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Graph Laplacian Matrices

* Covered by other speakers (hopefully)
e Useful in a variety of areas
* Graphs are getting very big

* Facebook now has ~couple billion users
 Computer networks for cyber security

* Interested in network graphs
* Undirected
* Weighted

* We will need faster ways to solve these systems
* Note: Laplacians have constant vector as nullspace



Why Parallelism

* Graphs are growing but single processor speed is not
* Want to process existing graphs faster or do larger network analysis

* Clock speed has stagnated
* Bandwidth increasing slowly

* Processor count/machine count growing
e Xeon Phi, etc.

* Going to look at distributed memory systems
* Most supercomputers and commodity clusters



Goals

* Parallel scalability out to large numbers of processors/nodes
* Convergence factors close to LAMG
* Interested mostly in scale-free graphs for now



Existing Solvers

* Spielman and Teng’s theoretical nearly-linear time solver
* No viable practical implementations
* Many other theoretical solvers

» Kelner solver (previous talk w/ Kevin)

* Combinatorial Multigrid from [Koutis and Miller]

* Lean Algebraic Multigrid from [Livhe and Brandt]

* Degree Aware Aggregation from [Napov and Notay]
* CG a variety of preconditioners

* Direct solvers



Smoothing

Multigrid

e Both CMG and LAMG are Restriction Interpolation
multigrid solvers

 Multilevel method for solving Smoothing
linear systems

* O(N) (ideally)

* Originally intended for
geometric problems, now used
on arbitrary matrices

Direct Solve

A V-cycle



Lean Algebraic Multigrid tivne and Brandt 2011)

* Low degree elimination
* Eliminate up to degree 4
e Reduces cycle complexity
* Incredibly useful on network graphs

* Aggregation based Multigrid
* Restriction/interpolation from fine grid aggregates
* Avoids aggregating high-degree nodes
e Based on strength of connection + energy ratio
* Typically smoothed restriction/interpolation



LAMG

* Caliber 1 interpolation (unsmoothed restriction/interpolation)
* Avoids complexity from fill in

* Gauss-Seidel Smoothing

* Multilevel iterant recombination — adaptive energy correction
e Similar to Krylov method at every level

* O(N) empirically



LAMG

* Hierarchy alternates between elimination and aggregation
* First level elimination only applied once during solve

Level Size NNZ Type Time (s) Comm Size Imb
0 1069126 113682432 Elim 0.1180 64 1.10
1 1019470 113385358 Reg 0.7480 64 1.11
2 75493 18442801 Elim 0.0090 64 1.46
3 62072 18374722 Reg 0.0687 64 1.23
4 8447 1265927 Elim 0.0016 64 2.87
3) 5153 1250659 Reg 0.0052 64 1.49
6 466 20188 Elim 0.0004 11.00
7 173 19125 Reg 0.0019 11.00
8 18 56 Elim 0.0001 11.00
9 3 7 Reg 0.0001 11.00



Implementation

 C++ and MPI e V-cycles
* No OpenMP for now * No it_erant recombination,_ requires
e CombBLAS for 2D matrix mtz)lglrgll?e?Ot-prOdUCts which are slow
decomposition [Bulug and Gilbert * Instead use constant correction

2011]

* Needed for scaling
* Helps distribute high-degree hubs

 Randomized matrix ordering
* Worse locality
* Greatly improves load balance

* Jacobi Smoothing

* CG preconditioner
e Worse than energy correction
* Orthangonalize every cycle

* Manually redistribute work if
problem gets too small



Parallel Low-Degree Elimination

* Difficult part is if there are two low-degree
neighbors

e Can’t eliminate both at once

e Use SpMV to choose which neighbors to
eliminate
* Boolean vector indicating degree < 4
* Semiring is {min(hash(x), hash(y)), id}
* Can use multiple iterations to eliminate all low-

degree nodes

* |In practice, one iteration eliminates most low-
degree nodes



Parallel Aggregation

for each undecided node n:
let s = undecided or seed neighbor with
strongest connection and not full
If s Is a seed:
aggregate n with s
If s is undecided:
S becomes a seed
aggregate n with s
end

e Aggregates depend on order



Parallel Aggregation

* SpMV iterations on strength of connection matrix to form aggregates
* Vector is status of node {Undecided, Aggregated, Seed,FullSeed}
e Semiring + is max (i.e. strongest connection)
e x *yisyif x==Undecided or Seed otherwise 0

In resulting vector, if x found an Aggregated vertex, we aggregate.
Otherwise x votes for is best connection

* Undecided nodes with enough votes are converted to seeds
e <10 iteration before every node is decided

* Cluster size is somewhat constrained
* As long as clusters have a reasonable size bound, results are fine

* We do not use energy ratios in aggregation (yet)
* Will have worse aggregates than LAMG



Strength of Connection

* LAMG uses a strength of (X, Xo)| ( i A
- : Cuv ‘= X,Y)=> x®y
connectlpn metric for (XU,XU)Q (XU’XU)Q 2
aggregation
e Relax on Ax=0 for random x Affinity
* In our tests, algebraic distance
[Safro, Sanders, Schulz 2012]
performs slightly better than R )
affinit _ (k,r) (k)12 2
Y Pz’j—(ZbCi —-x; [%)3

* 58.49% of fastest solves used
algebraic distance vs 41.51%
with affinity Algebraic distance
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Results

e All tests run on NERSC’s Edison

e 2x 2.4GHz 12-core Intel "lvy Bridge" processor per node
* Cray Aries interconnect
e 4 MPI tasks per node

* LAMG Serial implementation by [Livhe and Brandt]
* [n MATLAB with C mex extensions

* Solve to 1e-8 relative residual norm
* Code is not well optimized
* Interested in scaling



Convergence Factors

* Cycle complexity: nnz(all ops)/nnz(finest matrix)
* Effective Convergence Factor (ECF) A |[residual || * 1/cycle complexity

m ECF Serial LAMG ECF Our Solver ECF Jacobi PCG

hollywood-2009 0.540 0.856 0.992
citationCiteseer 0.816 0.919 0.938
astro-ph 0.695 0.800 0.846
as-22july06 0.282 0.501 0.784
delaunay_n16 0.812 0.896 0.980

* No GS-smoothing
 No iterant recombination
* Poorer aggregates
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Conclusion & Future Work

e Distributed memory solver show significant speedups
* Even without complex aggregation strategies

* Matrix randomization provides large benefit

* Improve aggregation with energy ratios
* Convergence rates still well below LAMG
* Particular graphs have very poor rates



Thank you





