Abstract

We introduce a new variant of the nearest neighbor search problem, which allows for some coordinates of the dataset to be arbitrarily corrupted or unknown. Formally, given a dataset of \(n \) points \(P = P_1, \ldots, P_n \) in high-dimensions, and a parameter \(k \), the goal is to preprocess the dataset, such that given a query point \(q \), one can compute quickly a point \(p \in P \), such that the distance of the query to the point \(p \) is minimized, when ignoring the “optimal” \(k \) coordinates. Note, that the coordinates being ignored are a function of both the query point and the point returned. We present a general reduction from this problem to answering ANN queries, which is similar in spirit to LSH (locality sensitive hashing) [IM98]. Specifically, we give a sampling technique which achieves a bi-criterion approximation for this problem. If the distance to the nearest neighbor after ignoring \(k \) coordinates is \(r \), the data-structure returns a point that is within a distance of \(O(r) \) after ignoring \(O(k) \) coordinates. We also present other applications and further extensions and refinements of the above result. The new data-structures are simple and (arguably) elegant, and should be practical – specifically, all bounds are polynomial in all relevant parameters (including the dimension of the space, and the robustness parameter \(k \)).