Abstract

In this paper, we study testing of sequence properties that are defined by forbidden order patterns. A sequence $f : \{1, \ldots, n\} \to \mathbb{R}$ of length n contains a pattern $\pi \in \mathfrak{S}_k$ (\mathfrak{S}_k is the group of permutations of k elements), iff there are indices $i_1 < i_2 < \cdots < i_k$, such that $f(i_x) > f(i_y)$ whenever $\pi(x) > \pi(y)$. If f does not contain π , we say f is π -free. For example, for $\pi = (2, 1)$, the property of being π -free is equivalent to being non-decreasing, i.e. monotone. The property of being $(k, k - 1, \ldots, 1)$ -free is equivalent to the property of having a partition into at most k - 1non-decreasing subsequences.

Let $\pi \in \mathfrak{S}_k$, k constant, be a (forbidden) pattern. Assuming f is stored in an array, we consider the property testing problem of distinguishing the case that f is π -free from the case that f differs in more than ϵn places from any π -free sequence. We show the following results: There is a clear dichotomy between the monotone patterns and the non-monotone ones:

- For monotone patterns of length k, i.e., (k, k 1, ..., 1) and (1, 2, ..., k), we design nonadaptive one-sided error ϵ -tests of $(\epsilon^{-1} \log n)^{O(k^2)}$ query complexity.
- For non-monotone patterns, we show that for any size-k non-monotone π , any non-adaptive one-sided error ϵ -test requires at least $\Omega(\sqrt{n})$ queries. This general lower bound can be further strengthened for specific non-monotone k-length patterns to $\Omega(n^{1-2/(k+1)})$. On the other hand, there always exists a non-adaptive one-sided error ϵ -test for $\pi \in \mathfrak{S}_k$ with $O(\epsilon^{-1/k}n^{1-1/k})$ query complexity. Again, this general upper bound can be further strengthened for specific non-monotone patterns. E.g., for $\pi = (1,3,2)$, we describe an ϵ -test with (almost tight) query complexity of $\widetilde{O}(\sqrt{n})$.

Finally, we show that adaptivity can make a big difference in testing non-monotone patterns, and develop an *adaptive* algorithm that for any $\pi \in \mathfrak{S}_3$, tests π -freeness by making $(\epsilon^{-1} \log n)^{O(1)}$ queries. For all algorithms presented here, the running times are linear in their query complexity.