $k=I, I-1, \cdots, 1$
For all $v_{i} \prec v_{k}$:

$$
\frac{\partial f_{k}}{\partial v_{i}}=\frac{\partial f_{k+1}}{\partial v_{i}}+\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial f_{k+1}}{\partial v_{k}}
$$

- $f_{k}\left(S_{k}\right)=f_{k+1}\left(S_{k+1} \backslash\left\{v_{k}\right\}, v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}\right)$
- First order chain rule : $\frac{\partial f_{k}}{\partial v_{i}}=\frac{\partial f_{k+1}}{\partial v_{i}}+\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial f_{k+1}}{\partial v_{k}}$

Reverse Mode of AD

For $k=I, I-1, \cdots, 1$
For all $v_{i} \prec v_{k}$:

$$
\frac{\partial f_{k}}{\partial v_{i}}=\frac{\partial f_{k+1}}{\partial v_{i}}+\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial f_{k+1}}{\partial v_{k}}
$$

$\Rightarrow f_{k}\left(S_{k}\right)=f_{k+1}\left(S_{k+1} \backslash\left\{v_{k}\right\}, v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}\right)$

- Second order chain rule :

$$
\begin{aligned}
\frac{\partial^{2} f_{k}}{\partial v_{i} \partial v_{j}} & =\frac{\partial^{2} f_{k+1}}{\partial v \partial u}+\frac{\partial v_{k}}{\partial v_{k}} \frac{\partial^{2} f_{k+1}}{\partial v_{j} \partial v_{k}}+\frac{\partial v_{k}}{\partial v_{j}} \frac{\partial^{2} f_{k+1}}{\partial v_{i} \partial v_{k}} \\
& +\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial v_{k}}{\partial v_{j}} \frac{\partial^{2} f_{k+1}}{\partial v_{k} \partial v_{k}}+\frac{\partial^{2} v_{k}}{\partial v_{i} \partial v_{i}} \frac{\partial f_{k+1}}{\partial v_{k}}
\end{aligned}
$$

Reverse Mode of AD

$$
\text { For } k=I, I-1, \cdots, 1
$$

For all $v_{i} \prec v_{k}$:

$$
\frac{\partial f_{k}}{\partial v_{i}}=\frac{\partial f_{k+1}}{\partial v_{i}}+\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial f_{k+1}}{\partial v_{k}}
$$

For all unordered pairs $\left(v_{i}, v_{j}\right), v_{i} \prec v_{k}$ or $v_{j} \prec v_{k}$:

$$
\begin{aligned}
\frac{\partial^{2} f_{k}}{\partial v_{i} \partial v_{j}} & =\frac{\partial^{2} f_{k+1}}{\partial v \partial u}+\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial^{2} f_{k+1}}{\partial v_{j} \partial v_{k}}+\frac{\partial v_{k}}{\partial v_{j}} \frac{\partial^{2} f_{k+1}}{\partial v_{i} \partial v_{k}} \\
& +\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial v_{k}}{\partial v_{j}} \frac{\partial^{2} f_{k+1}}{\partial v_{k} \partial v_{k}}+\frac{\partial^{2} v_{k}}{\partial v_{i} \partial v_{i}} \frac{\partial f_{k+1}}{\partial v_{k}}
\end{aligned}
$$

$\Rightarrow f_{k}\left(S_{k}\right)=f_{k+1}\left(S_{k+1} \backslash\left\{v_{k}\right\}, v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i}<v_{k}\right\}}\right)$

- Second order chain rule :

$$
\begin{aligned}
\frac{\partial^{2} f_{k}}{\partial v_{i} \partial v_{j}} & =\frac{\partial^{2} f_{k+1}}{\partial v \partial u}+\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial^{2} f_{k+1}}{\partial v_{j} \partial v_{k}}+\frac{\partial v_{k}}{\partial v_{j}} \frac{\partial^{2} f_{k+1}}{\partial v_{i} \partial v_{k}} \\
& +\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial v_{k}}{\partial v_{j}} \frac{\partial^{2} f_{k+1}}{\partial v_{k} \partial v_{k}}+\frac{\partial^{2} v_{k}}{\partial v_{i} \partial v_{i}} \frac{\partial f_{k+1}}{\partial v_{k}}
\end{aligned}
$$

Reverse Mode of AD

For $k=I, I-1, \cdots, 1$
For all $v_{i} \prec v_{k}$:

$$
\frac{\partial f_{k}}{\partial v_{i}}=\frac{\partial f_{k+1}}{\partial v_{i}}+\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial f_{k+1}}{\partial v_{k}} \rightarrow \bar{v}_{i}+=\frac{\partial v_{k}}{\partial v_{i}} \bar{v}_{k}
$$

For all unordered pairs $\left(v_{i}, v_{j}\right), v_{i} \prec v_{k}$ or $v_{j} \prec v_{k}$:

$$
\begin{aligned}
\frac{\partial^{2} f_{k}}{\partial v_{i} \partial v_{j}} & =\frac{\partial^{2} f_{k+1}}{\partial v} \frac{\partial v_{k}}{\partial v_{k}} \frac{\partial^{2} f_{k+1}}{\partial v_{i}} \frac{\partial v_{k}}{\partial v_{j} \partial v_{k}}+\frac{\partial^{2} f_{k+1}}{\partial v_{j}} \frac{v_{i}+v_{i}}{\partial v_{i}} \frac{\partial v_{k}}{\partial v_{j}} \frac{\partial^{2} f_{k+1}}{\partial v_{k} \partial v_{k}}+\frac{\partial^{2} v_{k}}{\partial v_{i} \partial v_{i}} \frac{\partial f_{k+1}}{\partial v_{k}}
\end{aligned}
$$

- $f_{k}\left(S_{k}\right)=f_{k+1}\left(S_{k+1} \backslash\left\{v_{k}\right\}, v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i}<v_{k}\right\}}\right)$
- Adjoint variable \bar{v}_{i} :
- Holds the value of $\frac{\partial f_{k}}{\partial v_{i}}$ after the step k
- Incremental updates in implementation

Reverse Mode of AD

For $k=I, I-1, \cdots, 1$
For all $v_{i} \prec v_{k}$:

$$
\frac{\partial f_{k}}{\partial v_{i}}=\frac{\partial f_{k+1}}{\partial v_{i}}+\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial f_{k+1}}{\partial v_{k}} \rightarrow \bar{v}_{i}+=\frac{\partial v_{k}}{\partial v_{i}} \bar{v}_{k}
$$

For all unordered pairs $\left(v_{i}, v_{j}\right), v_{i} \prec v_{k}$ or $v_{j} \prec v_{k}$:

$$
\begin{aligned}
\frac{\partial^{2} f_{k}}{\partial v_{i} \partial v_{j}} & =\frac{\partial^{2} f_{k+1}}{\partial v} \frac{\partial v_{k}}{\partial v^{2}} \frac{\partial^{2} f_{k+1}}{\partial v_{i}} \frac{\partial v_{k}}{\partial v_{j} \partial v_{k}}+\frac{\partial^{2} f_{k+1}}{\partial v_{j}} \frac{v_{i} \partial v_{k}}{\partial v_{i}} \\
& +\frac{\partial v_{k}}{\partial v_{j}} \frac{\partial v_{j}}{\partial f_{k+1}} \frac{v_{k} \partial v_{k}}{}+\frac{\partial^{2} v_{k}}{\partial v_{i} \partial v_{i}} \frac{\partial f_{k+1}}{\partial v_{k}}
\end{aligned}
$$

- $f_{k}\left(S_{k}\right)=f_{k+1}\left(S_{k+1} \backslash\left\{v_{k}\right\}, v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i}<v_{k}\right\}}\right)$
- Adjoint variable \bar{v}_{i} :
- Holds the value of $\frac{\partial f_{k}}{\partial v_{i}}$ after the step k
- Incremental updates in implementation
- More implementation details for second order for exploiting sparsity and symmetry.

Reverse Mode of AD

$$
\text { For } k=I, I-1, \cdots, 1
$$

For all $v_{i} \prec v_{k}$:

$$
\frac{\partial f_{k}}{\partial v_{i}}=\frac{\partial f_{k+1}}{\partial v_{i}}+\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial f_{k+1}}{\partial v_{k}} \rightarrow \bar{v}_{i}+=\frac{\partial v_{k}}{\partial v_{i}} \bar{v}_{k}
$$

For all unordered pairs $\left(v_{i}, v_{j}\right), v_{i} \prec v_{k}$ or $v_{j} \prec v_{k}$:

$$
\begin{aligned}
\frac{\partial^{2} f_{k}}{\partial v_{i} \partial v_{j}} & =\frac{\partial^{2} f_{k+1}}{\partial v} \frac{\partial v_{k}}{\partial v^{2}} \frac{\partial^{2} f_{k+1}}{\partial v_{i}} \frac{\partial v_{k}}{\partial v_{j} \partial v_{k}}+\frac{\partial^{2} f_{k+1}}{\partial v_{j}} \frac{v_{i} \partial v_{k}}{\partial v_{i}} \\
& +\frac{\partial v_{k}}{\partial v_{j}} \frac{\partial v_{j}}{\partial f_{k+1}} \frac{v_{k} \partial v_{k}}{}+\frac{\partial^{2} v_{k}}{\partial v_{i} \partial v_{i}} \frac{\partial f_{k+1}}{\partial v_{k}}
\end{aligned}
$$

$\Rightarrow f_{k}\left(S_{k}\right)=f_{k+1}\left(S_{k+1} \backslash\left\{v_{k}\right\}, v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}\right)$

- General high order chain rule \rightarrow general high order reverse mode
- Taking advantage of symmetry becomes more important

Reverse Mode of AD : Implementation

- Second order reverse mode : Initially implemented as LivarH in ADOL-C
- https://github.com/CSCsw/LivarH

ReverseAD : an operator overloading implementation of general high order reverse mode in $\mathrm{C}++11$.
https://github com/wangmu0701/ReverseAD
Available for experimentation
Monotonic indexing for variables on the trace $v_{i} \prec v_{k} \Longrightarrow \operatorname{index}\left(v_{i}\right)<\operatorname{index}\left(v_{j}\right)$

Not satisfied by ADOL-C
An immature fix was provided for LivarH

Reverse Mode of AD : Implementation

- Second order reverse mode : Initially implemented as LivarH in ADOL-C
- https://github.com/CSCsw/LivarH
- ReverseAD : an operator overloading implementation of general high order reverse mode in $\mathrm{C}++11$.
- https://github.com/wangmu0701/ReverseAD
- Available for experimentation

```
Monotonic indexing for variables on the trace
\(v_{i} \prec v_{k} \Longrightarrow \operatorname{index}\left(v_{i}\right)<\operatorname{index}\left(v_{j}\right)\)
Not satisfied by ADOL-C
An immature fix was provided for LivarH
```


Reverse Mode of AD : Implementation

- Second order reverse mode : Initially implemented as LivarH in ADOL-C
- https://github.com/CSCsw/LivarH
- ReverseAD : an operator overloading implementation of general high order reverse mode in $\mathrm{C}++11$.
- https://github.com/wangmu0701/ReverseAD
- Available for experimentation
- Monotonic indexing for variables on the trace

$$
v_{i} \prec v_{k} \Longrightarrow \operatorname{index}\left(v_{i}\right)<\operatorname{index}\left(v_{j}\right)
$$

- Not satisfied by ADOL-C
- An immature fix was provided for LivarH

Reverse Mode of AD : Performance

- The FeasNewt Benchmark (T. S. Munson and P. D. Hovland, 2005)
- A mesh optimization problem with sparse Hessian matrix.
- Compared with compression-and-recovery approach implemented in ADOL-C + ColPack

$n:$		2,598	12,597	39,379
$\# n n z$ in $H:$		46,488	253,029	828,129
Direct	\#colors :	54	62	65
	runtime(S) :	3.77	39.34	137.07
Indirect	\#colors :	31	30	31
	runtime(S) :	3.56	31.07	119.04
ReverseAD	runtime(S) :	0.51	3.37	12.40

From Analytical to Combinatorial

- The second (high) order reverse mode is derived from a purely analytical point of view.
- Same as the original derivation of Edge Pushing.

There are combinatorial models for AD algorithms based on the concept of Computational Graph G of the objective function.

Edge Elimination
Vertex Elimination
Face Elimination
Closely related to the classical linear algebra problem of sparse Gaussian elimination

From Analytical to Combinatorial

- The second (high) order reverse mode is derived from a purely analytical point of view.
- Same as the original derivation of Edge Pushing.
- There are combinatorial models for AD algorithms based on the concept of Computational Graph G of the objective function.
- Edge Elimination
- Vertex Elimination
- Face Elimination

Closely related to the classical linear algebra problem of sparse Gaussian elimination.

From Analytical to Combinatorial

- The second (high) order reverse mode is derived from a purely analytical point of view.
- Same as the original derivation of Edge Pushing.
- There are combinatorial models for AD algorithms based on the concept of Computational Graph G of the objective function.
- Edge Elimination
- Vertex Elimination
- Face Elimination
- Closely related to the classical linear algebra problem of sparse Gaussian elimination.

Computational Graph

- Computational graph: $G=(V, E)$
- Variables are vertices: $V=\left\{v_{i} \mid 1-n \leq i \leq I\right\}$
- Precedence relations are directed edges:

$$
E=\left\{v_{i} \rightarrow v_{k} \mid v_{i} \prec v_{k}, 1-n \leq i<k \leq I\right\}
$$

- Edge weights : $c(i, k) \doteq w\left(v_{i}, v_{k}\right)=\frac{\partial v_{k}}{\partial v_{i}}$

Computational Graph

- Computational graph: $G=(V, E)$
- Variables are vertices: $V=\left\{v_{i} \mid 1-n \leq i \leq I\right\}$
- Precedence relations are directed edges:

$$
E=\left\{v_{i} \rightarrow v_{k} \mid v_{i} \prec v_{k}, 1-n \leq i<k \leq I\right\}
$$

- Edge weights : $c(i, k) \doteq w\left(v_{i}, v_{k}\right)=\frac{\partial v_{k}}{\partial v_{i}}$
$\Rightarrow v_{1}=\varphi_{1}\left(v_{0}\right)=v_{0} * v_{0}$
$>v_{2}=\varphi_{2}\left(v_{1}\right)=\operatorname{pow}\left(v_{1}, 2.0\right)$
$\Rightarrow v_{3}=\varphi_{3}\left(v_{2}, v_{0}\right)=\operatorname{pow}\left(v_{2}, v_{0}\right)$

Vertex Elimination

Repeat

- Pick intermediate node v_{j}
- For all (i, k), s.t, $i \prec j \prec k$ do

$$
c(i, k)+=c(i, j) * c(j, k)
$$

\checkmark Remove v_{j} from V
Until V has no intermediate vertices

- Proposed by Griewank and Reese, and studied extensively by Naumann and students

Vertex Elimination

Repeat

- Pick intermediate node v_{j}
- For all (i, k), s.t, $i \prec j \prec k$ do

$$
c(i, k)+=c(i, j) * c(j, k)
$$

- Remove v_{j} from V

Until V has no intermediate vertices

- Proposed by Griewank and Reese, and studied extensively by Naumann and students

Vertex Elimination

Repeat

- Pick intermediate node v_{j}
\downarrow For all (i, k), s.t, $i \prec j \prec k$ do

$$
c(i, k)+=c(i, j) * c(j, k)
$$

\checkmark Remove v_{j} from V
Until V has no intermediate vertices

- Proposed by Griewank and Reese, and studied extensively by Naumann and students

Vertex Elimination

Repeat

- Pick intermediate node v_{j}
\triangleright For all (i, k), s.t, $i \prec j \prec k$ do

$$
c(i, k)+=c(i, j) * c(j, k)
$$

- Remove v_{j} from V

Until V has no intermediate vertices

- Proposed by Griewank and Reese, and studied extensively by Naumann and students
- Any elimination order will give the same final results.
- The time complexity (number of edge weights computed) varies with the ordering. Minimizing the space complexity also is likely to be intractable.
- NP-hard to determine the optimal ordering.

Vertex Elimination for Hessian

- The vertex elimination algorithm applies on G, gives $\nabla \cdot f$. To evaluate the Hessian of f we need the computational graph of the
gradient G_{g}, i.e, the computational graph of evaluating $\nabla \cdot f$.
G_{g} can be constructed from first order non-incremental reverse mode

Function evaluation

First order (nonincremental) reverse mode
Initialize

$\bar{v}_{i}=\sum_{v_{i} \prec v_{k}} \frac{\partial v_{k}}{\partial v_{i}} \bar{v}_{k}$

Vertex Elimination for Hessian

- The vertex elimination algorithm applies on G, gives $\nabla \cdot f$.
- To evaluate the Hessian of f we need the computational graph of the gradient G_{g}, i.e, the computational graph of evaluating $\nabla \cdot f$.
G_{g} can be constructed from first order non-incremental reverse mode

Vertex Elimination for Hessian

- The vertex elimination algorithm applies on G, gives $\nabla \cdot f$.
- To evaluate the Hessian of f we need the computational graph of the gradient G_{g}, i.e, the computational graph of evaluating $\nabla \cdot f$.
- G_{g} can be constructed from first order non-incremental reverse mode

Vertex Elimination for Hessian

- The vertex elimination algorithm applies on G, gives $\nabla \cdot f$.
- To evaluate the Hessian of f we need the computational graph of the gradient G_{g}, i.e, the computational graph of evaluating $\nabla \cdot f$.
- G_{g} can be constructed from first order non-incremental reverse mode

Function evaluation:

$$
\text { for } \begin{aligned}
k & =1,2, \cdots, l \\
v_{k} & =\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}
\end{aligned}
$$

First order (nonincremental) reverse mode :
Initialize:

$$
\begin{aligned}
& \quad \bar{v}_{l}=1.0, \bar{v}_{l-1}=\cdots=0 \\
& \text { for } i=I-1, \cdots, 1,0, \cdots, 1-n \\
& \quad \bar{v}_{i}=\sum_{v_{i} \prec v_{k}} \frac{\partial v_{k}}{\partial v_{i}} \bar{v}_{k} \\
& \quad \bar{v}_{i}=\bar{\varphi}_{i}\left(\cup_{v_{i} \prec v_{k}}\left\{v_{j}: v_{j} \prec v_{k}\right\} \cup\left\{v_{k}\right\}\right)
\end{aligned}
$$

Computational Graph of the Gradient

Function evaluation :
$>$ for $k=1,2, \cdots, l$

$$
v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}
$$

First order (nonincremental) reverse mode :

- Initialize:

$$
\bar{v}_{l}=1.0, \bar{v}_{l-1}=\cdots=0
$$

\Rightarrow for $i=I-1, \cdots, 1,0, \cdots, 1-n$

$$
\bar{v}_{i}=\sum_{v_{i} \prec v_{k}} \frac{\partial v_{k}}{\partial v_{i}} \bar{v}_{k}
$$

$$
\bar{v}_{i}=\bar{\varphi}_{i}\left(\cup_{v_{i}} \prec v_{k}\left\{v_{j}: v_{j} \prec v_{k}\right\} \cup\left\{v_{k}\right\}\right)
$$

V_{2}

$$
\overline{V_{g}}=V \cup \bar{V}, E_{g}=E_{G} \cup E_{\bar{G}} \cup E_{C}
$$

v_{1}

Computational Graph of the Gradient

Function evaluation :
$>$ for $k=1,2, \cdots, l$

$$
v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}
$$

First order (nonincremental) reverse mode :

- Initialize:

$$
\bar{v}_{l}=1.0, \bar{v}_{l-1}=\cdots=0
$$

\Rightarrow for $i=I-1, \cdots, 1,0, \cdots, 1-n$

$$
\bar{v}_{i}=\sum_{v_{i} \prec v_{k}} \frac{\partial v_{k}}{\partial v_{i}} \bar{v}_{k}
$$

$$
\bar{v}_{i}=\bar{\varphi}_{i}\left(\cup_{v_{i}} \prec v_{k}\left\{v_{j}: v_{j} \prec v_{k}\right\} \cup\left\{v_{k}\right\}\right)
$$

V_{2}

$$
\overline{V_{g}}=V \cup \bar{V}, E_{g}=E_{G} \cup E_{\bar{G}} \cup E_{C}
$$

v_{1}

Computational Graph of the Gradient

Function evaluation:
\Rightarrow for $k=1,2, \cdots, l$

$$
v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}
$$

First order (nonincremental) reverse mode :

- Initialize:

$$
\bar{v}_{I}=1.0, \bar{v}_{I-1}=\cdots=0
$$

- for $i=I-1, \cdots, 1,0, \cdots, 1-n$

$$
\bar{v}_{i}=\sum_{v_{i}<v_{k}} \frac{\partial v_{k}}{\partial v_{i}} \bar{v}_{k}
$$

$$
\bar{v}_{i}=\bar{\varphi}_{i}\left(\cup_{v_{i}} \prec v_{k}\left\{v_{j}: v_{j} \prec v_{k}\right\} \cup\left\{v_{k}\right\}\right)
$$

$V_{g}=V \cup \bar{V}, E_{g}=E_{G} \cup E_{\bar{G}} \cup E_{C}$
$E_{G}:\left(v_{i}, v_{k}\right) \in E_{g} \Longleftrightarrow v_{i} \prec v_{k}$

$$
\begin{aligned}
& v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}} \\
& c(i, k)=\frac{\partial v_{k}}{\partial v_{i}}
\end{aligned}
$$

Computational Graph of the Gradient

Function evaluation :

$>$ for $k=1,2, \cdots, l$

$$
v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}
$$

First order (nonincremental) reverse mode :

- Initialize:

$$
\bar{v}_{l}=1.0, \bar{v}_{I-1}=\cdots=0
$$

- for $i=I-1, \cdots, 1,0, \cdots, 1-n$ $\bar{v}_{i}=\sum_{v_{i} \prec v_{k}} \frac{\partial v_{k}}{\partial v_{i}} \bar{v}_{k}$ $\bar{v}_{i}=\bar{\varphi}_{i}\left(\cup_{v_{i}} \prec v_{k}\left\{v_{j}: v_{j} \prec v_{k}\right\} \cup\left\{v_{k}\right\}\right)$

$$
\begin{aligned}
& \hline V_{g}=V \cup \bar{v}, E_{g}=E_{G} \cup E_{\bar{G}} \cup E_{C} \\
& E_{\bar{G}}:\left(\bar{v}_{k}, \bar{v}_{i}\right) \in E_{g} \Longleftrightarrow \bar{v}_{k} \prec \bar{v}_{i} \Longleftrightarrow v_{i} \prec v_{k} \\
& \bar{v}_{i}=\sum_{v_{i}}<v_{k} \frac{\partial v_{k}}{\partial v_{i}} \bar{v}_{k} \\
& =\bar{\varphi}_{i}\left(\cup_{v_{i}} \prec v_{k}\right. \\
& \left.\left.\qquad v_{j}: v_{j} \prec v_{k}\right\} \cup\left\{v_{k}\right\}\right) \\
& c(\bar{k}, \bar{i})=\frac{\partial v_{j}}{\partial v_{i}}
\end{aligned}
$$

Computational Graph of the Gradient

Function evaluation :
\rightarrow for $k=1,2, \cdots, l$

$$
v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}
$$

First order (nonincremental) reverse mode :

- Initialize:

$$
\bar{v}_{l}=1.0, \bar{v}_{l-1}=\cdots=0
$$

\Rightarrow for $i=I-1, \cdots, 1,0, \cdots, 1-n$

$$
\bar{v}_{i}=\sum_{v_{i}<v_{k}} \frac{\partial v_{k}}{\partial v_{i}} \bar{v}_{k}
$$

$$
\bar{v}_{i}=\bar{\varphi}_{i}\left(\cup_{v_{i}} \prec v_{k}\left\{v_{j}: v_{j} \prec v_{k}\right\} \cup\left\{v_{k}\right\}\right)
$$

$$
\begin{aligned}
& V_{g}=V \cup \bar{v}, E_{g}=E_{G} \cup E_{\bar{G}} \cup E_{C} \\
& E_{C}:\left(v_{i}, \bar{v}_{j}\right) \in E_{g} \Longleftrightarrow \exists v_{k}, s . t, v_{i}, v_{j} \prec v_{k} \\
& \bar{v}_{i}=\sum_{v_{i} \prec v_{k}} \frac{\partial v_{k}}{\partial v_{i}} \bar{v}_{k} \\
& =\bar{\varphi}_{i}\left(\cup_{v_{i}} \prec v_{k}\left\{v_{j}: v_{j} \prec v_{k}\right\} \cup\left\{v_{k}\right\}\right) \\
& \qquad c(i, \bar{j})=\sum_{v_{i}, v_{j} \prec v_{k}} \frac{\partial^{2} v_{k}}{\partial v_{i} \partial v_{j}} \bar{v}_{k}
\end{aligned}
$$

Equivalence

- Vertex elimination on the gradient graph G_{g} gives the Hessian (combinatorial approach).
Second order reverse mode gives the Hessian (analytical approach)
Second order reverse mode:
Vertex Elimination on G_{g}
Initialize
Pick intermediate node v_{j}

Remove v_{j} from V

> Theorem
> If vertex elimination is performed on G_{g} in a symmetric reverse topological ordering, i.e, $\left(v_{k}, \bar{v}_{k}\right)$ are eliminated in pairs, in the order $k=I, I-1, \cdots, 1$, then the two algorithms correspond step-by-step.

Equivalence

- Vertex elimination on the gradient graph G_{g} gives the Hessian (combinatorial approach).
- Second order reverse mode gives the Hessian (analytical approach). Second order reverse mode: Vertex Elimination on G_{g} Initialize
\qquad

Equivalence

- Vertex elimination on the gradient graph G_{g} gives the Hessian (combinatorial approach).
- Second order reverse mode gives the Hessian (analytical approach).

Second order reverse mode:

- Initialize :

$$
\bar{v}_{I}=1.0, \bar{v}_{I-1}=\cdots=0
$$

$>$ for $k=I, I-1, \cdots, 1$

$$
\text { for each unordered pair }\left(v_{i}, v_{j}\right)
$$

$$
h_{k}\left(v_{i}, v_{j}\right)=h_{k+1}\left(v_{i}, v_{j}\right)
$$

$$
+\frac{\partial v_{k}}{\partial v_{i}} h_{k+1}\left(v_{j}, v_{k}\right)+\frac{\partial v_{k}}{\partial v_{j}} h_{k+1}\left(v_{i}, v_{k}\right)
$$

$$
+\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial v_{k}}{\partial v_{j}} h_{k+1}\left(v_{k}, v_{k}\right)+\frac{\partial^{2} v_{k}}{\partial v_{i} \partial v_{j}} \bar{v}_{k}
$$

Vertex Elimination on G_{g}

- Pick intermediate node v_{j}
- For all (i, k), s.t, $i \prec j \prec k$ do $c(i, k)+=c(i, j) * c(j, k)$
\Rightarrow Remove v_{j} from V
- Repeat until V has no intermediate vertices

If vertex elimination is performed on G_{g} in a symmetric reverse topological ordering, i.e, $\left(v_{k}, \bar{v}_{k}\right)$ are eliminated in pairs, in the order $k=I, I-1, \cdots, 1$, then the two algorithms correspond step-by-step

Equivalence

- Vertex elimination on the gradient graph G_{g} gives the Hessian (combinatorial approach).
- Second order reverse mode gives the Hessian (analytical approach).

Second order reverse mode:

$$
\begin{aligned}
& \quad \text { Initialize : } \\
& \bar{v}_{l}=1.0, \bar{v}_{l-1}=\cdots=0 \\
& \text { for } k=I, I-1, \cdots, 1 \\
& \quad \text { for each unordered pair }\left(v_{i}, v_{j}\right) \\
& \quad h_{k}\left(v_{i}, v_{j}\right)=h_{k+1}\left(v_{i}, v_{j}\right) \\
& \quad+\frac{\partial v_{k}}{\partial v_{i}} h_{k+1}\left(v_{j}, v_{k}\right)+\frac{\partial v_{k}}{\partial v_{j}} h_{k+1}\left(v_{i}, v_{k}\right) \\
& \quad+\frac{\partial v_{k}}{\partial v_{i}} \frac{\partial v_{k}}{\partial v_{j}} h_{k+1}\left(v_{k}, v_{k}\right)+\frac{\partial^{2} v_{k}}{\partial v_{i} \partial v_{j}} \bar{v}_{k} \\
& \hline
\end{aligned}
$$

Vertex Elimination on G_{g}

- Pick intermediate node v_{j}
- For all (i, k), s.t, $i \prec j \prec k$ do $c(i, k)+=c(i, j) * c(j, k)$
\Rightarrow Remove v_{j} from V
Repeat until V has no intermediate vertices

Theorem

If vertex elimination is performed on G_{g} in a symmetric reverse topological ordering, i.e, $\left(v_{k}, \bar{v}_{k}\right)$ are eliminated in pairs, in the order $k=I, I-1, \cdots, 1$, then the two algorithms correspond step-by-step.

Theorem

- The two algorithms perform the same computations, and thus maintain the same intermediate results after each step.
- With two minor tweaks of vertex elimination on G_{g}

Tweak one : parallel edges in E_{C}
Break the edge $c(i, \bar{j})=\sum_{v_{i}, v_{j}<v_{k}} \frac{\partial^{2} v_{k}}{\partial v_{i} v_{j}} \bar{v}_{k}$
Into parallel edges $c^{k}(i, \bar{j})=\frac{\partial^{2} v_{k}}{\partial v \partial_{v}} \bar{v}_{k}$
Tweak two : new set of edges E_{H}
Rule 1: all added edges are added into E_{H}
Rule 2 : After eliminating $\left(v_{k}, \bar{v}_{k}\right)$, move all $c^{k}(i, \bar{j})$ from E_{C} to E_{H}
Claim : E_{H} corresponds to the nonzeros in the Hessian of $f_{k}\left(S_{k}\right)$ after each step.

Theorem

- The two algorithms perform the same computations, and thus maintain the same intermediate results after each step.
- With two minor tweaks of vertex elimination on G_{g}
- Tweak one : parallel edges in E_{C}
- Break the edge $c(i, \bar{j})=\sum_{v_{i}, v_{j} \prec v_{k}} \frac{\partial^{2} v_{k}}{\partial v_{i} i v_{j}} \bar{v}_{k}$
- Into parallel edges $c^{k}(i, \bar{j})=\frac{\partial^{2} v_{k}}{\partial v_{i} v_{j}} \bar{v}_{k}$

Tweak two : new set of edges E_{H}
 Rule 1: all added edges are added into E_{H}
 Rule 2 : After eliminating $\left(v_{k}, \bar{v}_{k}\right)$, move all $c^{k}(i, \bar{j})$ from E_{C} to E_{H}

Claim : E_{H} corresponds to the nonzeros in the Hessian of $f_{k}\left(S_{k}\right)$ after
each step.

Theorem

- The two algorithms perform the same computations, and thus maintain the same intermediate results after each step.
- With two minor tweaks of vertex elimination on G_{g}
- Tweak one : parallel edges in E_{C}
- Break the edge $c(i, \bar{j})=\sum_{v_{i}, v_{j} \prec v_{k}} \frac{\partial^{2} v_{k}}{\partial v_{i} i v_{j}} \bar{v}_{k}$
- Into parallel edges $c^{k}(i, \bar{j})=\frac{\partial^{2} v_{k}}{\partial v_{i} v_{j}} \bar{v}_{k}$
- Tweak two : new set of edges E_{H} :
- Rule 1: all added edges are added into E_{H}
- Rule 2 : After eliminating $\left(v_{k}, \bar{v}_{k}\right)$, move all $c^{k}(i, \bar{j})$ from E_{C} to E_{H}

Claim : E_{H} corresponds to the nonzeros in the Hessian of $f_{k}\left(S_{k}\right)$ after each step.

Theorem

- The two algorithms perform the same computations, and thus maintain the same intermediate results after each step.
- With two minor tweaks of vertex elimination on G_{g}
- Tweak one : parallel edges in E_{C}
- Break the edge $c(i, \bar{j})=\sum_{v_{i}, v_{j} \prec v_{k}} \frac{\partial^{2} v_{k}}{\partial v_{i} i v_{j}} \bar{v}_{k}$
- Into parallel edges $c^{k}(i, \bar{j})=\frac{\partial^{2} v_{k}}{\partial v_{i} \partial v_{j}} \bar{v}_{k}$
- Tweak two : new set of edges E_{H} :
- Rule 1: all added edges are added into E_{H}
- Rule 2 : After eliminating $\left(v_{k}, \bar{v}_{k}\right)$, move all $c^{k}(i, \bar{j})$ from E_{C} to E_{H}
- Claim : E_{H} corresponds to the nonzeros in the Hessian of $f_{k}\left(S_{k}\right)$ after each step.

Discussion

- Second order reverse mode is equivalent to a special form of vertex elimination on the computational graph of the gradient G_{g}. May not be the optimal form of vertex elimination due to the structure of G_{g}. But, in practice it can be implemented with efficient
storage and memory access.
Second order reverse mode does not require the graph G_{g} to be formed.
Can be implemented with a single reverse sweep.
Can incorporate checkpointing to overcome memory/disk limits
Possibilities of optimizing second order reverse mode by exploiting
structural properties
Out-of-order processing of $v_{k}=\varphi_{k}\left(v_{i}\right)\left\{v_{i}: v_{i} \& v_{k}\right\}$
Benefit must outweigh the optimization overhead

Discussion

- Second order reverse mode is equivalent to a special form of vertex elimination on the computational graph of the gradient G_{g}.
- May not be the optimal form of vertex elimination due to the structure of G_{g}.
storage and memory access
Second order reverse mode does not require the graph G_{g} to be formed.
Can be implemented with a single reverse sweep.
Can incorporate checkpointing to overcome memory/disk limits
Possibilities of optimizing second order reverse mode by exploiting
structural properties
Out-of-order processing of $v_{k}=\varphi_{k}\left(v_{i}\right)\left\{v_{i}: v_{i} \prec v_{k}\right\}$
Benefit must outweigh the optimization overhead

Discussion

- Second order reverse mode is equivalent to a special form of vertex elimination on the computational graph of the gradient G_{g}.
- May not be the optimal form of vertex elimination due to the structure of G_{g}. But, in practice it can be implemented with efficient storage and memory access.

Second order reverse mode does not require the graph G_{g} to be formed
Can be implemented with a single reverse sweep.
Can incorporate checkpointing to overcome memory/disk limits
Possibilities of optimizing second order reverse mode by exploiting
structural properties
Out-of-order processing of $v_{k}=\varphi_{k}\left(v_{i}\right)\left\{v_{i}: v_{i} \prec v_{k}\right\}$
Benefit must outweigh the optimization overhead

Discussion

- Second order reverse mode is equivalent to a special form of vertex elimination on the computational graph of the gradient G_{g}.
- May not be the optimal form of vertex elimination due to the structure of G_{g}. But, in practice it can be implemented with efficient storage and memory access.
- Second order reverse mode does not require the graph G_{g} to be formed.
- Can be implemented with a single reverse sweep.

Can incorporate checkpointing to overcome memory/disk limits
Possibilities of optimizing second order reverse mode by exploiting
structural properties
Out-of-order processing of $v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}$
Benefit must outweigh the optimization overhead

Discussion

- Second order reverse mode is equivalent to a special form of vertex elimination on the computational graph of the gradient G_{g}.
- May not be the optimal form of vertex elimination due to the structure of G_{g}. But, in practice it can be implemented with efficient storage and memory access.
- Second order reverse mode does not require the graph G_{g} to be formed.
- Can be implemented with a single reverse sweep.
- Can incorporate checkpointing to overcome memory/disk limits Possibilities of optimizing second order reverse mode by exploiting structural properties

Out-of-order processing of $v_{k}=\varphi_{k}\left(v_{i}\right)\left\{v_{i}: v_{i} \prec v_{k}\right\}$
Benefit must outweigh the optimization overhead

Discussion

- Second order reverse mode is equivalent to a special form of vertex elimination on the computational graph of the gradient G_{g}.
- May not be the optimal form of vertex elimination due to the structure of G_{g}. But, in practice it can be implemented with efficient storage and memory access.
- Second order reverse mode does not require the graph G_{g} to be formed.
- Can be implemented with a single reverse sweep.
- Can incorporate checkpointing to overcome memory/disk limits
- Possibilities of optimizing second order reverse mode by exploiting structural properties
- Out-of-order processing of $v_{k}=\varphi_{k}\left(v_{i}\right)_{\left\{v_{i}: v_{i} \prec v_{k}\right\}}$
- Benefit must outweigh the optimization overhead

Future Work : Broad Picture

- This work reveals the correspondence between analytical and combinatorial points of view of AD algorithms.
- First order forward/reverse mode corresponds to edge elimination on G with specific elimination ordering.
Second order reverse mode corresponds to vertex elimination on G_{g}
with reverse symmetric elimination ordering.
Is there a generalization to high orders?
The analytical form of the high order reverse mode is the implementation of high order chain rule. What is the generalization of the combinatorial form of high order reverse mode?
What is the computational graph of the Hessian G_{H} ?
What is the elimination technique that we should perform on G_{H} ?

Future Work : Broad Picture

- This work reveals the correspondence between analytical and combinatorial points of view of AD algorithms.
- First order forward/reverse mode corresponds to edge elimination on G with specific elimination ordering.
- Second order reverse mode corresponds to vertex elimination on G_{g} with reverse symmetric elimination ordering.

The analytical form of the high order reverse mode is the implementation of high order chain rule.
What is the generalization of the combinatorial form of high order reverse mode?
What is the computational graph of the Hessian G_{H} ?
What is the elimination technique that we should perform on G_{H} ?

Future Work : Broad Picture

- This work reveals the correspondence between analytical and combinatorial points of view of AD algorithms.
- First order forward/reverse mode corresponds to edge elimination on G with specific elimination ordering.
- Second order reverse mode corresponds to vertex elimination on G_{g} with reverse symmetric elimination ordering.
- Is there a generalization to high orders?

The analytical form of the high order reverse mode is the implementation of high order chain rule.
What is the generalization of the combinatorial form of high order reverse mode?
What is the computational graph of the Hessian G_{H} ?
What is the elimination technique that we should perform on G_{H} ?

Future Work : Broad Picture

- This work reveals the correspondence between analytical and combinatorial points of view of AD algorithms.
- First order forward/reverse mode corresponds to edge elimination on G with specific elimination ordering.
- Second order reverse mode corresponds to vertex elimination on G_{g} with reverse symmetric elimination ordering.
- Is there a generalization to high orders?
- The analytical form of the high order reverse mode is the implementation of high order chain rule.
What is the generalization of the combinatorial form of high order
reverse mode?
What is the comrutational graph of the Hessian G_{H} ?
What is the elimination technique that we should perform on G_{H} ?

Future Work: Broad Picture

- This work reveals the correspondence between analytical and combinatorial points of view of AD algorithms.
- First order forward/reverse mode corresponds to edge elimination on G with specific elimination ordering.
- Second order reverse mode corresponds to vertex elimination on G_{g} with reverse symmetric elimination ordering.
- Is there a generalization to high orders?
- The analytical form of the high order reverse mode is the implementation of high order chain rule.
- What is the generalization of the combinatorial form of high order reverse mode?
What is the computational graph of the Hessian G_{H} ?
What is the elimination technique that we should perform on G_{H} ?

Future Work: Broad Picture

- This work reveals the correspondence between analytical and combinatorial points of view of AD algorithms.
- First order forward/reverse mode corresponds to edge elimination on G with specific elimination ordering.
- Second order reverse mode corresponds to vertex elimination on G_{g} with reverse symmetric elimination ordering.
- Is there a generalization to high orders?
- The analytical form of the high order reverse mode is the implementation of high order chain rule.
- What is the generalization of the combinatorial form of high order reverse mode?
- What is the computational graph of the Hessian G_{H} ?

What is the elimination technique that we should perform on G_{H} ?

Future Work: Broad Picture

- This work reveals the correspondence between analytical and combinatorial points of view of AD algorithms.
- First order forward/reverse mode corresponds to edge elimination on G with specific elimination ordering.
- Second order reverse mode corresponds to vertex elimination on G_{g} with reverse symmetric elimination ordering.
- Is there a generalization to high orders?
- The analytical form of the high order reverse mode is the implementation of high order chain rule.
- What is the generalization of the combinatorial form of high order reverse mode?
- What is the computational graph of the Hessian G_{H} ?
- What is the elimination technique that we should perform on G_{H} ?

References

- Griewank, Andreas, and Andrea Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, 2008.
- Griewank, Andreas, and Shawn Reese. On the calculation of Jacobian matrices by the Markowitz rule. In Andreas Griewank and George F. Corliss, editors, Automatic Differentiation of Algorithms: Theory, Implementation, and Application, pages 126-135. SIAM, Philadelphia, PA, 1991.
- Naumann, Uwe. Optimal Jacobian Accumulation is NP-complete. Mathematical Programming, 112(2):427-441, 2008.
- Gower, Robert Mansel, and Margarida P. Mello. Hessian matrices via automatic differentiation. Universidade Estadual de Campinas, Instituto de Matemtica, Estatstica e Computao Cientfica, 2010.
- Wang, Mu, Assefaw Gebremedhin, and Alex Pothen. Capitalizing on live variables: new algorithms for efficient Hessian computation via automatic differentiation. Mathematical Programming Computation (2016): 1-41.
- Wang, Mu, Alex Pothen and Paul Hovland. Edge Pushing is Equivalent to Vertex Elimination for Computing Hessians. SIAM CSC16.
- Wang, Mu and Alex Pothen. Evaluating High Order Derivative Tensors in Reverse Mode of Automatic Differentiation. AD2016
- Wang, Mu, and Alex Pothen. High Order Reverse Mode of AD : Theory and Implementation. In preparation.

Backup Slides

placeholder

Vertex Elimination as Gaussian Elimination

- We can build a matrix as $\mathrm{C}=\left[c_{i j}\right]_{1-n \leq i, j \leq 1}$.
- $c_{i j}=\frac{\partial v_{i}}{\partial v_{j}}$ as the edge weight in G,when $v_{j} \prec v_{i}$
- $c_{i j}=-1$, diagonal elements
- Other elements are zero

$$
\left.\begin{array}{c}
n \\
\mathrm{C}=\begin{array}{c}
n \\
m
\end{array}
\end{array} \begin{array}{ccc}
n-m & m \\
-\mathrm{I} & 0 & 0 \\
\mathrm{~B} & \mathrm{~L}-\mathrm{I} & 0 \\
\mathrm{R} & \mathrm{~T} & -\mathrm{I}
\end{array}\right]
$$

- C is a lower triangular matrix
- The Jacobian $\nabla \cdot f=\mathrm{R}+\mathrm{T} \cdot(\mathrm{L}-\mathrm{I})^{-1} \cdot \mathrm{~B}$ is the Schur complement
- Can use a Gaussian elimination procedure to compute it.

Adjacency Matrix for G_{g}

$$
\mathrm{H}=\begin{gathered}
\\
n \\
I-m \\
m \\
m \\
I-m \\
n
\end{gathered}\left[\begin{array}{cccccc}
n & I-m & m & m & I-m & n \\
-\mathrm{I} & 0 & 0 & & & \\
\mathrm{~B} & \mathrm{~L}-\mathrm{I} & 0 & & & \\
\mathrm{R} & \mathrm{~T} & -\mathrm{I} & & & \\
0 & 0 & 0 & -I & 0 & 0 \\
\mathrm{Z} & \mathrm{Y} & 0 & \mathrm{~T}^{\prime} & \mathrm{L}^{\prime}-\mathrm{I} & 0 \\
\mathrm{X} & \mathrm{Z}^{\prime} & 0 & \mathrm{R}^{\prime} & \mathrm{B}^{\prime} & -\mathrm{I}
\end{array}\right]
$$

- C^{\prime} is the transpose of C along the antidiagonal.
- The Hessian is the Schur complement of X with the rest of the matrix

[^0]: ${ }^{1}$ Gower, Robert Mansel, and Margarida P. Mello. Hessian matrices via automatic differentiation. Universidade Estadual de Campinas, Instituto de Matemtica, Estatstica e Computao Cientfica, 2010.

[^1]: ${ }^{1}$ Gower, Robert Mansel, and Margarida P. Mello. Hessian matrices via automatic differentiation. Universidade Estadual de Campinas, Instituto de Matemtica, Estatstica e Computao Cientfica, 2010.
 ${ }^{2}$ Wang, Mu, Assefaw Gebremedhin, and Alex Pothen. "Capitalizing on live variables: new algorithms for efficient Hessian computation via automatic differentiation." Mathematical Programming Computation (2016): 1-41.

[^2]: ${ }^{1}$ Gower, Robert Mansel, and Margarida P. Mello. Hessian matrices via automatic differentiation. Universidade Estadual de Campinas, Instituto de Matemtica, Estatstica e Computao Cientfica, 2010.
 ${ }^{2}$ Wang, Mu, Assefaw Gebremedhin, and Alex Pothen. "Capitalizing on live variables: new algorithms for efficient Hessian computation via automatic differentiation." Mathematical Programming Computation (2016): 1-41.

