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Second order reverse mode of Automatic Differentiation
Vertex elimination for evaluating the Gradient and the Hessian

The correspondence between second order reverse mode and vertex

elimination

Discussion and board picture
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AD Fundamentals

Automatic Differentiation (AD) is a technique that augments a
computer program so that the augmented program computes the
derivatives as well as the values of the function defined by the original
program.
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derivatives as well as the values of the function defined by the original
program.

Scalar Objective Function f : R" — R}

Implemented as a computer program

The evaluation is on a sequence of decomposed elemental functions
For k=1,2,---,1/
Vik = Sak(vi){v,-:v,--<vk}
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AD Fundamentals

Automatic Differentiation (AD) is a technique that augments a
computer program so that the augmented program computes the
derivatives as well as the values of the function defined by the original
program.

Scalar Objective Function f : R" — R}

Implemented as a computer program
The evaluation is on a sequence of decomposed elemental functions
For k=1,2,---,/
Vik = SDk(Vi){v,-:v,-—<vk}

y = pow(pow(x*x, 2.0), x), (x >0,y = x¥)
Vo <<= X
vi = 1(v) = vo * v
Vo = pa(v1) = pow(vq,2.0)
vz = p3(v2, vo) = pow(v2, vo)
V3 >>=y
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AD Fundamentals

Automatic Differentiation (AD) is a technique that augments a
computer program so that the augmented program computes the
derivatives as well as the values of the function defined by the original
program.

Scalar Objective Function f : R" — R}

Implemented as a computer program
The evaluation is on a sequence of decomposed elemental functions
For k=1,2,---,1/
Vik = Sak(vi){v,-:v,--<vk}
Indexing convention :

Independent variables : vi_,, -+, v
Intermediate variables : vq,--- ,vi_1
Dependent variable : v,
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Second Order Reverse Mode : Story Line

First Proposed by Gower and Mello!

Called Edge_Pushing initially
From the closed form of second order derivative for composite functions

!Gower, Robert Mansel, and Margarida P. Mello. Hessian matrices via automatic
differentiation. Universidade Estadual de Campinas, Instituto de Matemtica, Estatstica e
Computao Cientfica, 2010.
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Second Order Reverse Mode :

First Proposed by Gower and Mello!
Called Edge_Pushing initially
From the closed form of second order derivative for composite functions

Wang, Gebremedhin, and Pothen provided a second perspective by
adopting live variable analysis 2> from compiler theory.

Better complexity bound

Correct Implementation

Further improved with preaccumulation

!Gower, Robert Mansel, and Margarida P. Mello. Hessian matrices via automatic
differentiation. Universidade Estadual de Campinas, Instituto de Matemtica, Estatstica e
Computao Cientfica, 2010.

2Wang, Mu, Assefaw Gebremedhin, and Alex Pothen. " Capitalizing on live variables:
new algorithms for efficient Hessian computation via automatic differentiation.”
Mathematical Programming Computation (2016): 1-41.
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Second Order Reverse Mode :

First Proposed by Gower and Mello!
Called Edge_Pushing initially
From the closed form of second order derivative for composite functions

Wang, Gebremedhin, and Pothen provided a second perspective by
adopting live variable analysis 2> from compiler theory.

Better complexity bound

Correct Implementation

Further improved with preaccumulation

The new proof can be extended into general high orders.

!Gower, Robert Mansel, and Margarida P. Mello. Hessian matrices via automatic
differentiation. Universidade Estadual de Campinas, Instituto de Matemtica, Estatstica e
Computao Cientfica, 2010.

2Wang, Mu, Assefaw Gebremedhin, and Alex Pothen. " Capitalizing on live variables:
new algorithms for efficient Hessian computation via automatic differentiation.”
Mathematical Programming Computation (2016): 1-41.
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Reverse Mode of AD

Function evaluation : evaluate each elemental function
fork=1,2,---,1

Vi = SOk(Vi){v,-:v,-—<vk}
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Reverse Mode of AD

Function evaluation : evaluate each elemental function
fork=1,2,---,/
Vik = SDk(Vi){v,-:v,-<vk}
Reverse mode of AD : process sequence of elemental functions in
reverse order
fork=11-1,---,1
do something with vi = ©x(Vi){y,<v,)
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Reverse Mode of AD

Function evaluation : evaluate each elemental function
fork=1,2,---,/
Vie = Pk (Vi) fvivi<wie}
Reverse mode of AD : process sequence of elemental functions in
reverse order
fork=11-1,---,1
do something with vi = ©x(Vi){y,<v,)
Equivalent function f,(Sk) : a function defined by the elemental
functions ¢y, - - - , oy that have been processed at the end of step k,
in reverse mode
f=pio---oprope_y0--- 0.
z_ =
fi(Sk)

The independent variables of f; are denoted by Si.
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Reverse Mode of AD

Fork=11—-1,---,1

do something with vi = 0k (Vi) {v:v, v,

fi(Sk) = fur1(Skr \ {vk}, vie = (Vi) fvvi<vi})
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Reverse Mode of AD

Fork=11—-1,---,1

do something with vi = 0k (Vi) {v:v, v,

fi(Sk) = fra1(Sk1 \ {vic} ik = @k (Vi) {virvi<uiy)
fir1(Sk+1)

f="%10 " 0pki10PK 0 Pk—10+-0p1
f=@o- 0pry10pKopPK_10---0p1
fi(Sk)
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Reverse Mode of AD

Fork=11—-1,---,1

do something with vi = 0k (Vi) {v:v, v,

fi(Sk) = fur1(Skr \ {vk}, vie = (Vi) fvvi<vi})

. . . Ofi _ Ofiia | Qv Ofkin
First order chain rule : av. = v, T ov v
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Reverse Mode of AD

Fork=11—-1,---,1

For all v; < v :
Ofc _ Ofina + Avi Ofky1
OV,' - c')v,- 6v,- 8vk

fi(Sk) = fur1(Skr \ {vk}, vie = (Vi) fvvi<vi})

Ofi _ Ofiy1 | Ovi Ofiin

First order chain rule : Bv. = v v Ov
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Reverse Mode of AD

Fork=11—-1,---,1

For all v; < v :
of, __ Ofiua + Ovy Ofii1
OV,' - c')v,- 6v,- 8vk

f(Sk) = fr1 (Skn \ {vi}s vk = 0 (Vi) {vv=<i})
Second order chain rule :
Pf _ Pfin + O %1 | Ove Pl
ovidv; — 0Ovou dv; OvjOvi dvj Ov;0vi
vy Ovi O*fiia vy Ofiia
dv; dvj OvOvy ov;0v; Ovy
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Reverse Mode of AD

Fork=11—-1,---,1

For all v; < v :

Ovi Ofiq1

Ofc __ Ofinn
OV,' - c')v,- + 6v,- 8vk
For all unordered pairs (v;, vj), v < vk or vj < v :
i fis + O O fia 4 O O firy
ov;dv; — 0vou ovi Ov;Ovi v Ov;Ovy
v, Ovi, O fisa 8v, Ofii1
OviOv; Ovi

Ov; Ovj OviOvk

fi(Sk) = fur1(Skr \ {vk}, vie = (Vi) fvvi<vi})

Second order chain rule :

Pf _ Pfin + O %1 | Ove Pl
ovidv; — 0Ovou dv; OvjOvi dvj Ov;0vi
v dvie Pfiiy 0%v Ofiy1
8v,6v,- 8vk

v Ovj OvOvy
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Reverse Mode of AD

Fork=11—-1,---,1

For all v; < v :
Ofi _ Ofis1 | Qv Ok = _ Qv -
OV,' - c')v,- + 6v,- 8vk _> VI+ - Ov,- Vi
For all unordered pairs (v;, vj), vi < vk or v; < v
&f  _ fin + O O fia 4 O O firy
ov;dv; — 0vou ovi Ov;Ovi v Ov;Ovy
v, Ovi, O fisa 8v, Ofii1
Ov; Ovj OviOvk OviOv; Ovi

fi(Sk) = fra1(Sk1 \ {vic} ik = @k (Vi) {virvi<uiy)
Adjoint variable v; :
Holds the value of dfk after the step k
Incremental updates in implementation
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Reverse Mode of AD

For k=11-1,
For all v; < v :

Ofir1 | Ovi Ofiyr = 0w

c')v,- + _> VI+ - Ov,-

of _
OV,' -

1

(7Vk =
6v,- 8vk

For all unordered pairs (v;, vj), vi < vk or v; < v

52f,

v o2 st

0% vy *fi1
+ v avou t oy, aviow,

Ov;Ov;

~ Ovou

ovi Ov;Ovi
v i

v, Ovi, O fisa
OviOv; Ovi

Ov; Ovj OviOvk

fi(Sk) = fur1(Skr \ {vk}, vie = (Vi) fvvi<vi})

Adjoint variable v; :

Holds the value of dfk after the step k
Incremental updates in implementation
More implementation details for second order for exploiting sparsity

and symmetry.
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Reverse Mode of AD

Fork=11—-1,---,1

For all v; < v :
Ofi _ Ofis1 | Qv Ok = _ Qv -
OV,' - c')v,- + 6v,- 8vk _> VI+ - Ov,- Vi
For all unordered pairs (v;, vj), v < vk or vj < v :
&f  _ fin + O O fia 4 O O firy
ov;dv; — 0vou ovi Ov;Ovi v Ov;Ovy
v, Ovi, O fisa 8v, Ofii1
Ov; Ovj OviOvk OviOv; Ovi

fi(Sk) = fra1(Sk1 \ {vic} ik = @k (Vi) {virvi<uiy)
General high order chain rule — general high order reverse mode

Taking advantage of symmetry becomes more important
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Reverse Mode of AD : Implementation

Second order reverse mode : Initially implemented as LivarH in
ADOL-C

https://github.com/CSCsw/LivarH
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Reverse Mode of AD : Implementation

Second order reverse mode : Initially implemented as LivarH in
ADOL-C

https://github.com/CSCsw/LivarH
ReverseAD : an operator overloading implementation of general high
order reverse mode in C++11.

https://github.com/wangmu0701/ReverseAD
Available for experimentation
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Reverse Mode of AD : Implementation

Second order reverse mode : Initially implemented as LivarH in
ADOL-C

https://github.com/CSCsw/LivarH
ReverseAD : an operator overloading implementation of general high
order reverse mode in C++11.

https://github.com/wangmu0701/ReverseAD

Available for experimentation
Monotonic indexing for variables on the trace

vi < vk = index(v;) < index(v;)
Not satisfied by ADOL-C

An immature fix was provided for LivarH
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Reverse Mode of AD : Performance

The FeasNewt Benchmark (T. S. Munson and P. D. Hovland, 2005)
A mesh optimization problem with sparse Hessian matrix.

Compared with compression-and-recovery approach implemented in
ADOL-C + ColPack

n: 2,598 | 12,597 | 39,379

#nnz in H : 46,488 | 253,029 | 828,129
Direct #colors : 54 62 65
runtime(S) : 3.77 39.34 | 137.07

Indirect #colors : 31 30 31
runtime(S) : 3.56 31.07 | 119.04

ReverseAD | runtime(S) : 0.51 3.37 12.40
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From Analytical to Combinatorial

The second (high) order reverse mode is derived from a purely
analytical point of view.

Same as the original derivation of Edge Pushing.
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From Analytical to Combinatorial

The second (high) order reverse mode is derived from a purely
analytical point of view.

Same as the original derivation of Edge Pushing.

There are combinatorial models for AD algorithms based on the
concept of Computational Graph G of the objective function.
Edge Elimination
Vertex Elimination

Face Elimination
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From Analytical to Combinatorial

The second (high) order reverse mode is derived from a purely
analytical point of view.

Same as the original derivation of Edge Pushing.
There are combinatorial models for AD algorithms based on the
concept of Computational Graph G of the objective function.

Edge Elimination
Vertex Elimination

Face Elimination

Closely related to the classical linear algebra problem of sparse

Gaussian elimination.
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Computational Graph

Computational graph : G = (V, E)
Variables are vertices : V ={v|]1—n<i</}
Precedence relations are directed edges :
EZ{V;-)VHV,’%Vk,l—n§i<k§/}

— Ove

Edge weights : c(i, k) = w(v;, v) = 5
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Computational Graph

Computational graph : G = (V, E)
Variables are vertices : V ={v|]1—n<i</}
Precedence relations are directed edges :
EZ{V;-)VHV,’%Vk,l—n§i<k§/}

Edge weights : c(i, k) = w(v;, vk) = %

c(2,3)= g2
v3©,

. =,
3 @
.
L
(o) =w*w .

Vi = ¢1(v) = Vo ) )
 n(on) = pow{on, 20 «0.9)= 52 a2 = %
v2 = p2(v1) = pow(v1,2.0) —logva-vs @ =2y

.

= 3(v2, o) = pow(va, vo) K @
. --_ 7
" ov
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Vertex Elimination

Repeat
Pick intermediate node v;
For all (i,k), s.t, i < j < k do
c(i, k)+ = c(i,j) * c(j, k)
Remove v; from V

Until V has no intermediate vertices

Proposed by Griewank and Reese, and studied extensively by
Naumann and students
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Vertex Elimination

Repeat
D
.

Pick intermediate node v;

For all (i,k), s.t, i <j < k do N
c(i, k)+ = c(i, j) * c(j, k) '.' i(f(‘g’_)l) (1,2) c(2,3)
.

Remove v; from V N
.

Until V has no intermediate vertices

Proposed by Griewank and Reese, and studied extensively by
Naumann and students
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Vertex Elimination

Repeat

Pick intermediate node v;

._)@

For all (i,k), s.t, i <j < k do N
c(i, k)+ = c(i, j) * c(j, k) '.' i(f(‘g’_)l) (1,2) c(2,3)
.

Remove v; from V N

.

Until V has no intermediate vertices

Proposed by Griewank and Reese, and studied extensively by
Naumann and students

Any elimination order will give the same final results.

The time complexity (number of edge weights computed) varies with

the ordering. Minimizing the space complexity also is likely to be
intractable.

NP-hard to determine the optimal ordering.
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Vertex Elimination for Hessian

The vertex elimination algorithm applies on G, gives V - f.
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Vertex Elimination for Hessian

The vertex elimination algorithm applies on G, gives V - f.

To evaluate the Hessian of f we need the computational graph of the
gradient Gg, i.e, the computational graph of evaluating V - f.
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Vertex Elimination for Hessian

The vertex elimination algorithm applies on G, gives V - f.

To evaluate the Hessian of f we need the computational graph of the
gradient Gg, i.e, the computational graph of evaluating V - f.

Gg can be constructed from first order non-incremental reverse mode

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 12 /21



Vertex Elimination for Hessian

The vertex elimination algorithm applies on G, gives V - f.

To evaluate the Hessian of f we need the computational graph of the
gradient Gg, i.e, the computational graph of evaluating V - f.

Gg can be constructed from first order non-incremental reverse mode

Function evaluation :
fork=1,2,---,1/
Vi = @k(vi){v,v:v,v—<vk}
First order (nonincremental) reverse mode :

Initialize :
\7/21.0,\7/_1:"':0
fori=/—-1,---,1,0,---,1—n
_ v —
Vi = Z T\‘//’;Vk
Vi < Vg

Vi = 0i(Uy<vdvy o vj < v U{w})
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Computational Graph of the Gradient

Function evaluation :

fork=1,2,---,1/

@ Vi = ok (Vi) {v;vi<vi}
First order (nonincremental) reverse mode :
Initialize :
@ v=10,Vyy_1=---=0
@ fori=1-1,---,1,0,---,1—n
_ vy -
Vi= Y Fky
vi<vg
® % = @0 0y £ v < v U ()

@ Ve=VUV, Eg=EgUEzU
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Computational Graph of the Gradient

Function evaluation :

fork=1,2,---,1/

@ Vi = ok (Vi) {v;vi<vi}
First order (nonincremental) reverse mode :
Initialize :
@ v=10,Vyy_1=---=0
@ fori=1-1,---,1,0,---,1—n
_ vy -
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® % = @0 0y £ v < v U ()

@ Ve=VUV, Eg=EgUEzU

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 13 /21



Computational Graph of the Gradient

Function evaluation :
fork=1,2,---,/
Vik = ok (Vi) {; < v}
First order (nonincremental) reverse mode :

Initialize :

\_//:1.0,\_//,1:"':0

@ fori=/l—-1,---,1,0,---,1—n
_ vy

@ Vi = Z v Vk
vi<ve !
Vi = Gi(Uvi=v{vi - vi < vk U{vied)
@5(2.3)
A T Vg=VUV, Eg=EcUE:U
s f\ Ec:(vi,w) € Eg < v; < v
.c (0,3) (1,2
Vi = @k (Vi) {v;vi< v )

Ceemet ’@ (i, k) = 9%
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Computational Graph of the Gradient

Function evaluation :
fork=1,2,---,/

Vk = ‘Pk(vi){v;:v,-<vk}

(TS @ First order (nonincremental) reverse mode :
“¢(0,3) (2, Initialize :
5 @ vv=10,vj_1=---=0
) fori=/—-1,---,1,0,---,1—n
c(3,2 _ v
3.2) vi= Y 2ug
vi<ve !

Vi = @i(Uy=w vy 1 vj < ik U{w})

“~@ Ve=VUV, Eg = EgUEZU
. Ez: (Wi, V) €EEp <= W <V <= vi < v

"--c-(O.l) =@i(Uy<v{vj 1 vj < e U{w})
c(k,7) = 52
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Computational Graph of the Gradient

Function evaluation :
fork=1,2,---,/
Vk = ‘Pk(vi){v;:v,-<vk}

.51 . .
T @ First order (nonincremental) reverse mode :
N Initialize :
%c(0,3) c(2,1x _ _
. V/:]..O,V/,l:"':O
k ,,@ fori=/—1,---,1,0,---,1—n
€(3.2) =Y %y

Vi = @i(Uy=w vy o vj < ik U{wc})

Ve=VUV, Eg=E;UEzU
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Equivalence

Vertex elimination on the gradient graph G, gives the Hessian
(combinatorial approach).
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Equivalence

Vertex elimination on the gradient graph G, gives the Hessian
(combinatorial approach).
Second order reverse mode gives the Hessian (analytical approach).

Second order reverse mode: Vertex Elimination on G,

Initialize : L .

7 =10,7j_1=--=0 Pick intermediate node vj

For all (i, k), s.t, i < j < k do

fork=11—1,---,1 ’ st i .

for each unordered pair (v;, v;) c(i, k)+ = c(i,j) * c(, k)

hie(vi, vi) = by (vis v)) Remove v; from V
o el
+ d\\//,,( i1 (vjs vid) + T\‘//jfthrl(Vi, Vi) Repeat until V has no intermediate vertices

2
Avy Ay 9%vy
+87v,~87vjﬂhk+1(vk’ vk) + va
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Equivalence

Vertex elimination on the gradient graph G, gives the Hessian
(combinatorial approach).

Second order reverse mode gives the Hessian (analytical approach).

Second order reverse mode: Vertex Elimination on G,

Initialize : L .

7 =10,7j_1=--=0 Pick intermediate node vj

For all (i, k), s.t, i < j < k do

fork=11—1,---,1 ’ st i .

for each unordered pair (v;, v;) c(i, k)+ = c(i,j) * c(, k)

hie(vi, vi) = by (vis v)) Remove v; from V
o el
+ d\\//,,( i1 (vjs vid) + T\‘//jfthrl(Vi, Vi) Repeat until V has no intermediate vertices

2
Avy Ay 9%vy
+87v,~87vjﬂhk+1(vk’ vk) + va

If vertex elimination is performed on Gg in a symmetric
reverse topological ordering, i.e, (v, V) are eliminated in
pairs, in the order k =1,/ —1,--- .1, then the two

algorithms correspond step-by-step.
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The two algorithms perform the same computations, and thus
maintain the same intermediate results after each step.

With two minor tweaks of vertex elimination on Gg
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The two algorithms perform the same computations, and thus
maintain the same intermediate results after each step.

With two minor tweaks of vertex elimination on Gg
Tweak one : parallel edges in E¢
P 2 -
Break the edge c(i,j) = >, aavigkvj Vi

Vi, Vi< Vk

P 2 -
Into parallel edges c*(i,j) = %vk
iOVj
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The two algorithms perform the same computations, and thus
maintain the same intermediate results after each step.

With two minor tweaks of vertex elimination on Gg
Tweak one : parallel edges in E¢
P 2 -
Break the edge c(i,j) = >, aavigkvj Vi

Vi, Vi< Vk
k(: 7y _ 0*vi =
Into parallel edges c*(i,)) = e Vk

Tweak two : new set of edges Ey :

Rule 1 : all added edges are added into Ey
Rule 2 : After eliminating (vk, 7), move all c*(i,}) from Ec to Ey
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The two algorithms perform the same computations, and thus
maintain the same intermediate results after each step.

With two minor tweaks of vertex elimination on Gg
Tweak one : parallel edges in E¢
P 2 -
Break the edge c(i,j) = >, aavigkvj Vi

Vi, Vi< Vk
k(: 7y _ 0*vi =
Into parallel edges c*(i,)) = e Vk

Tweak two : new set of edges Ey :

Rule 1 : all added edges are added into Ey

Rule 2 : After eliminating (vk, 7), move all c*(i,}) from Ec to Ey
Claim : Ey corresponds to the nonzeros in the Hessian of f(Sk) after
each step.
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Discussion

Second order reverse mode is equivalent to a special form of vertex

elimination on the computational graph of the gradient G,.
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Discussion

Second order reverse mode is equivalent to a special form of vertex
elimination on the computational graph of the gradient G,.

May not be the optimal form of vertex elimination due to the
structure of Gg.
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Discussion
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Discussion

Second order reverse mode is equivalent to a special form of vertex
elimination on the computational graph of the gradient G,.
May not be the optimal form of vertex elimination due to the

structure of Gg. But, in practice it can be implemented with efficient
storage and memory access.

Second order reverse mode does not require the graph G, to be formed.

Can be implemented with a single reverse sweep.

Can incorporate checkpointing to overcome memory/disk limits
Possibilities of optimizing second order reverse mode by exploiting
structural properties

Out-of-order processing of vk = @ (Vi){v:vi<w}

Benefit must outweigh the optimization overhead
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Future Work : Broad Picture

This work reveals the correspondence between analytical and
combinatorial points of view of AD algorithms.

First order forward/reverse mode corresponds to edge elimination on G
with specific elimination ordering.
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This work reveals the correspondence between analytical and
combinatorial points of view of AD algorithms.
First order forward/reverse mode corresponds to edge elimination on G
with specific elimination ordering.
Second order reverse mode corresponds to vertex elimination on G,
with reverse symmetric elimination ordering.
Is there a generalization to high orders?

The analytical form of the high order reverse mode is the
implementation of high order chain rule.

What is the generalization of the combinatorial form of high order
reverse mode?

What is the computational graph of the Hessian Gg?
What is the elimination technique that we should perform on Gy?
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Vertex Elimination as Gaussian Elimination

We can build a matrix as C = [¢jili—n<i j<I-

cj = g;j{ as the edge weight in G,when v; < v;

c;; = —1, diagonal elements
Other elements are zero

C is a lower triangular matrix
The Jacobian V- f = R+ T - (L —I)~! - B is the Schur complement

Can use a Gaussian elimination procedure to compute it.
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Adjacency Matrix for G,

/l—m m m [|—m n

n
n [—I 0 0 i
/I-m| B L-1I 0
m R T -1
H= m 0 0 0o - 0 0
I—m | Z Y 0 T L'-1 0
n X 7z o R B I

C’ is the transpose of C along the antidiagonal.
The Hessian is the Schur complement of X with the rest of the matrix

Wang et.al (Purdue University) Second Order Reverse AD October 10, 2016 21 /21



