
A Parallel Solver for Laplacian 
Matrices  

Tristan Konolige (me) and Jed Brown 



Graph Laplacian Matrices 

• Covered by other speakers (hopefully) 

• Useful in a variety of areas 

• Graphs are getting very big 
• Facebook now has ~couple billion users 
• Computer networks for cyber security 

• Interested in network graphs 
• Undirected 
• Weighted 

• We will need faster ways to solve these systems 

• Note: Laplacians have constant vector as nullspace 



Why Parallelism 

• Graphs are growing but single processor speed is not 

• Want to process existing graphs faster or do larger network analysis 

• Clock speed has stagnated 
• Bandwidth increasing slowly 

• Processor count/machine count growing 
• Xeon Phi, etc. 

• Going to look at distributed memory systems 
• Most supercomputers and commodity clusters 



Goals 

• Parallel scalability out to large numbers of processors/nodes 

• Convergence factors close to LAMG 

• Interested mostly in scale-free graphs for now 



Existing Solvers 

• Spielman and Teng’s theoretical nearly-linear time solver 
• No viable practical implementations 

• Many other theoretical solvers 

• Kelner solver (previous talk w/ Kevin) 

• Combinatorial Multigrid from [Koutis and Miller] 

• Lean Algebraic Multigrid from [Livne and Brandt] 

• Degree Aware Aggregation from [Napov and Notay] 

• CG a variety of preconditioners 

• Direct solvers 



Multigrid 

• Both CMG and LAMG are 
multigrid solvers 

• Multilevel method for solving 
linear systems 

• O(N) (ideally) 

• Originally intended for 
geometric problems, now used 
on arbitrary matrices 
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Lean Algebraic Multigrid 

• Low degree elimination 
• Eliminate up to degree 4 

• Reduces cycle complexity 

• Incredibly useful on network graphs 

• Aggregation based Multigrid 
• Restriction/interpolation from fine grid aggregates 

• Avoids aggregating high-degree nodes 

• Based on strength of connection + energy ratio 

• Typically smoothed restriction/interpolation 

[Livne and Brandt 2011] 



LAMG 

• Caliber 1 interpolation (unsmoothed restriction/interpolation) 
• Avoids complexity from fill in 

• Gauss-Seidel Smoothing 

• Multilevel iterant recombination – adaptive energy correction 
• Similar to Krylov method at every level 

• O(N) empirically 

 



LAMG 

• Hierarchy alternates between elimination and aggregation 

• First level elimination only applied once during solve 

Level       Size           NNZ  Type  Time (s) Comm Size  Imb 

    0    1069126     113682432  Elim  0.1180          64 1.10 

    1    1019470     113385358   Reg  0.7480          64 1.11     

    2      75493      18442801  Elim  0.0090          64 1.46     

    3      62072      18374722   Reg  0.0687          64 1.23     

    4       8447       1265927  Elim  0.0016          64 2.87     

    5       5153       1250659   Reg  0.0052          64 1.49     

    6        466         20188  Elim  0.0004           1 1.00     

    7        173         19125   Reg  0.0019           1 1.00     

    8         18            56  Elim  0.0001           1 1.00     

    9          3             7   Reg  0.0001           1 1.00 



Implementation 

• C++ and MPI 
• No OpenMP for now 

• CombBLAS for 2D matrix 
decomposition [Buluç and Gilbert 
2011] 

• Needed for scaling 
• Helps distribute high-degree hubs 

• Randomized matrix ordering 
• Worse locality 
• Greatly improves load balance 

• Jacobi Smoothing 

• V-cycles 
• No iterant recombination, requires 

multiple dot-products which are slow 
in parallel 

• Instead use constant correction 

• CG preconditioner 
• Worse than energy correction 
• Orthangonalize every cycle 

• Manually redistribute work if 
problem gets too small 

 



Parallel Low-Degree Elimination 

• Difficult part is if there are two low-degree 
neighbors 

• Can’t eliminate both at once 

• Use SpMV to choose which neighbors to 
eliminate 

• Boolean vector indicating degree < 4 
• Semiring is {min(hash(x), hash(y)), id} 

• Can use multiple iterations to eliminate all low-
degree nodes 

• In practice, one iteration eliminates most low-
degree nodes 



Parallel Aggregation 

for each undecided node n: 

  let s = undecided or seed neighbor with 

          strongest connection and not full 

  if s is a seed: 

    aggregate n with s 

  if s is undecided: 

    s becomes a seed 

    aggregate n with s 

end 

• Aggregates depend on order 



Parallel Aggregation 

• SpMV iterations on strength of connection matrix to form aggregates 
• Vector is status of node {Undecided, Aggregated, Seed,FullSeed} 
• Semiring + is max (i.e. strongest connection) 
• x * y is y if x == Undecided or Seed otherwise 0 
• In resulting vector, if x found an Aggregated vertex, we aggregate. 

Otherwise x votes for is best connection 
• Undecided nodes with enough votes are converted to seeds 
• <10 iteration before every node is decided 

• Cluster size is somewhat constrained 
• As long as clusters have a reasonable size bound, results are fine 

• We do not use energy ratios in aggregation (yet) 
• Will have worse aggregates than LAMG 



• LAMG uses a strength of 
connection metric for 
aggregation 

• Relax on Ax=0 for random x 

• In our tests, algebraic distance 
[Safro, Sanders, Schulz 2012] 
performs slightly better than 
affinity 

• 58.49% of fastest solves used 
algebraic distance vs 41.51% 
with affinity 
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Matrix Randomization 



Results 

• All tests run on NERSC’s Edison 
• 2x 2.4GHz 12-core Intel "Ivy Bridge" processor per node 

• Cray Aries interconnect 

• 4 MPI tasks per node 

• LAMG Serial implementation by [Livne and Brandt] 
• In MATLAB with C mex extensions 

• Solve to 1e-8 relative residual norm 

• Code is not well optimized 

• Interested in scaling 
 



Convergence Factors 

• Cycle complexity: nnz(all ops)/nnz(finest matrix) 

• Effective Convergence Factor (ECF) Δ ‖residual ‖ ^ 1/cycle complexity 

Matrix ECF Serial LAMG ECF Our Solver ECF Jacobi PCG 

hollywood-2009 0.540 0.856 0.992 

citationCiteseer 0.816 0.919 0.938 

astro-ph 0.695 0.800 0.846 

as-22july06 0.282 0.501 0.784 

delaunay_n16 0.812 0.896 0.980 

• No GS-smoothing 

• No iterant recombination 

• Poorer aggregates 
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Conclusion & Future Work 

• Distributed memory solver show significant speedups 
• Even without complex aggregation strategies 

• Matrix randomization provides large benefit 

• Improve aggregation with energy ratios 
• Convergence rates still well below LAMG 

• Particular graphs have very poor rates 



Thank you 




