
erhtjhtyhy

AN INTEGER
PROGRAMMING
FORMULATION OF THE
MINIMAL JACOBIAN
REPRESENTATION
PROBLEM

2016 SIAM WORKSHOP ON COMBINATORIAL SCIENTIFIC COMPUTING
10 OCTOBER 2016

PAUL HOVLAND
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439 USA

Paul hovland

OUTLINE

§ Introduction to Automatic/Algorithmic Differentiation (AD)
§ A graph model of AD
§ Preaccumulation and scarcity
§ Experimental results
§ Conclusions

2

AUTOMATIC/ALGORITHMIC DIFFERENTIATION

§ Technique for computing analytic derivatives of functions computed by programs
(potentially millions of lines of code)

§ Derivatives used in optimization, nonlinear PDEs, sensitivity analysis, inverse
problems, uncertainty quantification, etc.

§ AD = analytic differentiation of elementary functions + propagation by chain rule
– Every programming language provides a limited number of elementary

mathematical functions
– Thus, every function computed by a program may be viewed as the

composition of these so-called intrinsic functions
– Derivatives for the intrinsic functions are known and can be combined using

the chain rule of differential calculus

AD in a Nutshell

3

AUTOMATIC/ALGORITHMIC DIFFERENTIATION

§ Start with independent variables and follow flow of the original function
computation

§ Computes Jacobian times a matrix S
§ Cost is proportional to the number of columns in S
§ Special case: Jv costs a small constant times the cost of the function
§ Ideal for functions with a small number of independent variables
§ Partial derivatives associated with intermediate variables are used at the same

time as the variables themselves

Forward Mode AD

5

AUTOMATIC/ALGORITHMIC DIFFERENTIATION

§ Start with dependent variables and propagate derivatives back to independent
variables

§ Computes matrix W times Jacobian
§ Cost is proportional to the number of rows in W
§ Special case: JTv costs a small constant times the cost of the function
§ Ideal for functions with a small number of dependent variables
§ Intermediate partial derivatives must be stored or recomputed – in the worst case

storage grows with the number of operations in the function
§ Control flow must be reversed (must store or reproduce control flow decisions)

Reverse/Adjoint Mode AD

6

AUTOMATIC/ALGORITHMIC DIFFERENTIATION
AD Tool Implementation

8

Domain-specific
data-flow analyses Combinatorial

algorithms

Parse/unparse

AUTOMATIC/ALGORITHMIC DIFFERENTIATION

§ Minimize ops to compute Jacobian
– Exploit chain rule associativity
– Related to min fill in factorization

§ Minimal representation
– Minimize edge count in DAG
– Jacobian as the sum/product of

sparse/low-rank matrices
§ Adjoint recompute/store tradeoff

– G&W: Minimize recomputation
– Aupy et al.: minimize time

§ Matrix (graph) coloring
– Minimize columns in JS

Combinatorial problems in AD

9

1

4

2 3 4 5 6

54

1 2 3

2

1

y x

f

a

c

t0

y

d0

b

a

a

A GRAPH MODEL OF AD

§ Represent function using a directed acyclic graph (DAG)
§ Computational graph

– Vertices are intermediate variables, annotated with function/operator
– Edges are unweighted

§ Linearized computational graph
– Edge weights are partial derivatives
– Vertex labels are not needed

§ Compute sum of weights over all paths from independent to dependent
variable(s), where the path weight is the product of the weights of all edges along
the path [Baur & Strassen]

§ Find an order in which to compute path weights that minimizes cost (flops):
identify common subpaths (=common subexpressions in Jacobian)

Accumulating derivatives

10

A GRAPH MODEL OF AD
A simple example

11

b = sin(y)*y
a = exp(x)
c = a*b
f = a*c

y x

sin exp

*
*

a

b

f *

c

A GRAPH MODEL OF AD
A simple example

12

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c

y x

f

a

c

t0

y

d0

b

a

a

y x

sin exp

*
*

a

b

f *

c

A GRAPH MODEL OF AD
Brute force

13

§ Compute products of edge weights along
all paths

§ Sum all paths from same source to same
target

§ Hope the compiler does a good job
recognizing common subexpressions

dfdy = d0*y*a*a + t0*a*a
dfdx = a*b*a + a*c

8 mults 2 adds

y x

f

a

c

t0

y

d0

b

a

a

v1

v2

V-1 v0

v4

v3

v5

A GRAPH MODEL OF AD
Vertex elimination

14

f

a

c

b

a

§ Multiply each in edge by each out edge,
add the product to the edge from the
predecessor to the successor

§ Conserves path weights
§ This procedure always terminates
§ The terminal form is a bipartite graph

A GRAPH MODEL OF AD
Vertex elimination

15

f
§ Multiply each in edge by each out edge,

add the product to the edge from the
predecessor to the successor

§ Conserves path weights
§ This procedure always terminates
§ The terminal form is a bipartite graph

a*a
c + a*b

A GRAPH MODEL OF AD
Forward mode: eliminate vertices in topological order

16

y x

f

a

c

t0

y

d0

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c

v1

v2

v3

v4

A GRAPH MODEL OF AD
Forward mode: eliminate vertices in topological order

17

xy

f

a

c

d1

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y

v2

v3

v4

A GRAPH MODEL OF AD
Forward mode: eliminate vertices in topological order

18

xy

f

c

d2

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = d1*a

v3

v4

A GRAPH MODEL OF AD
Forward mode: eliminate vertices in topological order

19

xy

f

d4

d2 d3

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = d1*a
d3 = a*b
d4 = a*c

v4

A GRAPH MODEL OF AD
Forward mode: eliminate vertices in topological order

20

xy

f

dfdxdfdy

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = d1*a
d3 = a*b
d4 = a*c
dfdy = d2*a
dfdx = d4 + d3*a

6 mults 2 adds

A GRAPH MODEL OF AD
Reverse mode: eliminate vertices in reverse topological order

21

y x

f

a

c

t0

y

d0

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c

v1

v2

v3

v4

A GRAPH MODEL OF AD
Reverse mode: eliminate vertices in reverse topological order

22

y x

f

d1
d2

t0

y

d0 a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a

v1

v2

v3

A GRAPH MODEL OF AD
Reverse mode: eliminate vertices in reverse topological order

23

y x

f

d4 d2

d3

d0 a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a
d3 = t0*d1
d4 = y*d1

v1 v3

A GRAPH MODEL OF AD
Reverse mode: eliminate vertices in reverse topological order

24

y x

f

d2

dfdy

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a
d3 = t0*d1
d4 = y*d1
dfdy = d3 + d0*d4

v3

A GRAPH MODEL OF AD
Reverse mode: eliminate vertices in reverse topological order

25

xy

f

dfdxdfdy

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = a*a
d2 = c + b*a
d3 = t0*d1
d4 = y*d1
dfdy = d3 + d0*d4
dfdx = a*d2

6 mults 2 adds

A GRAPH MODEL OF AD
“Cross country” mode

26

y x

f

a

c

t0

y

d0

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c

v1

v2

v3

v4

A GRAPH MODEL OF AD
“Cross country” mode

27

xy

f

a

c

d1

b

a

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y

v2

v3

v4

A GRAPH MODEL OF AD
“Cross country” mode

28

xy

f

d2 d3

d1
a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = a*a
d3 = c + b*av2

v3

A GRAPH MODEL OF AD
“Cross country” mode

29

y x

f

d3

dfdy

a

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = a*a
d3 = c + b*a
dfdy = d1*d2v3

A GRAPH MODEL OF AD
“Cross country” mode

30

xy

f

dfdxdfdy

t0 = sin(y)
d0 = cos(y)
b = t0*y
a = exp(x)
c = a*b
f = a*c
d1 = t0 + d0*y
d2 = a*a
d3 = c + b*a
dfdy = d1*d2
dfdx = a*d3

5 mults 2 adds

PREACCUMULATION AND SCARCITY

§ My first project at Argonne (1991)
§ Use forward mode as overall strategy,

but differentiate each statement using
the reverse mode

§ Arose from recognition by Bischof and
Griewank that implementing pure
forward mode would require allocation
of temporary arrays

§ Reduces memory requirements and,
frequently, number of operations

Statement-Level Preaccumulation in ADIFOR

31

PREACCUMULATION AND SCARCITY

§ For each basic block, first compute derivatives of out variables to in variables for
that basic block, then apply the chain rule to obtain derivatives of out variables to
independent variables (or dependent variables to in variables)

!"#$%
!"&'()*

= !"#$%
!"&'

!"&'
!"&'()*

!"()*
!"&'

= !"()*
!"#$%

!"#$%
!"&'

§ In context of overall reverse mode strategy, offers potential to reduce the
memory requirements for each basic block (store partial derivatives instead of
intermediate variables)

§ Storage and reverse mode accumulation cost is proportional to number of
nonzeros in preaccumulated Jacobian

Basic-block level preaccumulation

32

Probably small;
maybe sparse

Likely large;
probably dense

PREACCUMULATION AND SCARCITY
Minimal representation of a Jacobian (scarcity)

33

Reduce graph to one with minimal number of edges (or smallest number of DOF)
Avoid “catastrophic fill in” (empirical evidence that this happens in practice)
In essence, represent Jacobian as sum/product of sparse/low-rank matrices
Storage and accumulation costs proportional to number of edges

Original DAG Minimal DAGBipartite DAG

PREACCUMULATION AND SCARCITY

§ Heuristics for finding minimal representation
– Apply some vertex elimination heuristic
– Keep track of minimal intermediate graph

§ IP formulation for minimal flop problem
– Primary motivation: evaluate effectiveness

of heuristics
– Secondary motivation: find optimal

order for key computational kernels
– Jieqiu Chen et al.: AD2012

Prior work

34

PREACCUMULATION AND SCARCITY
IP Formulation of Minimal Representation

35

§ xijk = 1 : there is an edge from vertex i to vertex j after step k
§ vik = 1 : vertex i is eliminated at step k
§ Eliminate a vertex no more than once and eliminate no more

than one vertex per step
§ If an edge existed at the previous step, it must be preserved,

unless the source or sink vertex is eliminated
§ If a vertex is eliminated, then edge must exist from its

predecessors to its successors

vik
i
∑ ≤1, vik

k
∑ ≤1

xijk ≥ xijk−1 − vik − vjk
xijk ≥ xilk−1 + xljk−1 + vlk − 2

GAMS MODEL

36

binary variable x(i,j,k) "x[i,j,k] = 1 means edge (i,j) exists after turn k"
binary variable v(i,k) "v[i,k] = 1 means vertex i is eliminated at turn k"

Equations fa(i,j,k) graph at turn 1 must match givens
fb(k) must eliminate no more than one vertex at each step
fg(i) cannot eliminate the same vertex twice
fc(k) do not eliminate independents
fd(k) do not eliminate dependents
fe(i,j,k) edge must be preserved unless source or sink is eliminated
ff(i,j,k,l) edge must be introduced between predecessors and successors of eliminated vertices;

fa(i,j,k)$(given[i,j] and (ord(k) eq 1)).. x[i,j,k] =e= given(i,j);
fb(k)$(ord(k) gt 1).. sum(i, v[i,k]) =l= 1;
fg(i).. sum(k$(ord(k) gt 1), v[i,k]) =l= 1;
fc(k).. sum(i$independent[i], v[i,k]) =e= 0;
fd(k).. sum(i$dependent[i], v[i,k]) =e= 0;
fe(i,j,k)$(ord(k) gt 1).. x[i,j,k] =g= x[i,j,k-1] - v[i,k] - v[j,k];
ff(i,j,k,l)$(ord(k) gt 1).. x[i,j,k] =g= x[i,l,k-1] + x[l,j,k-1] + v[l,k] - 2;

variable obj; equation objdef; objdef.. obj =e= sum((i,j,k)$(ord(k) gt ninter), x[i,j,k]);

model minrep/ all /;

EXPERIMENTAL RESULTS
Example 1

37

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 61 2 3 4 5 61 2 3 4 5 6

8

6

7

Bipartite: 9

Forward minimum: 6

Reverse minimum: 6

IP minimum: 6

EXPERIMENTAL RESULTS
Example 2

38

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 61 2 3 4 5 6

1 2 3 4 5 6

96 7

8

10

Bipartite: 9

Forward minimum: 9

Reverse minimum: 6

IP minimum: 6

EXPERIMENTAL RESULTS
Example 3

39

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6 10

8

9

1 2 3 4 5 6

6

7
11

12

Bipartite: 6

Forward minimum: 5

Reverse minimum: 6

IP minimum: 5

EXPERIMENTAL RESULTS

40

Graph |v| |vint| |es| |ef| |eb| time
Example1 8 2 7 6 9 0.08s

Example2 10 4 12 6 9 0.09s

Example3 12 7 16 5 6 7.21s

CONCLUSIONS AND NEXT STEPS

§ Storage and accumulation costs can be reduced by representing local Jacobian
using the graph with the smallest number of edges (called scarcity by Griewank)

§ Minimal representation problem can be modeled using integer programming
§ IP solver finds optimal solution in seconds for small graphs
§ Next steps

– Extend model to use edge elimination
– Integrate IP solve with XAIFBooster (more testcases)
– Add bounds
– Reduce size of state space (elimination step)
– Find all minimal graphs

43

HELP WANTED!

§ We anticipate having one or more postdoc openings soon
§ We might have a staff opening soon
§ We are always looking for short term and long term

visitors (students and faculty)
§ We are always looking for new collaborators

44

www.anl.gov

THANK YOU!

QUESTIONS?

THIS MATERIAL IS BASED UPON WORK SUPPORTED BY THE U.S. DEPARTMENT OF
ENERGY, OFFICE OF SCIENCE, OFFICE OF ADVANCED SCIENTIFIC COMPUTING
RESEARCH, APPLIED MATHEMATICS AND COMPUTER SCIENCE PROGRAMS UNDER
CONTRACT DE-AC02-06CH11357

