A Parallel Solver for Laplacian Matrices

Tristan Konolige (me) and Jed Brown

Graph Laplacian Matrices

- Covered by other speakers (hopefully)
- Useful in a variety of areas
- Graphs are getting very big
 - Facebook now has ~couple billion users
 - Computer networks for cyber security
- Interested in network graphs
 - Undirected
 - Weighted
- We will need faster ways to solve these systems
- Note: Laplacians have constant vector as nullspace

Why Parallelism

- Graphs are growing but single processor speed is not
- Want to process existing graphs faster or do larger network analysis
- Clock speed has stagnated
 - Bandwidth increasing slowly
- Processor count/machine count growing
 - Xeon Phi, etc.
- Going to look at distributed memory systems
 - Most supercomputers and commodity clusters

Goals

- Parallel scalability out to large numbers of processors/nodes
- Convergence factors close to LAMG
- Interested mostly in scale-free graphs for now

Existing Solvers

- Spielman and Teng's theoretical nearly-linear time solver
 - No viable practical implementations
 - Many other theoretical solvers
- Kelner solver (previous talk w/ Kevin)
- Combinatorial Multigrid from [Koutis and Miller]
- Lean Algebraic Multigrid from [Livne and Brandt]
- Degree Aware Aggregation from [Napov and Notay]
- CG a variety of preconditioners
- Direct solvers

Multigrid

- Both CMG and LAMG are multigrid solvers
- Multilevel method for solving linear systems
- O(N) (ideally)
- Originally intended for geometric problems, now used on arbitrary matrices

Lean Algebraic Multigrid [Livne and Brandt 2011]

- Low degree elimination
 - Eliminate up to degree 4
 - Reduces cycle complexity
 - Incredibly useful on network graphs
- Aggregation based Multigrid
 - Restriction/interpolation from fine grid aggregates
 - Avoids aggregating high-degree nodes
 - Based on strength of connection + energy ratio
 - Typically smoothed restriction/interpolation

LAMG

- Caliber 1 interpolation (unsmoothed restriction/interpolation)
 - Avoids complexity from fill in
- Gauss-Seidel Smoothing
- Multilevel iterant recombination adaptive energy correction
 - Similar to Krylov method at every level
- O(N) empirically

LAMG

- Hierarchy alternates between elimination and aggregation
- First level elimination only applied once during solve

Level	Size	NNZ Type Time (s) Comm Size Imb			
0	1069126	113682432 Elim 0.1180 64 1.10			
1	1019470	113385358 Reg 0.7480 64 1.11			
2	75493	18442801 Elim 0.0090 64 1.46			
3	62072	18374722 Reg 0.0687 64 1.23			
4	8447	1265927 Elim 0.0016 64 2.87			
5	5153	1250659 Reg 0.0052 64 1.49			
6	466	20188 Elim 0.0004 1 1.00			
7	173	19125 Reg 0.0019 1 1.00			
8	18	56 Elim 0.0001 1 1.00			
9	3	7 Reg 0.0001 1 1.00			

Implementation

- C++ and MPI
 - No OpenMP for now
- CombBLAS for 2D matrix decomposition [Buluç and Gilbert 2011]
 - Needed for scaling
 - Helps distribute high-degree hubs
- Randomized matrix ordering
 - Worse locality
 - Greatly improves load balance
- Jacobi Smoothing

- V-cycles
 - No iterant recombination, requires multiple dot-products which are slow in parallel
 - Instead use constant correction
- CG preconditioner
 - Worse than energy correction
 - Orthangonalize every cycle
- Manually redistribute work if problem gets too small

Parallel Low-Degree Elimination

- Difficult part is if there are two low-degree neighbors
- Can't eliminate both at once
- Use SpMV to choose which neighbors to eliminate
 - Boolean vector indicating degree < 4
 - Semiring is {min(hash(x), hash(y)), id}
- Can use multiple iterations to eliminate all lowdegree nodes
 - In practice, one iteration eliminates most lowdegree nodes

Parallel Aggregation

```
for each undecided node n:

let s = undecided or seed neighbor with

strongest connection and not full

if s is a seed:

aggregate n with s

if s is undecided:

s becomes a seed

aggregate n with s

end
```

Aggregates depend on order

Parallel Aggregation

- SpMV iterations on strength of connection matrix to form aggregates
 - Vector is status of node {Undecided, Aggregated, Seed, FullSeed}
 - Semiring + is max (i.e. strongest connection)
 - x * y is y if x == Undecided or Seed otherwise 0
 - In resulting vector, if x found an Aggregated vertex, we aggregate. Otherwise x votes for is best connection
 - Undecided nodes with enough votes are converted to seeds
 - <10 iteration before every node is decided
- Cluster size is somewhat constrained
 - As long as clusters have a reasonable size bound, results are fine
- We do not use energy ratios in aggregation (yet)
 - Will have worse aggregates than LAMG

Strength of Connection

- LAMG uses a strength of connection metric for aggregation
 - Relax on Ax=0 for random x
- In our tests, algebraic distance [Safro, Sanders, Schulz 2012] performs slightly better than affinity
 - 58.49% of fastest solves used algebraic distance vs 41.51% with affinity

$$c_{uv} := \frac{\left| (X_u, X_v) \right|^2}{\left(X_u, X_u \right)^2 \left(X_v, X_v \right)^2} (X, Y) := \sum_{k=1}^K X^{(k)} Y^{(k)}$$

Affinity

$$\rho_{ij} = \left(\sum_{r=1}^{R} |\chi_i^{(k,r)} - \chi_j^{(k,r)}|^2\right)^{\frac{1}{2}}$$

Algebraic distance

Matrix Randomization

Results

- All tests run on NERSC's Edison
 - 2x 2.4GHz 12-core Intel "Ivy Bridge" processor per node
 - Cray Aries interconnect
 - 4 MPI tasks per node
- LAMG Serial implementation by [Livne and Brandt]
 - In MATLAB with C mex extensions
- Solve to 1e-8 relative residual norm
- Code is not well optimized
- Interested in scaling

Convergence Factors

- Cycle complexity: nnz(all ops)/nnz(finest matrix)
- Effective Convergence Factor (ECF) Δ ||residual || ^ 1/cycle complexity

Matrix	ECF Serial LAMG	ECF Our Solver	ECF Jacobi PCG
hollywood-2009	0.540	0.856	0.992
citationCiteseer	0.816	0.919	0.938
astro-ph	0.695	0.800	0.846
as-22july06	0.282	0.501	0.784
delaunay_n16	0.812	0.896	0.980

- No GS-smoothing
- No iterant recombination
- Poorer aggregates

Conclusion & Future Work

- Distributed memory solver show significant speedups
 - Even without complex aggregation strategies
- Matrix randomization provides large benefit
- Improve aggregation with energy ratios
 - Convergence rates still well below LAMG
 - Particular graphs have very poor rates

Thank you