
A Parallel Solver for Laplacian
Matrices

Tristan Konolige (me) and Jed Brown

Graph Laplacian Matrices

• Covered by other speakers (hopefully)

• Useful in a variety of areas

• Graphs are getting very big
• Facebook now has ~couple billion users
• Computer networks for cyber security

• Interested in network graphs
• Undirected
• Weighted

• We will need faster ways to solve these systems

• Note: Laplacians have constant vector as nullspace

Why Parallelism

• Graphs are growing but single processor speed is not

• Want to process existing graphs faster or do larger network analysis

• Clock speed has stagnated
• Bandwidth increasing slowly

• Processor count/machine count growing
• Xeon Phi, etc.

• Going to look at distributed memory systems
• Most supercomputers and commodity clusters

Goals

• Parallel scalability out to large numbers of processors/nodes

• Convergence factors close to LAMG

• Interested mostly in scale-free graphs for now

Existing Solvers

• Spielman and Teng’s theoretical nearly-linear time solver
• No viable practical implementations

• Many other theoretical solvers

• Kelner solver (previous talk w/ Kevin)

• Combinatorial Multigrid from [Koutis and Miller]

• Lean Algebraic Multigrid from [Livne and Brandt]

• Degree Aware Aggregation from [Napov and Notay]

• CG a variety of preconditioners

• Direct solvers

Multigrid

• Both CMG and LAMG are
multigrid solvers

• Multilevel method for solving
linear systems

• O(N) (ideally)

• Originally intended for
geometric problems, now used
on arbitrary matrices

Restriction Interpolation

A V-cycle

Smoothing

Direct Solve

Smoothing

Lean Algebraic Multigrid

• Low degree elimination
• Eliminate up to degree 4

• Reduces cycle complexity

• Incredibly useful on network graphs

• Aggregation based Multigrid
• Restriction/interpolation from fine grid aggregates

• Avoids aggregating high-degree nodes

• Based on strength of connection + energy ratio

• Typically smoothed restriction/interpolation

[Livne and Brandt 2011]

LAMG

• Caliber 1 interpolation (unsmoothed restriction/interpolation)
• Avoids complexity from fill in

• Gauss-Seidel Smoothing

• Multilevel iterant recombination – adaptive energy correction
• Similar to Krylov method at every level

• O(N) empirically

LAMG

• Hierarchy alternates between elimination and aggregation

• First level elimination only applied once during solve

Level Size NNZ Type Time (s) Comm Size Imb

 0 1069126 113682432 Elim 0.1180 64 1.10

 1 1019470 113385358 Reg 0.7480 64 1.11

 2 75493 18442801 Elim 0.0090 64 1.46

 3 62072 18374722 Reg 0.0687 64 1.23

 4 8447 1265927 Elim 0.0016 64 2.87

 5 5153 1250659 Reg 0.0052 64 1.49

 6 466 20188 Elim 0.0004 1 1.00

 7 173 19125 Reg 0.0019 1 1.00

 8 18 56 Elim 0.0001 1 1.00

 9 3 7 Reg 0.0001 1 1.00

Implementation

• C++ and MPI
• No OpenMP for now

• CombBLAS for 2D matrix
decomposition [Buluç and Gilbert
2011]

• Needed for scaling
• Helps distribute high-degree hubs

• Randomized matrix ordering
• Worse locality
• Greatly improves load balance

• Jacobi Smoothing

• V-cycles
• No iterant recombination, requires

multiple dot-products which are slow
in parallel

• Instead use constant correction

• CG preconditioner
• Worse than energy correction
• Orthangonalize every cycle

• Manually redistribute work if
problem gets too small

Parallel Low-Degree Elimination

• Difficult part is if there are two low-degree
neighbors

• Can’t eliminate both at once

• Use SpMV to choose which neighbors to
eliminate

• Boolean vector indicating degree < 4
• Semiring is {min(hash(x), hash(y)), id}

• Can use multiple iterations to eliminate all low-
degree nodes

• In practice, one iteration eliminates most low-
degree nodes

Parallel Aggregation

for each undecided node n:

 let s = undecided or seed neighbor with

 strongest connection and not full

 if s is a seed:

 aggregate n with s

 if s is undecided:

 s becomes a seed

 aggregate n with s

end

• Aggregates depend on order

Parallel Aggregation

• SpMV iterations on strength of connection matrix to form aggregates
• Vector is status of node {Undecided, Aggregated, Seed,FullSeed}
• Semiring + is max (i.e. strongest connection)
• x * y is y if x == Undecided or Seed otherwise 0
• In resulting vector, if x found an Aggregated vertex, we aggregate.

Otherwise x votes for is best connection
• Undecided nodes with enough votes are converted to seeds
• <10 iteration before every node is decided

• Cluster size is somewhat constrained
• As long as clusters have a reasonable size bound, results are fine

• We do not use energy ratios in aggregation (yet)
• Will have worse aggregates than LAMG

• LAMG uses a strength of
connection metric for
aggregation

• Relax on Ax=0 for random x

• In our tests, algebraic distance
[Safro, Sanders, Schulz 2012]
performs slightly better than
affinity

• 58.49% of fastest solves used
algebraic distance vs 41.51%
with affinity

Strength of Connection

Affinity

Algebraic distance

Matrix Randomization

Results

• All tests run on NERSC’s Edison
• 2x 2.4GHz 12-core Intel "Ivy Bridge" processor per node

• Cray Aries interconnect

• 4 MPI tasks per node

• LAMG Serial implementation by [Livne and Brandt]
• In MATLAB with C mex extensions

• Solve to 1e-8 relative residual norm

• Code is not well optimized

• Interested in scaling

Convergence Factors

• Cycle complexity: nnz(all ops)/nnz(finest matrix)

• Effective Convergence Factor (ECF) Δ ‖residual ‖ ^ 1/cycle complexity

Matrix ECF Serial LAMG ECF Our Solver ECF Jacobi PCG

hollywood-2009 0.540 0.856 0.992

citationCiteseer 0.816 0.919 0.938

astro-ph 0.695 0.800 0.846

as-22july06 0.282 0.501 0.784

delaunay_n16 0.812 0.896 0.980

• No GS-smoothing

• No iterant recombination

• Poorer aggregates

hollywood-2009
1,139,905 nodes
113,891,327 nnz

Ti
m

e
(s

)

45x

3.7x

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40

S
o
lv

e
 t
im

e

Number of nodes (4 cores per node)

Regular solve

Random permutation solve

LAMG serial*

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40

S
o
lv

e
 t
im

e

Number of nodes (4 cores per node)

Random permutation solve

Random Setup Time

LAMG serial* setup
hollywood-2009
1,139,905 nodes
113,891,327 nnz

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

S
o
lv

e
 t
im

e

Number of nodes (4 cores per node)

Setup Random

Solve Random
europe_osm
rows 50,912,018
nnz 108,109,320

Conclusion & Future Work

• Distributed memory solver show significant speedups
• Even without complex aggregation strategies

• Matrix randomization provides large benefit

• Improve aggregation with energy ratios
• Convergence rates still well below LAMG

• Particular graphs have very poor rates

Thank you

