A Parallel Solver for Laplacian
Matrices

Tristan Konolige (me) and Jed Brown

@' University of Colorado
Boulder

Graph Laplacian Matrices

* Covered by other speakers (hopefully)
e Useful in a variety of areas
* Graphs are getting very big

* Facebook now has ~couple billion users
 Computer networks for cyber security

* Interested in network graphs
* Undirected
* Weighted

* We will need faster ways to solve these systems
* Note: Laplacians have constant vector as nullspace

Why Parallelism

* Graphs are growing but single processor speed is not
* Want to process existing graphs faster or do larger network analysis

* Clock speed has stagnated
* Bandwidth increasing slowly

* Processor count/machine count growing
e Xeon Phi, etc.

* Going to look at distributed memory systems
* Most supercomputers and commodity clusters

Goals

* Parallel scalability out to large numbers of processors/nodes
* Convergence factors close to LAMG
* Interested mostly in scale-free graphs for now

Existing Solvers

* Spielman and Teng’s theoretical nearly-linear time solver
* No viable practical implementations
* Many other theoretical solvers

» Kelner solver (previous talk w/ Kevin)

* Combinatorial Multigrid from [Koutis and Miller]

* Lean Algebraic Multigrid from [Livhe and Brandt]

* Degree Aware Aggregation from [Napov and Notay]
* CG a variety of preconditioners

* Direct solvers

Smoothing

Multigrid

e Both CMG and LAMG are Restriction Interpolation
multigrid solvers

 Multilevel method for solving Smoothing
linear systems

* O(N) (ideally)

* Originally intended for
geometric problems, now used
on arbitrary matrices

Direct Solve

A V-cycle

Lean Algebraic Multigrid tivne and Brandt 2011)

* Low degree elimination
* Eliminate up to degree 4
e Reduces cycle complexity
* Incredibly useful on network graphs

* Aggregation based Multigrid
* Restriction/interpolation from fine grid aggregates
* Avoids aggregating high-degree nodes
e Based on strength of connection + energy ratio
* Typically smoothed restriction/interpolation

LAMG

* Caliber 1 interpolation (unsmoothed restriction/interpolation)
* Avoids complexity from fill in

* Gauss-Seidel Smoothing

* Multilevel iterant recombination — adaptive energy correction
e Similar to Krylov method at every level

* O(N) empirically

LAMG

* Hierarchy alternates between elimination and aggregation
* First level elimination only applied once during solve

Level Size NNZ Type Time (s) Comm Size Imb
0 1069126 113682432 Elim 0.1180 64 1.10
1 1019470 113385358 Reg 0.7480 64 1.11
2 75493 18442801 Elim 0.0090 64 1.46
3 62072 18374722 Reg 0.0687 64 1.23
4 8447 1265927 Elim 0.0016 64 2.87
3) 5153 1250659 Reg 0.0052 64 1.49
6 466 20188 Elim 0.0004 11.00
7 173 19125 Reg 0.0019 11.00
8 18 56 Elim 0.0001 11.00
9 3 7 Reg 0.0001 11.00

Implementation

 C++ and MPI e V-cycles
* No OpenMP for now * No it_erant recombination,_ requires
e CombBLAS for 2D matrix mtz)lglrgll?e?Ot-prOdUCts which are slow
decomposition [Bulug and Gilbert * Instead use constant correction

2011]

* Needed for scaling
* Helps distribute high-degree hubs

 Randomized matrix ordering
* Worse locality
* Greatly improves load balance

* Jacobi Smoothing

* CG preconditioner
e Worse than energy correction
* Orthangonalize every cycle

* Manually redistribute work if
problem gets too small

Parallel Low-Degree Elimination

* Difficult part is if there are two low-degree
neighbors

e Can’t eliminate both at once

e Use SpMV to choose which neighbors to
eliminate
* Boolean vector indicating degree < 4
* Semiring is {min(hash(x), hash(y)), id}
* Can use multiple iterations to eliminate all low-

degree nodes

* |In practice, one iteration eliminates most low-
degree nodes

Parallel Aggregation

for each undecided node n:
let s = undecided or seed neighbor with
strongest connection and not full
If s Is a seed:
aggregate n with s
If s is undecided:
S becomes a seed
aggregate n with s
end

e Aggregates depend on order

Parallel Aggregation

* SpMV iterations on strength of connection matrix to form aggregates
* Vector is status of node {Undecided, Aggregated, Seed,FullSeed}
e Semiring + is max (i.e. strongest connection)
e x *yisyif x==Undecided or Seed otherwise 0

In resulting vector, if x found an Aggregated vertex, we aggregate.
Otherwise x votes for is best connection

* Undecided nodes with enough votes are converted to seeds
e <10 iteration before every node is decided

* Cluster size is somewhat constrained
* As long as clusters have a reasonable size bound, results are fine

* We do not use energy ratios in aggregation (yet)
* Will have worse aggregates than LAMG

Strength of Connection

* LAMG uses a strength of (X, Xo)| (i A
- : Cuv ‘= X,Y)=> x®y
connectlpn metric for (XU,XU)Q (XU’XU)Q 2
aggregation
e Relax on Ax=0 for random x Affinity
* In our tests, algebraic distance
[Safro, Sanders, Schulz 2012]
performs slightly better than R)
affinit _ (k,r) (k)12 2
Y Pz’j—(ZbCi —-x; [%)3

* 58.49% of fastest solves used
algebraic distance vs 41.51%
with affinity Algebraic distance

25

5.0

75

10.0

125

Matrix Randomization

BFS Nonzero Rows Distribution

25 5.0 75 10.0 125

80000

70000

60000

50000

40000

30000

20000

10000

Random Nonzero Rows Distribution]

25

5.0

75

10.0

125
25 5.0 75 10.0 125

88000

86000

84000

82000

80000

78000

76000

74000

72000

Results

e All tests run on NERSC’s Edison

e 2x 2.4GHz 12-core Intel "lvy Bridge" processor per node
* Cray Aries interconnect
e 4 MPI tasks per node

* LAMG Serial implementation by [Livhe and Brandt]
* [n MATLAB with C mex extensions

* Solve to 1e-8 relative residual norm
* Code is not well optimized
* Interested in scaling

Convergence Factors

* Cycle complexity: nnz(all ops)/nnz(finest matrix)
* Effective Convergence Factor (ECF) A |[residual || * 1/cycle complexity

m ECF Serial LAMG ECF Our Solver ECF Jacobi PCG

hollywood-2009 0.540 0.856 0.992
citationCiteseer 0.816 0.919 0.938
astro-ph 0.695 0.800 0.846
as-22july06 0.282 0.501 0.784
delaunay_n16 0.812 0.896 0.980

* No GS-smoothing
 No iterant recombination
* Poorer aggregates

hollywood-2009
1,139,905 nodes
113,891,327 nnz

[100
3.7x j

1000 |

Time (s)

45x

Regular solve
Random permutation solve
LAMG serial*

10;

T

5

10 15 20 25 30 35
Number of nodes (4 cores per node)

40

hollywood-2009
1,139,905 nodes
113,891,327 nnz

1000 |

100 |

10 |

Random permutation solve
Random Setup Time
LAMG serial* setup

\

5

10 15 20 25 30 35
Number of nodes (4 cores per node)

40

europe_osm
rows 50,912,018
nnz 108,109,320

1000 |

100 |

10

Setup Random
Solve Random

10

15 20 25 30 35 40
Number of nodes (4 cores per node)

45

50

Conclusion & Future Work

e Distributed memory solver show significant speedups
* Even without complex aggregation strategies

* Matrix randomization provides large benefit

* Improve aggregation with energy ratios
* Convergence rates still well below LAMG
* Particular graphs have very poor rates

Thank you

