
Parallel machine learning approaches for
reverse engineering genome-scale

networks

Srinivas Aluru

School of Computational Science and Engineering

Institute for Data Engineering and Science (IDEaS)

Georgia Institute of Technology



2
Motivation

I Arabidopsis Thaliana
• Widely studied model organism.
• 125 Mbp genome sequenced in 2000.
• About 22,500 genes and 35,000 proteins.

I NSF Arabidopsis 2010 Program launched in 2001
• Goal: discover function(s) of every gene.
• ∼$265 million funded over 10 years
• Sister programs such as AFGN by German

Research Foundation (DFG).

I Status today: > 30% genes with no known
function.

I How can computer science help?

• 11,760 microarray experiments available in
public databases.

• Construct genome wide networks to generate
intelligent hypotheses.



2
Motivation

I Arabidopsis Thaliana
• Widely studied model organism.
• 125 Mbp genome sequenced in 2000.
• About 22,500 genes and 35,000 proteins.

I NSF Arabidopsis 2010 Program launched in 2001
• Goal: discover function(s) of every gene.
• ∼$265 million funded over 10 years
• Sister programs such as AFGN by German

Research Foundation (DFG).

I Status today: > 30% genes with no known
function.

I How can computer science help?

• 11,760 microarray experiments available in
public databases.

• Construct genome wide networks to generate
intelligent hypotheses.



2
Motivation

I Arabidopsis Thaliana
• Widely studied model organism.
• 125 Mbp genome sequenced in 2000.
• About 22,500 genes and 35,000 proteins.

I NSF Arabidopsis 2010 Program launched in 2001
• Goal: discover function(s) of every gene.
• ∼$265 million funded over 10 years
• Sister programs such as AFGN by German

Research Foundation (DFG).

I Status today: > 30% genes with no known
function.

I How can computer science help?

• 11,760 microarray experiments available in
public databases.

• Construct genome wide networks to generate
intelligent hypotheses.



2
Motivation

I Arabidopsis Thaliana
• Widely studied model organism.
• 125 Mbp genome sequenced in 2000.
• About 22,500 genes and 35,000 proteins.

I NSF Arabidopsis 2010 Program launched in 2001
• Goal: discover function(s) of every gene.
• ∼$265 million funded over 10 years
• Sister programs such as AFGN by German

Research Foundation (DFG).

I Status today: > 30% genes with no known
function.

I How can computer science help?
• 11,760 microarray experiments available in

public databases.
• Construct genome wide networks to generate

intelligent hypotheses.



3
Gene Networks

I Structure Learning Methods
• Pearson correlation (D’Haeseleer et al. 1998)
• Gaussian Graphical Models

• GeneNet (Schafer et al. 2005).

• Information Theory
• ARACNe (Basso et al. 2005)
• CLR (Faith et al. 2009)

• Bayesian networks
• Banjo (Hartemink et al. 2002)
• bnlearn (Scutari 2010)

Accuracy

Applicability
Speed

Poor Prognosis
I Many do poorly on an absolute basis. One in three no better than

random guessing.

I Compromise: Quality of method vs. data scale.

(Marbach et al., PNAS 2010; Nature Methods 2012)



3
Gene Networks

I Structure Learning Methods
• Pearson correlation (D’Haeseleer et al. 1998)
• Gaussian Graphical Models

• GeneNet (Schafer et al. 2005).

• Information Theory
• ARACNe (Basso et al. 2005)
• CLR (Faith et al. 2009)

• Bayesian networks
• Banjo (Hartemink et al. 2002)
• bnlearn (Scutari 2010)

Accuracy

Applicability
Speed

Poor Prognosis
I Many do poorly on an absolute basis. One in three no better than

random guessing.

I Compromise: Quality of method vs. data scale.

(Marbach et al., PNAS 2010; Nature Methods 2012)



3
Gene Networks

I Structure Learning Methods
• Pearson correlation (D’Haeseleer et al. 1998)
• Gaussian Graphical Models

• GeneNet (Schafer et al. 2005).

• Information Theory
• ARACNe (Basso et al. 2005)
• CLR (Faith et al. 2009)

• Bayesian networks
• Banjo (Hartemink et al. 2002)
• bnlearn (Scutari 2010)

Accuracy

Applicability
Speed

Poor Prognosis
I Many do poorly on an absolute basis. One in three no better than

random guessing.

I Compromise: Quality of method vs. data scale.

(Marbach et al., PNAS 2010; Nature Methods 2012)



4
Information Theoretic Approach

I Connect two genes if they are dependent under mutual information

I (Xi ;Xj) = I (Xj ;Xi ) = H(Xi ) +H(Xj)−H(Xi ,Xj)

H(X ) = −
∑
X∈X

Px(X ). log(x)

I Remove indirect dependencies by Data Processing Inequality (Basso
et al. PNAS 2005)



5
Permutation Testing

I For each (Xi ,Xj), compute all m! values of I (Xi ;π(Xj)).

I Accept (Xi ,Xj) as dependent if I (Xi ;Xj) is greater than at least the
fraction (1− ε) of all tested permutations.

I A large sample is used in practice.



6
Our Approach

We use the following property

I (Xi ;Xj) = I (f (Xi ); f (Xj))

where f is a homeomorphism.

We rank transform each profile, i.e., we replace xi ,l with its rank in the
set {xi ,1, xi ,2, . . . , xi ,m} [Kraskov 2004]

Mutual information computed on rank transformed data. (Zola et al.,
IEEE TPDS 2010)



7
Our Approach

I Each profile is a permutation of 1, 2, . . . ,m

I A random permutation of one profile is a random permutation of
another

I Use q permutations per pair for a total of q ×
(n
2

)
permutations

I I (Xi ,Xj) = 2×H(< 1, 2, . . . ,m >)−H(Xi ,Xj)



8
Tool for Inferring Network of Genes (TINGe)

Each step is done in parallel:
Input: Mn×m, ε
Output: Dn×n

1. read M

2. rank transform each row of M

3. Compute MI between all
(n
2

)
pairs of genes, and q ·

(n
2

)
permutations

4. find I0, ε · q ·
(n
2

)
largest value among permutations

5. remove values in D below threshold I0

6. apply DPI to D

7. write D



9
Tool for Inferring Network of Genes (TINGe)

I Decomposes D into p × p
submatrices.

I Iteration i : Pj computes
Dj ,(j+i) mod p

(Zola et al., IEEE TPDS 2010)



10
How Fast Can We Do This?

I 1,024 node IBM Blue Gene/L
— 45 minutes (2007)

I 1,024 core AMD dual quad core
Infiniband cluster — 9 minutes
(2009)

I A single Xeon Phi accelerator chip — 22 minutes (Misra et al.,
IPDPS 2013; IEEE TCBB 2015)



11
Arabidopsis Whole Genome Network

I Dataset

• 11,760 experiments, each measuring ∼ 22, 500 genes.

• Statistical normalization (Aluru et al., NAR 2013).

I Dataset Classification

• 9 tissue types (whole plant, rosette, seed, leaf, flower, seedling, root,
shoot, and cell suspension)

• 9 experimental conditions (chemical, development, hormone, light,
pathogen, stress, metabolism, glucose metabolism, and unknown)

Dataset combinations

Generated 90 datasets including one for each 〈tissue, condition〉 pair.



12
Networks Component Analysis

I BR8000

Method Genes Edges Comp. Largest Comp. %

GeneNet 4447 15703 791 (3612, 15652) 55.58
ACGN 3977 198848 175 (3787, 198830) 49.71
TINGe 6646 136681 8 (6639, 136681) 83.07
AraNet 7420 142284 325 (7073, 142260) 92.75

I RD26-8725

Method Genes Edges Comp. Largest Comp. %

GeneNet 4709 17890 801 (3859, 17839) 53.97
ACGN 4253 319757 183 (4059, 319745) 46.52
TINGe 7049 162091 16 (7034, 162091) 80.79
AraNet 8062 231478 351 (7703, 231468) 92.40



13
Validation against ATRM

I Arabidopsis Transcription Regulatory Map (Jin et al., 2015)

• Experimentally validated interactions extracted via text mining.

• 1431 interactions among 790 genes.

I Results : % of identified interactions vs. cut off distance.

Method Cut off Distance
1 2 3

ACGN 4.13 14.26 25.02
GeneNet 5.77 35.54 61.65
TINGe 9.43 50.66 97.11
AraNet 14.88 43.26 85.34



14
Score-based Bayesian Network Structure Learning

I Scoring Function : s(X ,Pa(X ))

• Fitness of choosing set Pa(X ) as parents for X
X

Pa(X)

I Score of a network N

B

C

A

D

E

B

A

E

C

E

A

C

D

A

D

A

Score(N) =
∑
Xi

s(Xi ,Pa(Xi ))



15
Bayesian Network Modeling

I Bayesian Networks

• DAG N and joint probability P such that Xi ⊥⊥ ND(Xi )|Pa(Xi )

• Super exponential search space in n: n!2
n
2
(n−1)

rzn possible DAGs over n
variables, r ≈ 0.57436, z ≈ 1.4881 (Robinson, 1973)

• NP-hard even for bounded node in-degree (Chickering et al., 1994)]

I Optimal Structure Learning

• Serial: O(n22n); n = 20 in ≈ 50 hours (Ott et al., PSB 2004).

• Work-optimal Parallel Algorithm (Nikolova et al., HiPC 2009).

I Heuristic Structure Learning

• Serial: n = 5000 in ≈ 13 days (Tsamardinos et al., Mach. Learn.
2006)

• Genome-scale: 13,731 human gene network estimated by 50,000
random subnetworks of size 1,000 each (Tamada et al. TCBB 2011)



16
Our Heuristic Parallel Algorithm

1. Conservatively estimate candidate parents set CP(X ) for each X
• Use pairwise mutual information (Zola et al. TPDS 2010)
• Symmetric: Y ∈ CP(X )⇒ X ∈ CP(Y )

2. Compute optimal parents sets (OPs) from CPs using exact method
• Directly compute OPs from small CPs (|CP(X )| ≤ t)
• Reduce large CPs by using

CP(Y )← CP(Y ) \ {X ∈ CP(Y ) | Y ∈ OP(X )}
• Select top t correlations for still large CP sets
• Directly compute OPs from the now small CPs

3. Detect and break cycles

(Nikolova et al. SC 2002)

Key Ideas
I Combine the precision of Optimal Learning with scalability of
Heuristic Learning.

I Push limit on t using massive parallelism.



16
Our Heuristic Parallel Algorithm

1. Conservatively estimate candidate parents set CP(X ) for each X
• Use pairwise mutual information (Zola et al. TPDS 2010)
• Symmetric: Y ∈ CP(X )⇒ X ∈ CP(Y )

2. Compute optimal parents sets (OPs) from CPs using exact method
• Directly compute OPs from small CPs (|CP(X )| ≤ t)
• Reduce large CPs by using

CP(Y )← CP(Y ) \ {X ∈ CP(Y ) | Y ∈ OP(X )}
• Select top t correlations for still large CP sets
• Directly compute OPs from the now small CPs

3. Detect and break cycles

(Nikolova et al. SC 2002)

Key Ideas
I Combine the precision of Optimal Learning with scalability of
Heuristic Learning.

I Push limit on t using massive parallelism.



17
Proposed Hypercube Representation

I Compute CP(Xi )→ OP(Xi ).

OP(Xi ) = arg max
A⊆CP(Xi )

s (Xi ,A)

I But, more efficient to compute
s(Xi ,A) from s(Xi ,B) where
B ⊂ A.

I Depth First traversal to cap
memory usage.

Challenges

1. Available parallelism limited by number of genes.

2. Workload varies exponentially.



17
Proposed Hypercube Representation

I Compute CP(Xi )→ OP(Xi ).

OP(Xi ) = arg max
A⊆CP(Xi )

s (Xi ,A)

I But, more efficient to compute
s(Xi ,A) from s(Xi ,B) where
B ⊂ A.

I Depth First traversal to cap
memory usage.

{}

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

Challenges

1. Available parallelism limited by number of genes.

2. Workload varies exponentially.



17
Reusing Computations

I Compute CP(Xi )→ OP(Xi ).

OP(Xi ) = arg max
A⊆CP(Xi )

s (Xi ,A)

I But, more efficient to compute
s(Xi ,A) from s(Xi ,B) where
B ⊂ A.

I Depth First traversal to cap
memory usage.

{}

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

Challenges

1. Available parallelism limited by number of genes.

2. Workload varies exponentially.



17
Reusing Computations

I Compute CP(Xi )→ OP(Xi ).

OP(Xi ) = arg max
A⊆CP(Xi )

s (Xi ,A)

I But, more efficient to compute
s(Xi ,A) from s(Xi ,B) where
B ⊂ A.

I Depth First traversal to cap
memory usage.

{}

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

Challenges

1. Available parallelism limited by number of genes.

2. Workload varies exponentially.



18
Work Decomposition

I Maximum unit of work set as r -dimensional
hypercube.

I Larger Hypercubes are split into r -dimensional
sub-hypercubes.

I Direct access to subhypercube facilitated by
computing the root.

Key Idea

Significantly increases parallelism with negligible compromise on reuse.



18
Work Decomposition

I Maximum unit of work set as r -dimensional
hypercube.

I Larger Hypercubes are split into r -dimensional
sub-hypercubes.

I Direct access to subhypercube facilitated by
computing the root.

Key Idea

Significantly increases parallelism with negligible compromise on reuse.



18
Work Decomposition

I Maximum unit of work set as r -dimensional
hypercube.

I Larger Hypercubes are split into r -dimensional
sub-hypercubes.

I Direct access to subhypercube facilitated by
computing the root.

Key Idea

Significantly increases parallelism with negligible compromise on reuse.



18
Work Decomposition

I Maximum unit of work set as r -dimensional
hypercube.

I Larger Hypercubes are split into r -dimensional
sub-hypercubes.

I Direct access to subhypercube facilitated by
computing the root.

Key Idea

Significantly increases parallelism with negligible compromise on reuse.



19
Work Distribution and Load Balancing

I Variable sized loads even when hypercube sizes are same.

I Dynamic Scheduling over a processor tree.

Arrangement of compute nodes as k-ary tree
Unallocated

Allocated

(Pamnany et al. ISC 2015)



19
Work Distribution and Load Balancing

I Variable sized loads even when hypercube sizes are same.

I Dynamic Scheduling over a processor tree.

Arrangement of compute nodes as k-ary tree
Unallocated

Allocated

(Pamnany et al. ISC 2015)



19
Work Distribution and Load Balancing

I Variable sized loads even when hypercube sizes are same.

I Dynamic Scheduling over a processor tree.

Arrangement of compute nodes as k-ary tree
Unallocated

Allocated

(Pamnany et al. ISC 2015)



19
Work Distribution and Load Balancing

I Variable sized loads even when hypercube sizes are same.

I Dynamic Scheduling over a processor tree.

Arrangement of compute nodes as k-ary tree
Unallocated

Allocated

(Pamnany et al. ISC 2015)



19
Work Distribution and Load Balancing

I Variable sized loads even when hypercube sizes are same.

I Dynamic Scheduling over a processor tree.

Arrangement of compute nodes as k-ary tree
Unallocated

Allocated

Work request

(Pamnany et al. ISC 2015)



20
Score Computation

To compute s(X4, {X1,X2}), estimate P̃(X4|{X1,X2}).

X1X2X4

1

2

3

4

5

6

7

8

9

Key Idea

Vectorization: Score function dominates execution time.



20
Score Computation

To compute s(X4, {X1,X2}), estimate P̃(X4|{X1,X2}).

X1X2X4

1

6

4

7

3

8

9

2

5

Key Idea

Vectorization: Score function dominates execution time.



20
Score Computation

To compute s(X4, {X1,X2,X3}), estimate P̃(X4|{X1,X2,X3}).

X1X2X3X4

1

6

4

7

3

8

9

2

5

Key Idea

Vectorization: Score function dominates execution time.



20
Score Computation

To compute s(X4, {X1,X2,X3}), estimate P̃(X4|{X1,X2,X3}).

X1X2X3X4

1

6

4

7

3

8

9

2

5

Key Idea

Vectorization: Score function dominates execution time.



20
Score Computation

To compute s(X4, {X1,X2,X3}), estimate P̃(X4|{X1,X2,X3}).

X1X2X3X4

1

6

4

7

3

8

9

2

5

Key Idea

Vectorization: Score function dominates execution time.



21
Target Supercomputers

I Tianhe-2, National University of Defense Technology, Changsha.

I Stampede, Texas Advanced Computing Center, Austin.

Node configuration
Tianhe-2 (54.9 PF) Stampede (8.5 PF)

CPU Intel Xeon E5-2600 Intel Xeon E5-2680
CPU Frequency 2.2 GHz 2.7 GHz
No. of CPUs 2 2

DRAM 64 GB 32 GB

Coprocessors Intel Xeon Phi 31 S1P Intel Xeon Phi SE10P
Coprocessors frequency 1.09 GHz 1.09 GHz
No. of Coprocessors 3 1
Coprocessor Memory 8 GB 8 GB

Cores per node 192 (2× 12 + 3× 56) 76 (2× 8 + 60)
Threads per node 696 256



22
Performance Benefit of Reuse

0

100

200

300

400

500

128 256 512 1024 2048
No. of Compute Nodes

T
im

e 
to

 s
ol

ut
io

n 
(s

ec
on

ds
)

Without Reuse

With Reuse

I 4.8-6.4x Speedup due to reuse of computation.



23
Strong Scaling on Tianhe-2

all, all all, stress

250

500

750

1000

1250

1024 2048 4096 8192 1024 2048 4096 8192
No. of Compute Nodes

T
im

e 
to

 s
ol

ut
io

n 
(s

ec
on

ds
)

Scheduling

static

dynamic

I 7-18 % improvement by dynamic scheduling in all cases except –
8192 nodes for the 〈all,stress〉 dataset



24
Where does the speedup come from?

5,340x

Novel parallel algorithm on 1.5M cores 5,340x

32,040x

Algorithm innovation – Avoid redundant computation 6x

35,244x
Algorithm innovation – Dynamic task scheduling 1.1x

200,890x

Vectorization 5.7x

Baseline parallel algorithm – 1024 cores

S
p
ee
du
p
co
m
pa
re
d
to

ba
se
lin
e

S
p
ee
du
p
ga
in
ed



25
Parallel Efficiency

128

256

512

1024

2048

4096

256 512 1024 2048 4096 8192
No. of Compute Nodes

T
im

e 
to

 S
ol

ut
io

n 
(s

ec
on

ds
)

all, all all, stress

0.8

0.9

1.0

256 512 1024 2048 4096 8192
No. of Compute Nodes

P
ar

al
le

l E
ffi

ci
en

cy

all, all all, stress



26
Full Application Runs

all,all seedling,all root,all all,stress

Genes (n) 14, 330 13, 590 15, 236 15, 216
Experiments (m) 11, 760 4, 933 1, 939 2, 476

Genes with |CP| ≤ t 13, 922 13, 086 14, 340 13, 293
Genes with reduced CP 408 504 896 1, 923
Genes with truncated CP 241 15 293 1, 376

Run-time on STP (sec) 1, 947 269 501 2, 352
Run-time on TH-2 (sec) 113.4 171.2

Billion scores/s (TH-2) 12.3 42.9

(Misra et al. SC 2014, best paper finalist)



27
GeNA — Gene Network Analyzer

Adopted from page rank (Haveliwala, IEEE Trans. Knowledge Data
Engg. 2003)

Assign transition probabilities:

ω(i , j) =
D[i , j ]∑

k:(i ,k)∈N D[i , k]

Compute ranks:

R(j)(k+1) = (1− α) ·

 ∑
i :(i ,j)∈N

ω(i , j) · R(i)(k)

+ α · p(j)

Return connected subnetwork with high ranked genes.



28
Carotenoid Subnetwork and Pathway

B2

NDA1

AT1G23740

AT4G11570

AT4G34750

ZEP

AT4G17840AT3G17800

AT2G34460

AT4G22240

AT1G32080

Z-ISO

B1

AT1G64680

AT5G58260

AT5G19855

PSY

AT1G26230

SIG3
LUT5

AT5G42310

AT1G56500

NPQ1

LUT2

TIC55-II

DEGP1

STN7

AT4G28290

LYC

PDS
BGLU40

AT5G07020

APE1

LHCA6

LIL3:1

LUT1

AT3G23700

AT1G14150

AT1G44920

Geranylgeranyl pyrophosphate

Phytoene

Phytofluene

ζRCarotene

Neurosporene

Lycopene

δRCarotene

αRCarotene

Zeinoxanthin

ViolaxanthinABA

PSY

PDS

PDS; ZRISO

ZDS

ZDS

LUT2 LYC

LUT5

B1? B2

LUT1

LYC

Antheraxanthin

B1? B2

B1? B2

ZEP

NPQ1

Neoxanthin

NXS??

Lutein Zeaxanthin

βRcryptoxanthin

βRCarotene

γRCarotene

CRTISO

Pink – Seed genes; Green – In associated pathways; Blue – Have related GO terms;

Yellow – No known function



28
Carotenoid Subnetwork and Pathway

PSY

LUT2

DEGP1

AT4G22240

AT4G17840

AT1G26230

STN7

AT1G44920

AT3G23700AT1G64680
AT5G07020

APE1

LHCA6 LUT1

AT1G14150

LIL3:1

Z-ISO

B1

AT1G32080

AT2G34460

NDA1

AT5G19855

AT5G58260

AT4G28290

AT5G42310

PDS

LUT5
SIG3

NPQ1

BGLU40

LYC

TIC55-II

B2

AT4G34750

AT4G11570

ZEP

AT1G56500

AT3G17800

AT1G23740

Geranylgeranyl pyrophosphate

Phytoene

Phytofluene

ζRCarotene

Neurosporene

Lycopene

δRCarotene

αRCarotene

Zeinoxanthin

ViolaxanthinABA

PSY

PDS

PDS; ZRISO

ZDS

ZDS

LUT2 LYC

LUT5

B1? B2

LUT1

LYC

Antheraxanthin

B1? B2

B1? B2

ZEP

NPQ1

Neoxanthin

NXS??

Lutein Zeaxanthin

βRcryptoxanthin

βRCarotene

γRCarotene

CRTISO

Pink – Seed genes; Green – In associated pathways; Blue – Have related GO terms;

Yellow – No known function



29
Arabidopsis Knockout Mutants

Wild Type AT1G56500 AT5G07020



30
Experimental Validation



31
Network Driven Biology Research

I M. Aluru, J. Zola, D. Nettleton and S. Aluru, “Reverse engineering
and analysis of large genome-scale gene networks,” Nucleic Acids
Research, Vol. 41, No. 1, pp. e24, doi: 10.1093/nar/gks904, 2013.

I H. Guo, L. Li, M. Aluru, S. Aluru and Y. Yin, “Mechanisms and
networks for brassinosteroid regulated gene expression,” Current
Opinion in Plant Biology, Vol. 16, 9 pages, 2013.

I X. Yu, L. Li, J. Zola, M. Aluru, H. Ye, A. Foudree, H. Guo, S.
Anderson, S. Aluru, P. Liu, S. Rodermel and Y. Yin, “A
brassinosteroid transcriptional network revealed by genome-wide
identification of BES1 target genes in Arabidopsis thaliana,” The
Plant Journal, Vol. 65, No. 4, pp. 634-646, 2011.



32
Acknowledgements

Group Members:

I Sriram Chockalingam

I Wasim Mohammed

I Olga Nikolova

I Jaroslaw Zola

Collaborators:

I Maneesha Aluru (Bio)

I Yanhai Yin (Bio)

I Daniel Nettleton (Stat)

I Sanchit Misra (Intel)

I Kiran Pamnany (Intel)

Funding

Research supported by NSF CCF-0811804, IOS-1257631, and Intel PCC.


	Introduction
	Parallel Algorithm
	Implementation
	Performace Results
	Verification of Generated Networks

	0.0: 
	0.1: 
	0.2: 
	0.3: 
	0.4: 
	0.5: 
	0.6: 
	0.7: 
	0.8: 
	0.9: 
	0.10: 
	0.11: 
	0.12: 
	0.13: 
	0.14: 
	0.15: 
	0.16: 
	0.17: 
	0.18: 
	0.19: 
	0.20: 
	0.21: 
	0.22: 
	0.23: 
	0.24: 
	0.25: 
	0.26: 
	0.27: 
	0.28: 
	0.29: 
	0.30: 
	0.31: 
	0.32: 
	0.33: 
	0.34: 
	0.35: 
	0.36: 
	0.37: 
	0.38: 
	0.39: 
	0.40: 
	0.41: 
	0.42: 
	0.43: 
	0.44: 
	0.45: 
	0.46: 
	0.47: 
	0.48: 
	0.49: 
	0.50: 
	0.51: 
	0.52: 
	0.53: 
	0.54: 
	0.55: 
	0.56: 
	0.57: 
	anm0: 


