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Motivation

I Arabidopsis Thaliana
• Widely studied model organism.
• 125 Mbp genome sequenced in 2000.
• About 22,500 genes and 35,000 proteins.

I NSF Arabidopsis 2010 Program launched in 2001
• Goal: discover function(s) of every gene.
• ∼$265 million funded over 10 years
• Sister programs such as AFGN by German

Research Foundation (DFG).

I Status today: > 30% genes with no known
function.

I How can computer science help?

• 11,760 microarray experiments available in
public databases.

• Construct genome wide networks to generate
intelligent hypotheses.
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Gene Networks

I Structure Learning Methods
• Pearson correlation (D’Haeseleer et al. 1998)
• Gaussian Graphical Models

• GeneNet (Schafer et al. 2005).

• Information Theory
• ARACNe (Basso et al. 2005)
• CLR (Faith et al. 2009)

• Bayesian networks
• Banjo (Hartemink et al. 2002)
• bnlearn (Scutari 2010)

Accuracy

Applicability
Speed

Poor Prognosis
I Many do poorly on an absolute basis. One in three no better than

random guessing.

I Compromise: Quality of method vs. data scale.

(Marbach et al., PNAS 2010; Nature Methods 2012)
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Information Theoretic Approach

I Connect two genes if they are dependent under mutual information

I (Xi ;Xj) = I (Xj ;Xi ) = H(Xi ) +H(Xj)−H(Xi ,Xj)

H(X ) = −
∑
X∈X

Px(X ). log(x)

I Remove indirect dependencies by Data Processing Inequality (Basso
et al. PNAS 2005)
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Permutation Testing

I For each (Xi ,Xj), compute all m! values of I (Xi ;π(Xj)).

I Accept (Xi ,Xj) as dependent if I (Xi ;Xj) is greater than at least the
fraction (1− ε) of all tested permutations.

I A large sample is used in practice.
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Our Approach

We use the following property

I (Xi ;Xj) = I (f (Xi ); f (Xj))

where f is a homeomorphism.

We rank transform each profile, i.e., we replace xi ,l with its rank in the
set {xi ,1, xi ,2, . . . , xi ,m} [Kraskov 2004]

Mutual information computed on rank transformed data. (Zola et al.,
IEEE TPDS 2010)
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Our Approach

I Each profile is a permutation of 1, 2, . . . ,m

I A random permutation of one profile is a random permutation of
another

I Use q permutations per pair for a total of q ×
(n
2

)
permutations

I I (Xi ,Xj) = 2×H(< 1, 2, . . . ,m >)−H(Xi ,Xj)
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Tool for Inferring Network of Genes (TINGe)

Each step is done in parallel:
Input: Mn×m, ε
Output: Dn×n

1. read M

2. rank transform each row of M

3. Compute MI between all
(n
2

)
pairs of genes, and q ·

(n
2

)
permutations

4. find I0, ε · q ·
(n
2

)
largest value among permutations

5. remove values in D below threshold I0

6. apply DPI to D

7. write D
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Tool for Inferring Network of Genes (TINGe)

I Decomposes D into p × p
submatrices.

I Iteration i : Pj computes
Dj ,(j+i) mod p

(Zola et al., IEEE TPDS 2010)
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How Fast Can We Do This?

I 1,024 node IBM Blue Gene/L
— 45 minutes (2007)

I 1,024 core AMD dual quad core
Infiniband cluster — 9 minutes
(2009)

I A single Xeon Phi accelerator chip — 22 minutes (Misra et al.,
IPDPS 2013; IEEE TCBB 2015)
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Arabidopsis Whole Genome Network

I Dataset

• 11,760 experiments, each measuring ∼ 22, 500 genes.

• Statistical normalization (Aluru et al., NAR 2013).

I Dataset Classification

• 9 tissue types (whole plant, rosette, seed, leaf, flower, seedling, root,
shoot, and cell suspension)

• 9 experimental conditions (chemical, development, hormone, light,
pathogen, stress, metabolism, glucose metabolism, and unknown)

Dataset combinations

Generated 90 datasets including one for each 〈tissue, condition〉 pair.
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Networks Component Analysis

I BR8000

Method Genes Edges Comp. Largest Comp. %

GeneNet 4447 15703 791 (3612, 15652) 55.58
ACGN 3977 198848 175 (3787, 198830) 49.71
TINGe 6646 136681 8 (6639, 136681) 83.07
AraNet 7420 142284 325 (7073, 142260) 92.75

I RD26-8725

Method Genes Edges Comp. Largest Comp. %

GeneNet 4709 17890 801 (3859, 17839) 53.97
ACGN 4253 319757 183 (4059, 319745) 46.52
TINGe 7049 162091 16 (7034, 162091) 80.79
AraNet 8062 231478 351 (7703, 231468) 92.40
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Validation against ATRM

I Arabidopsis Transcription Regulatory Map (Jin et al., 2015)

• Experimentally validated interactions extracted via text mining.

• 1431 interactions among 790 genes.

I Results : % of identified interactions vs. cut off distance.

Method Cut off Distance
1 2 3

ACGN 4.13 14.26 25.02
GeneNet 5.77 35.54 61.65
TINGe 9.43 50.66 97.11
AraNet 14.88 43.26 85.34
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Score-based Bayesian Network Structure Learning

I Scoring Function : s(X ,Pa(X ))

• Fitness of choosing set Pa(X ) as parents for X
X

Pa(X)

I Score of a network N

B

C
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B

A

E

C

E
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D
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Score(N) =
∑
Xi

s(Xi ,Pa(Xi ))
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Bayesian Network Modeling

I Bayesian Networks

• DAG N and joint probability P such that Xi ⊥⊥ ND(Xi )|Pa(Xi )

• Super exponential search space in n: n!2
n
2
(n−1)

rzn possible DAGs over n
variables, r ≈ 0.57436, z ≈ 1.4881 (Robinson, 1973)

• NP-hard even for bounded node in-degree (Chickering et al., 1994)]

I Optimal Structure Learning

• Serial: O(n22n); n = 20 in ≈ 50 hours (Ott et al., PSB 2004).

• Work-optimal Parallel Algorithm (Nikolova et al., HiPC 2009).

I Heuristic Structure Learning

• Serial: n = 5000 in ≈ 13 days (Tsamardinos et al., Mach. Learn.
2006)

• Genome-scale: 13,731 human gene network estimated by 50,000
random subnetworks of size 1,000 each (Tamada et al. TCBB 2011)
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Our Heuristic Parallel Algorithm

1. Conservatively estimate candidate parents set CP(X ) for each X
• Use pairwise mutual information (Zola et al. TPDS 2010)
• Symmetric: Y ∈ CP(X )⇒ X ∈ CP(Y )

2. Compute optimal parents sets (OPs) from CPs using exact method
• Directly compute OPs from small CPs (|CP(X )| ≤ t)
• Reduce large CPs by using

CP(Y )← CP(Y ) \ {X ∈ CP(Y ) | Y ∈ OP(X )}
• Select top t correlations for still large CP sets
• Directly compute OPs from the now small CPs

3. Detect and break cycles

(Nikolova et al. SC 2002)

Key Ideas
I Combine the precision of Optimal Learning with scalability of
Heuristic Learning.

I Push limit on t using massive parallelism.
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Proposed Hypercube Representation

I Compute CP(Xi )→ OP(Xi ).

OP(Xi ) = arg max
A⊆CP(Xi )

s (Xi ,A)

I But, more efficient to compute
s(Xi ,A) from s(Xi ,B) where
B ⊂ A.

I Depth First traversal to cap
memory usage.

Challenges

1. Available parallelism limited by number of genes.

2. Workload varies exponentially.
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Work Decomposition

I Maximum unit of work set as r -dimensional
hypercube.

I Larger Hypercubes are split into r -dimensional
sub-hypercubes.

I Direct access to subhypercube facilitated by
computing the root.

Key Idea

Significantly increases parallelism with negligible compromise on reuse.
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Work Distribution and Load Balancing

I Variable sized loads even when hypercube sizes are same.

I Dynamic Scheduling over a processor tree.

Arrangement of compute nodes as k-ary tree
Unallocated

Allocated

(Pamnany et al. ISC 2015)
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Work Distribution and Load Balancing

I Variable sized loads even when hypercube sizes are same.

I Dynamic Scheduling over a processor tree.

Arrangement of compute nodes as k-ary tree
Unallocated

Allocated

Work request

(Pamnany et al. ISC 2015)
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Score Computation

To compute s(X4, {X1,X2}), estimate P̃(X4|{X1,X2}).

X1X2X4
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Key Idea

Vectorization: Score function dominates execution time.
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Target Supercomputers

I Tianhe-2, National University of Defense Technology, Changsha.

I Stampede, Texas Advanced Computing Center, Austin.

Node configuration
Tianhe-2 (54.9 PF) Stampede (8.5 PF)

CPU Intel Xeon E5-2600 Intel Xeon E5-2680
CPU Frequency 2.2 GHz 2.7 GHz
No. of CPUs 2 2

DRAM 64 GB 32 GB

Coprocessors Intel Xeon Phi 31 S1P Intel Xeon Phi SE10P
Coprocessors frequency 1.09 GHz 1.09 GHz
No. of Coprocessors 3 1
Coprocessor Memory 8 GB 8 GB

Cores per node 192 (2× 12 + 3× 56) 76 (2× 8 + 60)
Threads per node 696 256
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Performance Benefit of Reuse
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Strong Scaling on Tianhe-2

all, all all, stress
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Where does the speedup come from?

5,340x

Novel parallel algorithm on 1.5M cores 5,340x

32,040x

Algorithm innovation – Avoid redundant computation 6x

35,244x
Algorithm innovation – Dynamic task scheduling 1.1x

200,890x

Vectorization 5.7x

Baseline parallel algorithm – 1024 cores
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Parallel Efficiency
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Full Application Runs

all,all seedling,all root,all all,stress

Genes (n) 14, 330 13, 590 15, 236 15, 216
Experiments (m) 11, 760 4, 933 1, 939 2, 476

Genes with |CP| ≤ t 13, 922 13, 086 14, 340 13, 293
Genes with reduced CP 408 504 896 1, 923
Genes with truncated CP 241 15 293 1, 376

Run-time on STP (sec) 1, 947 269 501 2, 352
Run-time on TH-2 (sec) 113.4 171.2

Billion scores/s (TH-2) 12.3 42.9

(Misra et al. SC 2014, best paper finalist)
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GeNA — Gene Network Analyzer

Adopted from page rank (Haveliwala, IEEE Trans. Knowledge Data
Engg. 2003)

Assign transition probabilities:

ω(i , j) =
D[i , j ]∑

k:(i ,k)∈N D[i , k]

Compute ranks:

R(j)(k+1) = (1− α) ·

 ∑
i :(i ,j)∈N

ω(i , j) · R(i)(k)

+ α · p(j)

Return connected subnetwork with high ranked genes.
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Carotenoid Subnetwork and Pathway
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Arabidopsis Knockout Mutants

Wild Type AT1G56500 AT5G07020
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Experimental Validation



31
Network Driven Biology Research

I M. Aluru, J. Zola, D. Nettleton and S. Aluru, “Reverse engineering
and analysis of large genome-scale gene networks,” Nucleic Acids
Research, Vol. 41, No. 1, pp. e24, doi: 10.1093/nar/gks904, 2013.

I H. Guo, L. Li, M. Aluru, S. Aluru and Y. Yin, “Mechanisms and
networks for brassinosteroid regulated gene expression,” Current
Opinion in Plant Biology, Vol. 16, 9 pages, 2013.

I X. Yu, L. Li, J. Zola, M. Aluru, H. Ye, A. Foudree, H. Guo, S.
Anderson, S. Aluru, P. Liu, S. Rodermel and Y. Yin, “A
brassinosteroid transcriptional network revealed by genome-wide
identification of BES1 target genes in Arabidopsis thaliana,” The
Plant Journal, Vol. 65, No. 4, pp. 634-646, 2011.



32
Acknowledgements

Group Members:

I Sriram Chockalingam

I Wasim Mohammed

I Olga Nikolova

I Jaroslaw Zola

Collaborators:

I Maneesha Aluru (Bio)

I Yanhai Yin (Bio)

I Daniel Nettleton (Stat)

I Sanchit Misra (Intel)

I Kiran Pamnany (Intel)

Funding

Research supported by NSF CCF-0811804, IOS-1257631, and Intel PCC.


	Introduction
	Parallel Algorithm
	Implementation
	Performace Results
	Verification of Generated Networks

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	0.50: 
	0.51: 
	0.52: 
	0.53: 
	0.54: 
	0.55: 
	0.56: 
	0.57: 
	anm0: 


