The SIAM Activity Group on Geometric Design is concerned with the mathematical and computational issues that arise in generating and processing geometric information for various engineering applications, such as mechanical design, process planning, and manufacturing. The scope of the group’s activities encompasses a wide spectrum of scientific, technological, and other skills, ranging from rigorous mathematics to the subjective aesthetics of shape. The SIAG organizes a biennial conference and also maintains a website, a member directory, and an electronic mailing list. For details please see the SIAG GD website (http://www.siam.org/activity/gd/).
Table of Contents

Program-at-a-Glance......Fold out section
General Information......................2
Get-togethers............................7
Invited Plenary Presentations8
Prizes and Awards9
Program Schedule11
Welcome Reception and Poster Session ...14
Abstracts................................23
Speaker and Organizer Index43
Conference Budget47
Hotel Meeting Room Map...Back Cover

Organizing Committee

General Co-Chairs
Elaine Cohen
University of Utah, USA
Stefanie Hahmann
University Grenoble INP, France
Konrad Polthier
Freie Universität Berlin, Germany
Wenping Wang
Hong Kong University, Hong Kong

Program Co-chairs
Kai Hormann
Università della Svizzera italiana, Lugano, Switzerland
Sara McMains
University of California, Berkeley, USA
Georg Umlauf
University of Applied Science Constance, Germany

Program Committee
Chandrajit Bajaj
University of Texas at Austin, USA
Loïc Barthe
Université Paul Sabatier, Toulouse, France
Carolina Beccari
Università di Bologna, Italy
Dominique Bechmann
Université de Strasbourg, France
Alexander Belyaev
Heriot-Watt University, United Kingdom
Mirela Ben-Chen
Technion, Haifa, Israel
George-Pierre Bonneau
GRAVIR-IMAG, France
David Bonner
Dassault Systemes, France
Wim Bronsvoord
U Delft, Netherlands
Guido Brunnett
TU Chemnitz, Germany
Costanza Conti
Università degli Studi di Firenze, Italy
Jiansong Deng
University of Science and Technology of China, Hefei, China
Chongyang Deng
Hangzhou Dianzi University, Hangzhou, China
Tamal Dey
Ohio State University, USA
Tor Dokken
SINTEF, Norway
Gershon Elber
Technion, Israel
Shuming Gao
Zhejiang University, China
Ron Goldman
Rice University, USA
Daniel Gonsor
Boeing, USA
Thomas Grandine
Boeing, USA
Jens Gravesen
TU Denmark, Denmark
Cindy Grimm
Oregon State University, USA
Balan Gurumoorthy
Indian Institute of Science, India
Hans Hagen
University of Kaiserslautern, Germany
Stefanie Hahmann
University of Grenoble, France
Dan Halperin
Tel Aviv University, Israel
Iddo Hanniel
Technion, Israel
Dianne Hansford
Arizona State University, USA
Ying He
Nanyang Technological University, Singapore
Martin Hering-Bertram
University of Applied Science Bremen, Germany
Christoph Hoffmann
Purdue University, USA
Hugues Hoppe
Microsoft Research, USA
Shi-Min Hu
Tsinghua University, China
Qixing Huang
Stanford University, USA
Horea Ilies
University of Connecticut, USA
Ravi Janardan
University of Minnesota, USA
Robert Joan-Arinyo
Universitat Politecnica de Catalunya, Spain
Leo Joskowicz
The Hebrew University of Jerusalem, Israel
Tao Ju
Washington University at St. Louis, USA
Bert Jüttler
Johannes Kepler Universität Linz, Austria
John Keyser
Texas A&M University, USA
Myung-Soo Kim
Seoul National University, Korea
Deok-Soo Kim
Hanyang University, Korea
Young Kim
Ewha Womans University, South Korea
Leif Kobbelt
RWTH Aachen, Germany
Adash Krishnamurthy
University of California, San Diego, USA
Yu-Kun Lai
Cardiff University, United Kingdom
Kunwoo Lee
Seoul National University, Korea
Jyh-Ming Lien
George Mason University, USA
André Lieutier
Dassault Systèmes, France
Yaron Lipman
Weizmann Institute of Science, Rehovot, Israel
Ligong Liu
University of Science and Technology of China, China
Yong-Jin Liu
Tsinghua University, China
Weiyin Ma
City University of Hong Kong, Hong Kong
Stephen Mann
University of Waterloo, Canada

Carla Manni
Università di Roma “Tor Vergata”, Italy

Dinesh Manocha
University of North Carolina, USA

Ralph Martin
Cardiff University, United Kingdom

Niloy Mitra
University College London, United Kingdom

Géraldine Morin
University of Toulouse, France

Yutaka Ohtake
The University of Tokyo, Japan

Martin Peternell
Technical University of Vienna, Austria

Jorg Peters
University of Florida, USA

Tom Peters
University of Connecticut, USA

Konrad Polthier
Freie Universität Berlin, Germany

Helmut Pottmann
TU Wien, Austria

Hartmut Prautzsch
Karlsruhe University, Germany

Xiaoping Qian
Illinois Institute of Technology, USA

Ewald Quak
Tallinn University of Technology, Estonia

Karthik Ramani
Purdue University, USA

William Regli
Drexel University, USA

Ulrich Reif
Darmstadt Technical University, Germany

Richard Riesenfeld
University of Utah, USA

Lucia Romani
University of Milano-Bicocca, Italy

Jarek Rossignac
Georgia Institute of Technology, USA

Maria Lucia Sampoli
Università degli Studi di Siena, Italy

Nickolas Sapidis
University of Western Macedonia, Greece

Scott Schaefer
Texas A&M University, USA

Vadim Shapiro
University of Wisconsin, USA

Kenji Shimada
Carnegie Melon University, USA

Claudio Silva
New York University, USA

Olga Sorkine
ETH Zurich, Switzerland

Tim Strothmann
Parasolid Components, Siemens PLM Software, USA

Hiromasa Suzuki
University of Tokyo, Japan

Kai Tang
Hong Kong University of Science and Technology, China

George Turkayiyah
American University of Beirut, Lebanon

Jan Vandenbrande
Boeing, USA

Tamás Várady
Budapest University of Technology and Economics, Hungary

Luiz Velho
IMPA, Brazil

Johannes Wallner
TU Graz, Austria

Charlie Wang
Chinese University of Hong Kong, Hong Kong

Wenping Wang
The University of Hong Kong, Hong Kong

Joe Warren
Rice University, USA

Ofir Weber
University of Haifa, Israel

Chee Yap
New York University, USA

Thomas Yu
Drexel University, USA

Emil Zagar
University of Ljubljana, Slovenia

Yongjie (Jessica) Zhang
Carnegie Mellon University, USA

SIAM Registration Desk
The SIAM registration desk is located in the Jax Room and Foyer. It is open during the following hours:

Sunday, November 10
5:00 PM - 7:00 PM

Monday, November 11
7:00 AM - 4:15 PM

Tuesday, November 12
7:30 AM - 4:00 PM

Wednesday, November 13
7:30 AM - 4:15 PM

Thursday, November 14
7:30 AM - 2:30 PM

Hotel Address
The Curtis, A DoubleTree by Hilton Hotel
1405 Curtis Street
Denver, CO 80202
USA

Phone Number: +1-303-571-0300
Toll Free Reservations (USA and Canada): +1-800-525-6651
Fax: +1-303-825-4301

Hotel Telephone Number
To reach an attendee or to leave a message, call +1-303-571-0300. The hotel operator can either connect you with the SIAM registration desk or to the attendee’s room. Messages taken at the SIAM registration desk will be posted to the message board located in the registration area.

Hotel Check-in and Check-out Times
Check-in time is 3:00 PM and check-out time is 12:00 PM.
Child Care
For child care services in Denver, please contact Rachel Romkey at the Amelia Agency, a fully licensed child care provider, at 303-255-4928, or visit online at www.theameliaagency.com.

Corporate Members and Affiliates
SIAM corporate members provide their employees with knowledge about, access to, and contacts in the applied mathematics and computational sciences community through their membership benefits. Corporate membership is more than just a bundle of tangible products and services; it is an expression of support for SIAM and its programs. SIAM is pleased to acknowledge its corporate members and sponsors. In recognition of their support, non-member attendees who are employed by the following organizations are entitled to the SIAM member registration rate.

Corporate Institutional Members
The Aerospace Corporation
Air Force Office of Scientific Research
AT&T Laboratories - Research
Bechtel Marine Propulsion Laboratory
The Boeing Company
CEA/DAM
Department of National Defence (DND/CSEC)
DSTO- Defence Science and Technology Organisation
Hewlett-Packard
IBM Corporation
IDA Center for Communications Research, La Jolla
IDA Center for Communications Research, Princeton
Institute for Computational and Experimental Research in Mathematics (ICERM)
Institute for Defense Analyses, Center for Computing Sciences
Lawrence Berkeley National Laboratory
Lockheed Martin
Los Alamos National Laboratory
Mathematical Sciences Research Institute
Max-Planck-Institute for Dynamics of Complex Technical Systems
Mentor Graphics
National Institute of Standards and Technology (NIST)
National Security Agency (DIRNSA)
Oak Ridge National Laboratory, managed by UT-Battelle for the Department of Energy
Sandia National Laboratories
Schlumberger-Doll Research
Tech X Corporation
U.S. Army Corps of Engineers, Engineer Research and Development Center
United States Department of Energy

List current September 2013.

Funding Agency
SIAM and the Conference Organizing Committee wish to extend their thanks and appreciation to the U.S. National Science Foundation for its support of this conference.

Leading the applied mathematics community...
Join SIAM and save!
SIAM members save up to $130 on full registration for the 2013 SIAM Conference on Geometric and Physical Modeling (GD/SPM13). Join your peers in supporting the premier professional society for applied mathematicians and computational scientists. SIAM members receive subscriptions to SIAM Review and SIAM News and enjoy substantial discounts on SIAM books, journal subscriptions, and conference registrations.

If you are not a SIAM member and paid the Non-Member or Non-Member Mini Speaker/Organizer rate to attend the conference, you can apply the difference between what you paid and what a member would have paid ($130 for a Non-Member and $65 for a Non-Member Mini Speaker/Organizer) towards a SIAM membership. Contact SIAM Customer Service for details or join at the conference registration desk.

If you are a SIAM member, it only costs $10 to join the SIAM Activity Group on Geometric Design (SIAG/GD). As a SIAG/GD member, you are eligible for an additional $10 discount on this conference, so if you paid the SIAM member rate to attend the conference, you might be eligible for a free SIAG/GD membership. Check at the registration desk.

Free Student Memberships are available to students who attend an institution that is an Academic Member of SIAM, are members of Student Chapters of SIAM, or are nominated by a Regular Member of SIAM.

Join onsite at the registration desk, go to www.siam.org/joinsiam to join online or download an application form, or contact SIAM Customer Service:
Telephone: +1-215-382-9800 (worldwide); or 800-447-7426 (U.S. and Canada only)
Fax: +1-215-386-7999
E-mail: membership@siam.org
Postal mail: Society for Industrial and Applied Mathematics, 3600 Market Street, 6th floor, Philadelphia, PA 19104-2688 USA
The fifth Gene Golub SIAM Summer School, with a focus on solid mechanics, will take place in the Johann Radon Institute for Computational and Applied Mathematics (RICAM), located at the Johannes Kepler University Linz, Austria.

This summer school will foster advanced knowledge for the participating graduate students in several areas related to simulated materials in solid mechanics. Within this broad field the summer school will concentrate on four key issues, namely

1. Identification of material parameters from measurements
2. Material- and topology-optimization
3. Optimization subject to variational inequalities
4. Adaptive discretization

The first two topics will provide a platform for in-depth discussions on the relation of the areas of identification and optimization. The third topic will augment the first two, by providing insight into the behavior of those problems for which variational inequalities are required for the modeling of the materials. Finally, the summer school will look at adaptive discretization of optimization problems for the purpose of reducing the computational costs involved in the solution of the problems encountered in the first three key topics.

The primary lecturers for these courses will be:
- Roland Herzog, TU Chemnitz, Germany
- Esther Klann, JKU Linz, Austria
- Michael Stingl, FAU Erlangen-Nürnberg, Germany
- Winnifried Wollner, University of Hamburg, Germany

Applicants selected to participate pay no registration. Funding for local accommodations and meal expenses will be available for all participants. Limited travel funds are also available.

Application deadline: February 1, 2014

For more detail on the courses and on how to apply, go to:
http://www.math.uni-hamburg.de/g2s3

www.siam.org/students/g2s3/

Sponsored by SIAM through an endowment from the estate of Gene Golub.
For more information about prior summer schools go to www.siam.org/students/g2s3/
Standard Audio/Visual Set-Up in Meeting Rooms
SIAM does not provide computers for any speaker. When giving an electronic presentation, speakers must provide their own computers. SIAM is not responsible for the safety and security of speakers’ computers.

The Plenary Session Room will have two (2) screens, one (1) data projector and one (1) overhead projector. Cables or adaptors for Apple computers are not supplied, as they vary for each model. Please bring your own cable/adaptor if using an Apple computer.

All other concurrent/breakout rooms will have one (1) screen and one (1) data projector. Cables or adaptors for Apple computers are not supplied, as they vary for each model. Please bring your own cable/adaptor if using an Apple computer. Overhead projectors will be provided only if requested.

If you have questions regarding availability of equipment in the meeting room of your presentation, or to request an overhead projector for your session, please see a SIAM staff member at the registration desk.

If you have questions regarding availability of equipment in the meeting room of your presentation, or to request an overhead projector for your session, please see a SIAM staff member at the registration desk.

E-mail Access
Email stations are available to attendees during registration hours.

The Curtis, A DoubleTree Hotel, offers complimentary wireless Internet access to hotel guests in the lodging, public and meeting space areas. The password will be provided at check-in. Attendees not staying at the conference hotel can acquire the password from the SIAM registration desk.

Registration Fee Includes
• Admission to all technical sessions
• Business Meeting (open to SIAG/GD members)
• Coffee breaks daily
• Room set-ups and audio/visual equipment
• SMA Business Meeting
• Welcome Reception and Poster Session

Conference Dinner Banquet
(separate fee applies)
A conference banquet will be held in the conference hotel on Wednesday, November 13 at 7:30 PM. Tickets are available for $45 per person and will include a three-course meal. A cash bar will be offered. If you wish to attend the banquet and have not purchased a ticket, please visit the SIAM registration desk no later than 12:00 PM on Monday, November 11.

Proceedings
The proceedings will be published as a journal special issue in Computer-Aided Design. Papers will be available for download during the conference from Elsevier for those who do not subscribe to the journal.

Job Postings
Please check with the SIAM registration desk regarding the availability of job postings or visit http://jobs.siam.org.

Important Notice to Poster Presenters
The poster session is scheduled for 6:00 PM on Monday, November 11. Poster presenters are requested to set up their poster material on the provided 4’ x 8’ poster boards in the Marco Polo Room between the hours of 2:00 PM and 6:00 PM. All materials must be posted by 6:00 PM on Monday, the official start time of the session. Poster displays must be removed at the conclusion of the session (8:00 PM). Posters remaining after this time will be discarded. SIAM is not responsible for discarded posters.

SIAM Books and Journals
Display copies of books and complimentary copies of journals are available on site. SIAM books are available at a discounted price during the conference. If a SIAM books representative is not available, completed order forms and payment (credit cards are preferred) may be taken to the SIAM registration desk. The books table will close at 10:30 AM on Thursday, November 14.

Table Top Displays
Elsevier
SIAM

Name Badges
A space for emergency contact information is provided on the back of your name badge. Help us help you in the event of an emergency!

Comments?
Comments about SIAM meetings are encouraged! Please send to:
Sven Leyffer, SIAM Vice President for Programs (vpp@siam.org)
Get-togethers

• Welcome Reception and Poster Session
 Monday, November 11
 6:00 PM – 8:00 PM

• SMA Meeting (open to all attendees)
 Wednesday, November 13
 6:00 PM - 6:30 PM

• SIAG/GD Business Meeting
 (open to SIAG/GD members)
 Wednesday, November 13
 6:30 PM – 7:15 PM
 Complimentary beer and wine will be served.

• Conference Dinner Banquet
 Wednesday, November 13
 7:30 PM
 (separate fee applies)
 See page 6 for details.

Please Note
SIAM is not responsible for the safety and security of attendees’ computers. Do not leave your laptop computers unattended. Please remember to turn off your cell phones, pagers, etc. during sessions.

Recording of Presentations
Audio and video recording of presentations at SIAM meetings is prohibited without the written permission of the presenter and SIAM.

Social Media
SIAM is promoting the use of social media, such as Facebook and Twitter, in order to enhance scientific discussion at its meetings and enable attendees to connect with each other prior to, during and after conferences. If you are tweeting about a conference, please use the designated hashtag to enable other attendees to keep up with the Twitter conversation and to allow better archiving of our conference discussions. The hashtag for this meeting is #GDSPM13.
Invited Plenary Speakers

All Invited Plenary Presentations will take place in the Peek-a-Boo Room.

Monday, November 11
8:00 AM - 9:00 AM
IP1 Thinking Outside the CAD Box: Geometric Design in the Age of 3D Printing
 Hod Lipson, Cornell University, USA

2:15 PM - 3:15 PM
IP2 Invited speaker To Be Determined

Tuesday, November 12
2:00 PM - 3:00 PM
IP3 FMaps Algebraic Tools for Reasoning about Shapes and their Collections
 Mirela Ben-Chen, Technion, Israel Institute of Technology, Israel

Wednesday, November 13
8:00 AM - 9:00 AM
IP4 Hierarchical Data Structures for Freeform Geometric Models
 Myung-Soo Kim, Seoul National University, Korea

2:15 PM - 3:15 PM
IP5 Topological Methods for Data Understanding and Exploration
 Vijay Natarajan, Indian Institute of Science, Bangalore, India

Thursday, November 14
8:00 AM - 9:00 AM
IP6 Geometry in CAD Systems: Past, Present, and Future
 George Allen, Siemens PLM Software, China
Prizes and Awards Presentations will take place in the Peek-a-Boo Room.

Tuesday, November 12

5:20 PM - 5:30 PM
Best Paper Awards
The Solid Modeling Association will present the best paper awards immediately prior to the Pierre Bézier Award Lecture.

5:30 PM - 6:15 PM
Pierre Bézier Award Lecture
Recipient to be announced
GD/SPM13 Program

GEOMETRIC & PHYSICAL MODELING
(GD/SPM13)

November 11-14, 2013
the Curtis-a DoubleTree by Hilton Hotel
Denver, Colorado, USA
Sunday, November 10

Registration
5:00 PM-7:00 PM
Room: Jax and Foyer

Monday, November 11

Registration
7:00 AM-4:15 PM
Room: Jax and Foyer

Welcoming Remarks
7:45 AM-8:00 AM
Room: Peek-a-Boo

IP1
Thinking Outside the CAD Box: Geometric Design in the Age of 3D Printing
8:00 AM-9:00 AM
Room: Peek-a-Boo

Chair: Elaine Cohen, University of Utah, USA

For the last four decades, CAD tools have played an increasingly critical role in the product design process and in shaping our design thinking. But with the advent of 3D printing, traditional geometric modeling isn’t keeping pace. While CAD systems have become faster, cheaper, and easier to use, they offer only limited access to the vast new space of geometric complexity now within our reach. This talk will outline new design and geometric representation paradigms that are emerging (and sometimes re-emerging): From generative geometry and evolutionary design, to multimaterial topological optimization and dynamical blueprints.

Hod Lipson
Cornell University, USA

Monday, November 11

PS1
Full Paper Presentations: Manufacturing and Interactive Applications
9:00 AM-10:40 AM
Room: Peek-a-Boo

Chair: Charlie Wang, The Chinese University of Hong Kong, Hong Kong

9:00-9:20 Geometric Computation and Optimization on Tolerance Dimensioning
Songgang Xu and John Keyser, Texas A&M University, USA

9:25-9:45 Geometric Interoperability with Queries
Chris Hoffmann, Purdue University, USA; Vadim Shapiro, University of Wisconsin, Madison, USA; Vijay Srinivasan, National Institute of Standards and Technology, USA

9:50-10:10 Automated Fixture Configuration for Rapid Manufacturing Planning
Saigopal Nelaturi, Arvind Rangarajan, Christian Fritz, and Tolga Kurtoglu, Palo Alto Research Center, USA

10:15-10:35 Computation of Components’ Interfaces in Highly Complex Assemblies
François Jourdes and Georges-Pierre Bonneau, INRIA, France; Stefanie Hahmann, Grenoble University, France; Jean-Claude Léon and François Faure, INRIA, France

Coffee Break
10:40 AM-11:10 AM
Room: Patty-Cake and Curtis Street
Monday, November 11

PS2

Full Paper Presentations:
Isogeometric Analysis and Surface Modelling
11:10 AM-12:50 PM

Room: Peek-a-Boo

Chair: Yongjie Zhang, Carnegie Mellon University, USA

11:10-11:30 Implicit Matrix Representations of Rational Bézier Curves and Surfaces
Laurent Busé, INRIA Sophia Antipolis, France

11:35-11:55 Isogeometric Analysis on Triangulations
Noah Jaxon and Xiaoping Qian, Illinois Institute of Technology, USA

12:00-12:20 A Unified Method for Hybrid Subdivision Surface Design Using Geometric Partial Differential Equations
Qing Pan, Hunan University, China; Guoliang Xu, Academia Sinica, China; Yongjie Zhang, Carnegie Mellon University, USA

12:25-12:45 An Optimization Approach for Constructing Tri-Variate B-Spline Solids
Xilu Wang and Xiaoping Qian, Illinois Institute of Technology, USA

Lunch Break
12:50 PM-2:15 PM

Attendees on their own

Monday, November 11

MS1

Forward Looking Session 2013 - Part I of II
3:45 PM-5:45 PM

Room: Peek-a-Boo

For Part 2 see MS2

Forward Looking Sessions and Panel Discussions were run at the previous three conferences in San Antonio in 2007, San Francisco in 2009 and Orlando 2011. Again the goal is to suggest topics for future research, which are interesting and of practical industrial relevance, in the subject areas covered by the conference and the SIAM Activity Group for Geometric Design. The problems can span from being very specific, in need of a quick and concrete solution, to suggesting a whole new line of research. The subsequent panel discussion is again intended for lively discussions of future directions involving all conference participants.

Organizer: Ewald Quak
Tallinn Technical University, Estonia

3:45-4:10 Geometric Modeling with Convolutions
Thomas A. Grandine, The Boeing Company, USA

4:15-4:40 Trends in Geometric Representations
George Allen, Siemens PLM Software, China

4:45-5:10 New Challenges in Isogeometric Analysis
Tor Dokken, SINTEF, Norway

5:15-5:40 Challenges in Geospatial Applications
Ewald Quak, Tallinn Technical University, Estonia

Monday, November 11

IP2

Invited Speaker To Be Determined
2:15 PM-3:15 PM

Room: Peek-a-Boo

Coffee Break
3:15 PM-3:45 PM

Room: Patty-Cake and Curtis Street
Monday, November 11

PS3

Short Paper Presentations:

Session 1

3:45 PM-5:45 PM

Room: Keep Away

Chair: Xiaoping Qian, Illinois Institute of Technology, USA

3:45-4:00 Robust Cascading of Operations on Polyhedra

Elisha Sacks, Purdue University, USA; Victor Milenkovic, University of Miami, USA

4:05-4:20 Self-Overlapping Curves: Analysis and Applications

Uddipan Mukherjee, University of California, Irvine, USA

4:25-4:40 Longest-Edge Algorithms for Size-Optimal Refinement of Triangulations

Carlos Bedregal and Maria-Cecilia Rivara, University of Chile, Chile

4:45-5:00 Puzzhull: Cavity and Protrusion Hierarchy to Fit Conformal Polygons

Shanaz Mistry, Niranjan U N, and M. Gopi, University of California, Irvine, USA

5:05-5:20 Precise Convex Hull Computation for Freeform Models Using a Hierarchical Gauss Map and Coons Bounding Volume Hierarchy

Yong-Joon Kim and Gershon Elber, Technion Israel Institute of Technology, Israel; Myung-Soo Kim, Seoul National University, Korea

5:25-5:40 Linear Algebraic Representation for Topological Structures

Antonio DiCarlo and Alberto Paoluzzi, Università degli Studi Roma Tre, Italy; Vadim Shapiro, University of Wisconsin, Madison, USA

Intermission

5:45 PM-6:00 PM

Monday, November 11

PP1

Welcome Reception and Poster Session

6:00 PM-8:00 PM

Room: Marco Polo

Geometrical-Computational Inverse Methods for Optimal Geometrical Deformation of Lumbar Artificial Disks Using the Numerical Reuleaux Method

Francisco Casesnoves, American Society Mechanical Engineering (Individual Researcher Member)

Finite Element Geometric Modeling of Traumatic Brain Injury for the Inverse Localization of Electrical Brain Activity Recorded Using Electroencephalography

Andrei Irimia, Sheng-Yang Goh, Carinna Torgerson, Micah Chambers, Nathan Stein, Jeffry Alger, and Paul Vespa, University of California, Los Angeles, USA; Ron Kikinis, Harvard Medical School, USA; John Van Horn, University of California, Los Angeles, USA

Redevelopment of Coastline Model for Procedural Modeling

Alex Pytel and Stephen Mann, University of Waterloo, Canada

Bladerunner: Surface Rationalisation for HotWire and HotBlade Technology

Toke B. Nordbjerg, Kasper Steenstrup, Jens Gravesen, David Brander, and Andreas Barrentzen, Technical University of Denmark, Denmark

C2 Quasi Arc-length Polynomial Approximation to Curves

Javier Sanchez-Reyes and Jesus Chacon, Universidad de Castilla-La Mancha, Spain

Protrusion Recognition from Solid Models Using Orthogonal Bounding Factor

Yoonhwan Woo, Hansung University, Korea

Tuesday, November 12

MS2

Forward Looking Session 2013 - Part II of II

8:00 AM-10:00 AM

Room: Peek-a-Boo

For Part 1 see MS1

Forward Looking Sessions and Panel Discussions were run at the previous three conferences in San Antonio in 2007, San Francisco in 2009 and Orlando 2011. Again the goal is to suggest topics for future research, which are interesting and of practical industrial relevance, in the subject areas covered by the conference and the SIAM Activity Group for Geometric Design. The problems can span from being very specific, in need of a quick and concrete solution, to suggesting a whole new line of research. The subsequent panel discussion is again intended for lively discussions of future directions involving all conference participants.

Organizer: Ewald Quak

Tallinn Technical University, Estonia

8:00-8:25 Challenges in the Building Industry

Jens Gravesen, Technical University of Denmark, Denmark

8:30-8:55 Challenges in Simulation based Engineering

Stefan Boschert, Siemens AG Corporate Technology, Germany

9:00-9:25 Efficient Geometry: Compositions and a Good Parametrization

Thomas A. Hogan, The Boeing Math Group, USA

9:30-9:55 Challenges for Geometric Design

Elaine Cohen, University of Utah, USA
Tuesday, November 12

MS8

Shaping Surfaces

8:00 AM - 10:00 AM

Room: Dodgeball

The minisymposium will discuss novel approaches to the modeling and texturing of surfaces. Given the vast need for new and exciting shapes in geometric design, the four presentations of the minisymposium will discuss new approaches including the fast and stable computation of soap film surfaces, the generation of most symmetric shapes of high genus based on the theory of regular maps, the covering of complex surfaces with consistent and highly symmetric weavings, and on issues of efficient fabrication and modeling of complex shapes.

Organizer: Konrad Polthier
Freie Universitaet Berlin, Germany

Organizer: Wenping Wang
University of Hong Kong, Hong Kong

8:00-8:25 **Symmetric Surfaces and Tilings**

Konrad Polthier, Freie Universitaet Berlin, Germany

8:30-8:55 **Modeling Cmc Surfaces with Cvt**

Wenping Wang, University of Hong Kong, Hong Kong

9:00-9:25 **Geometric Issues with 3D Printing**

Charlie Wang, The Chinese University of Hong Kong, Hong Kong

9:30-9:55 **Quad Pattern Coverable Meshes**

Ergun Akleman, Texas A&M University, USA

Tuesday, November 12

PS4

Short Paper Presentations: Session 2

8:00 AM - 10:00 AM

Room: Keep Away

Chair: Daniele Panazzolo, ETH Zürich, Switzerland

8:00-8:15 **Kinematic Skeleton Extraction from 3D Articulated Models**

Jaehwan Ma, Sunghee Choi, and Jeong-Ho Son, KAIST, Korea

8:20-8:35 **Modeling Piecewise Helix Curves from Sketches**

Nicolas Cherin, Frederic Cordier, and Mahmoud Melkemi, University of Haute Alsace, France

8:40-8:55 **Modeling by Composition**

Gershon Elber, Technion Israel Institute of Technology, Israel; Myung-Soo Kim, Seoul National University, Korea

9:00-9:15 **GoFinC: Gaze and Finger Control Interface for 3D Model Manipulation in CAD Application**

Junbong Song, Sungmin Cho, Seung-Yeob Baek, Kunwoo Lee, and Hyunwoo Bang, Seoul National University, South Korea

9:20-9:35 **Modeling Flow Features with User-Guided Streamline Parameterization**

Luoting Fu, Levent Burak Kara, and Kenji Shimada, Carnegie Mellon University, USA

9:40-9:55 **Electromagnetic Control of Charged Particulate Spray Systems - Models for Planning the Spray-Gun Operations**

Debanjan Mukherjee and Tarek Zohdi, University of California, Berkeley, USA

Tuesday, November 12

MS3

Isogeometric Representation and Analysis - Part I of IV

10:30 AM - 12:30 PM

Room: Peek-a-Boo

For Part 2 see MS5

Isogeometric Analysis (IGA), introduced in 2005 by T.J.R. Hughes, replaces traditional Finite Elements by NonUniform Rational B-splines (NURBS), thus aligning FEA and CAD shape representation. While CAD-models focus on the overall shape accuracy and allow adjacent surfaces to not match exactly, FEA-models are required to have elements that match exactly with the element structure strongly influencing the quality of the analysis to be performed. The minisymposium will address state-of-the-art and identified research challenges of IGA as well as present selected research topics in more detail.

Organizer: Tor Dokken
SINTEF, Norway

Organizer: Michael Scott
Brigham Young University, USA

10:30-10:55 **LR B-splines**

Tor Dokken, SINTEF, Norway

11:00-11:25 **LR B-Splines and Adaptive Refinement in Fluid Mechanics**

Peter Nørtoft, Technical University of Denmark, Denmark

11:30-11:55 **Hierarchical T-Splines**

Emily Evans, Michael Scott, and Derek C. Thomas, Brigham Young University, USA

12:00-12:25 **Isogeometric Spline Forests**

Michael Scott, Derek C. Thomas, and Emily Evans, Brigham Young University, USA

Coffee Break

10:00 AM - 10:30 AM

Room: Patty-Cake and Curtis Street
Can you compare apples to oranges? When considering two geometric data sets (say an apple and an orange), the first question one could ask is “how similar are they”, and the answer can be quantified by a single number. A more interesting question is “where do they differ?”, because while both a horse and a human are different from a centaur, they are so in different ways. In this talk we will present FMaps - a new computational tool for reasoning about shapes, their differences and differences of differences. We will show how a simple change of perspective allows us to use standard linear algebra tools for complex tasks such as computing maps between shapes, analyzing and visualizing them, computing shape analogies and intrinsically aligning shape collections.

Mirela Ben-Chen
Technion - Israel Institute of Technology, Israel
Tuesday, November 12

PS5

Combined Paper (Full & Short) Presentations: Geometric Constraint Solving

3:30 PM-5:05 PM

Room: Peek-a-Boo

Chair: Jarek Rossignac, Georgia Institute of Technology, USA

3:30-3:50 Continuous Penetration Depth

Xinyu Zhang, University of North Carolina at Chapel Hill, USA; Young J. Kim, Ewha Womans University, South Korea; Dinesh Manocha, University of North Carolina at Chapel Hill, USA

3:55-4:15 Leading a Continuation Method by Geometry for Solving Geometric Constraints

Rémi Imbach, Pascal Schreck, and Pascal Mathis, University of Strasbourg, France

4:20-4:40 Solving Multivariate Polynomial Systems Using Hyperplane Arithmetic and Linear Programming

Iddo Hanniel, Technion - Israel Institute of Technology, Israel

4:45-5:00 How the Beast Really Moves: Cayley Analysis of Mechanism Realization Spaces Using CayMos

Meera Sitharam and Menghan Wang, University of Florida, USA

Siemens Sponsor Presentation

Room: Peek-A-Boo

5:05 PM-5:20 PM

Tuesday, November 12

SMA Best Paper Awards Presentation

5:20 PM-5:30 PM

Room: Peek-a-Boo

Chair: Sara McMains, University of California, Berkeley, USA

Pierre Bezier Award Lecture

5:30 PM-6:15 PM

Room: Peek-a-Boo

Chair: Shi-Min Hu, Tsinghua University, China

Recipient To Be Determined

Intermission

6:15 PM-6:30 PM

Tuesday, November 12

PD1

Forward Looking Panel Discussion

6:30 PM-7:30 PM

Room: Peek-a-Boo

Chair: Ewald Quak, Tallinn Technical University, Estonia

The Forward Looking Panel Discussion is intended to complement the Forward Looking Session similarly to the ones organized at the previous three conferences in San Antonio in 2007, San Francisco in 2009 and Orlando 2011. The members of the audience will have the opportunity to ask the panelists about important trends they perceive concerning the subject areas covered by the conference and the SIAM Activity Group for Geometric Design, hopefully leading to lively discussions of future directions involving all conference participants.

Panelists:

George Allen
Siemens PLM Software, China

Stefan Boschert
Siemens AG Corporate Technology, Germany

Elaine Cohen
University of Utah, USA

Tor Dokken
SINTEF, Norway

Thomas Grandine
The Boeing Company, USA

Jens Gravesen
Technical University of Denmark, Denmark

Thomas Hogan
The Boeing Math Group, USA
Wednesday, November 13

PS6
Full Paper Presentations: Shape Modelling
9:00 AM-10:40 AM
Room: Peek-a-Boo
Chair: Mirela Ben-Chen, Technion - Israel Institute of Technology, Israel
9:00-9:20 Optimizing Polycube Domain Construction for Hexahedral Remeshing
Wuyi Yu, Kang Zhang, Shenghua Wan, and Xin Li, Louisiana State University, USA
9:25-9:45 Improving Spatial Coverage While Preserving Blue Noise of Point Sets
Mohamed S. Ebeida, Sandia National Laboratories, USA; Muhammad Awad, Alexandria University, Egypt; Xiaoyin Ge, Ohio State University, USA; Ahmed Mahmoud, Alexandria University, Egypt; Scott A. Mitchell and Patrick M. Knupp, Sandia National Laboratories, USA; Li-Yi Wei, Hong Kong University, Hong Kong

IP4
Hierarchical Data Structures for Freeform Geometric Models,
8:00 AM-9:00 AM
Room: Peek-a-Boo
Chair: Wenping Wang, University of Hong Kong, Hong Kong
We present recent developments in the design of hierarchical data structures for freeform geometric models. The design of suitable data structures is essential in the acceleration of geometric algorithms for freeform curves and surfaces, in particular, when the freeform shapes are under continuous deformation. We demonstrate the performance improvement of various recent geometric algorithms over conventional results by orders of magnitude in computing time. We also show how the basic properties of spline functions can be used in the development of parametric data structures, their matching, and the Hausdorff distance bounding.
Myung-Soo Kim
Seoul National University, Korea

Wednesday, November 13

PS7
Full Paper Presentations: Geometry and Topology Algorithms
11:10 AM-12:50 PM
Room: Peek-a-Boo
Chair: Gershon Elber, Technion Israel Institute of Technology, Israel
11:10-11:30 A Parallel Algorithm for Improving the Maximal Property of Poisson Disk Sampling
Xiang Ying, Zhenhua Li, and Ying He, Nanyang Technological University, Singapore
11:35-11:55 High-Quality Vertex Clustering for Surface Mesh Segmentation Using Student-t Mixture Model
Shoichi Tsuchie and Tikara Hosino, Nihon Unisys, Ltd., Japan; Masatake Higashi, Toyota Technological Institute, Japan
12:00-12:20 Computing Voxelized 3D Minkowski Sums on the GPU
Wei Li and Sara McMains, University of California, Berkeley, USA
12:25-12:45 A Simple and Local Method for Computing Teichmüller Map on 3D Surfaces
Minqi Zhang and Ying He, Nanyang Technological University, Singapore

Lunch Break
12:50 PM-2:15 PM
Attendees on their own
Topological Methods for Data Understanding and Exploration

Scientific visualization aims to provide insights into data by generating a visual representation of the data and by providing methods for the user to interactively explore and interact with this representation. Topological methods, based on ideas from algebraic topology and Morse theory, have been successfully employed in the past decade to provide succinct and abstract representations of features in the data. One such topological structure is the Reeb graph, which is an abstract representation of the topology of all isosurfaces of a scalar field. In this talk, I will describe the role of the Reeb graph in the development of visualization methods for data from various science and engineering domains. I will focus on challenges in terms of efficient representation of the Reeb graph, fast computation, controlled simplification, and effective visualization.

Vijay Natarajan
Indian Institute of Science, Bangalore, India

Coffee Break
3:15 PM-3:45 PM
Room: Patty-Cake and Curtis Street

Isogeometric Representation and Analysis - Part II of IV

Isogeometric Analysis (IGA), introduced in 2005 by T.J.R. Hughes, replaces traditional Finite Elements by NonUniform Rational B-splines (NURBS), thus aligning FEA and CAD shape representation. While CAD-models focus on the overall shape accuracy and allow adjacent surfaces to not match exactly, FEA-models are required to have elements that match exactly with the element structure strongly influencing the quality of the analysis to be performed. The minisymposium will address state-of-the-art and identified research challenges of IGA as well as present selected research topics in more detail.

Organizer: Tor Dokken
SINTEF, Norway

Organizer: Mike Scott
University of Texas, Austin, USA

Volumetric Isogeometric Descriptions Or Isogeometric Modeling of Complex Geometries
Yongjie Zhang, Carnegie Mellon University, USA

From Design to Production: The TERRIFIC Demonstrator Part
Stefan Boschert, Siemens AG Corporate Technology, Germany

Advances of the Meccano Method for Isogeometric Analysis of Irregular Planar Domains
José Iván López González, Marina Brovka, and José María Escobar Sánchez, University of Las Palmas de Gran Canaria, Spain; José Manuel Cascón Barbero, University of Salamanca, Spain; Rafael Montenegro Armas, University of Las Palmas de Gran Canaria, Spain

Parametrization for Eigenvalue Problems in Isogeometric Analysis
Jens Gravesen, Technical University of Denmark, Denmark

Image and Shape Deformation

Image deformation is a fundamental problem in Computer Graphics and Visualization. It is important to have interactive and intuitive tools for the user to efficiently manipulate images. The equivalent problem in 3D amounts to modifying the geometry of shapes, with applications in the movie and gaming industry. This minisymposium addresses recent trends in this area using advanced computational mathematical machinery.

Organizer: Mirela Ben-Chen
Technion - Israel Institute of Technology, Israel

Locally Injective Mappings
Christian Schüller, ETH Zürich, Switzerland; Ladislav Kavan, University of Pennsylvania, USA; Daniele Panozzo and Olga Sorkine-Hornung, ETH Zürich, Switzerland

From Design to Production: The TERRIFIC Demonstrator Part
Stefan Boschert, Siemens AG Corporate Technology, Germany

Advances of the Meccano Method for Isogeometric Analysis of Irregular Planar Domains
José Iván López González, Marina Brovka, and José María Escobar Sánchez, University of Las Palmas de Gran Canaria, Spain; José Manuel Cascón Barbero, University of Salamanca, Spain; Rafael Montenegro Armas, University of Las Palmas de Gran Canaria, Spain

Parametrization for Eigenvalue Problems in Isogeometric Analysis
Jens Gravesen, Technical University of Denmark, Denmark

Hierarchical Deformation of Locally Rigid Meshes
Josiah M. Manson and Scott Schaefer, Texas A&M University, USA
Wednesday, November 13

CP2
Applications and Simulations
3:45 PM-5:45 PM
Room:Dodgeball
Chair: George Allen, Siemens PLM Software, China

3:45-4:00 Modeling of Countercurrent Two-Phase Interacting Flows: A Geometric Approach
Dmitry A. Altshuller, Dassault Systèmes, USA

4:05-4:20 On-Line Reconstruction of 3d Geometry
Klaus Denker, HTWG Konstanz, Germany

4:25-4:40 Physical Models and Simulation in Procedural Modeling
Alex Pytel and Stephen Mann, University of Waterloo, Canada

4:45-5:00 Uniformly Triangulated Minimal Surfaces in Architecture
Karol Mikula, Martin Huska, Matej Medla, Peter Novyzedlak, and Mariana Remesikova, Slovak University of Technology, Slovakia

5:05-5:20 Earthquake Modeling with Lévy Processes
Indranil Sengupta, North Dakota State University, USA

5:25-5:40 Adaptive Vehicle Make Design Performance Verification through Physics-based Simulation
James D. Walker, Sidney Chocron, Michael Moore, Greg Willden, and Charles Anderson, Southwest Research Institute, USA; John Riegel, R3 Technologies, Inc., USA; David Riha and John McFarland, Southwest Research Institute, USA; Ryan Alberson and David Stevens, Protection Engineering Consultants, USA

Intermission
5:45 PM-6:00 PM

SMA Meeting
6:00 PM-6:30 PM
Room:Peek-a-Boo

SIAG/GD Business Meeting
6:30 PM-7:15 PM
Room:Peek-a-Boo
Complimentary beer and wine will be served.

Thursday, November 14

Registration
7:30 AM-2:30 PM
Room:Jax and Foyer

Closing Remarks
7:55 AM-8:00 AM
Room:Peek-a-Boo

IP6
Geometry in CAD Systems: Past, Present, and Future
8:00 AM-9:00 AM
Room:Peek-a-Boo
Chair: Georg Umlauf, HTWG Konstanz, Germany

The internal workings of commercial CAD/CAM/CAE systems are typically something of a mystery to people outside the industry. The talk describes the evolution of geometric representations in commercial/industrial systems, in the hope that a better understanding of how we do things (and especially why we do them) will be of value to the research community. We describe the chaos of the early days, the relative calm and uniformity of today, and some likely directions for the future.

George Allen
Siemens PLM Software, China

Intermission
9:00 AM-9:05 AM
Thursday, November 14

CP3

Isogeometric Analysis
9:05 AM-10:05 AM
Room: Peek-a-Boo
Chair: Tor Dokken, SINTEF, Norway

9:05-9:20 Adaptive Meshes for Realistic Tokamaks Geometries Using IsoGeometric Analysis
Ahmed Ratnani and Virginie Grandgirard, CEA/DSM/IRFM Cadarache, France; Eric Somendrucker, Max-Planck-Institut für Plasmaphysik, Germany

9:25-9:40 Shape Design and Isogeometric Analysis over An Arbitrary Parametrization Using Mapped Basis Functions
Xiaoyun Yuan and Weiyin Ma, City University of Hong Kong, Hong Kong

9:45-10:00 Hierarchies Generated by Nested Generating Systems
Urska Zore and Bert Juettler, Johannes Kepler University of Linz, Austria

Coffee Break
10:05 AM-10:30 AM
Room: Patty-Cake and Curtis Street

Thursday, November 14

CP4

Graphics and Visualization
9:05 AM-10:05 AM
Room: Keep Away
Chair: Vijay Natarajan, Indian Institute of Science, Bangalore, India

9:05-9:20 Parameterization-Aware Mip-Mapping
Josiah M. Manson and Scott Schaefer, Texas A&M University, USA

9:25-9:40 Topologically Informed, Geometrically Robust Molecular Visualization
Thomas J. Peters and Hugh Cassidy, University of Connecticut, USA; Kirk E. Jordan, IBM T.J. Watson Research Center, USA

9:45-10:00 Using Adaptive Composite B-Spline Grid Generation to Enhance 3D Web Visualizations
Bonita V. Saunders, National Institute of Standards and Technology, USA

MS7

Isogeometric Representation and Analysis - Part III of IV
10:30 AM-12:00 PM
Room: Keep-a-Boo
For Part 2 see MS5
For Part 4 see MS9

Isogeometric Analysis (IGA), introduced in 2005 by T.J.R. Hughes, replaces traditional Finite Elements by NonUniform Rational B-splines (NURBS), thus aligning FEA and CAD shape representation. While CAD-models focus on the overall shape accuracy and allow adjacent surfaces to not match exactly, FEA-models are required to have elements that match exactly with the element structure strongly influencing the quality of the analysis to be performed. The minisymposium will address state-of-the-art and identified research challenges of IGA as well as present selected research topics in more detail.

Organizer: Tor Dokken
SINTEF, Norway

Organizer: Mike Scott
University of Texas, Austin, USA

10:30-10:55 Spline Forests for Discrete Differential Forms
Derek C. Thomas and Michael Scott, Brigham Young University, USA; Rafael Vazquez, Consiglio Nazionale delle Ricerche, Italy; John A. Evans, University of Colorado Boulder, USA

11:00-11:25 Conservation of Geometry and Physics in Numerical Modeling of Incompressible Flow
John Evans, University of Colorado, Boulder, USA; Thomas Hughes, University of Texas, Austin, USA

11:30-11:55 Spline Spaces Over Rectangle Meshes with Complex Topologies
Andre Galligo, Université de Nice, Sophia Antipolis, France; Bernard Mourrain and Meng Wu, INRIA Sophia Antipolis, France
Thursday, November 14

CP5

Numerical Methods
10:30 AM-12:10 PM

Room: Keep Away

Chair: Myung-Soo Kim, Seoul National University, Korea

10:30-10:45 Nonlinear Diffusion Filtering of Data on the Earth’s Surface
Robert Cunderlik and Karol Mikula, Slovak University of Technology, Slovakia

10:50-11:05 Mesh Denoising Via L0 Minimization
Lei He and Scott Schaefer, Texas A&M University, USA

11:10-11:25 Laplace Inversion of Lr-Nmr Relaxometry Data Using Sparse Representation Methods
Ofer Levi, Paula Berman, and Yisrael Parmet, Ben Gurion University Negev, Israel; Michael A. Saunders, Stanford University, USA; Zeev Wiesman, Ben Gurion University Negev, Israel

11:30-11:45 Balloon Darts: Fast Approximate Union Volume in High Dimensions with Line Samples
Scott A. Mitchell and Mohamed S. Ebeida, Sandia National Laboratories, USA

11:50-12:05 Adaptively Weighted Numerical Integration over Arbitrary Domains
Vaidyanathan Thiagarajan and Vadim Shapiro, University of Wisconsin, Madison, USA

Lunch Break
12:30 PM-2:00 PM

Attendees on their own

Thursday, November 14

MS9

Isogeometric Representation and Analysis - Part IV of IV
2:00 PM-3:30 PM

Room: Peek-a-Boo

For Part 3 see MS7

Isogeometric Analysis (IGA), introduced in 2005 by T.J.R. Hughes, replaces traditional Finite Elements by NonUniform Rational B-splines (NURBS), thus aligning FEA and CAD shape representation. While CAD-models focus on the overall shape accuracy and allow adjacent surfaces to not match exactly, FEA-models are required to have elements that match exactly with the element structure strongly influencing the quality of the analysis to be performed. The minisymposium will address state-of-the-art and identified research challenges of IGA as well as present selected research topics in more detail.

Organizer: Tor Dokken
SINTEF, Norway

Organizer: Mike Scott
University of Texas, Austin, USA

2:00-2:25 Exploiting Components Interfaces and Functional Information to Generate FE Models of Assemblies
Jean-Claude Leon, INRIA, France

2:30-2:55 From CAD to 3-Variate Spline Representation: The Terrific-Part
Vibeke Skytt, SINTEF, Norway

3:00-3:25 Verification of Mechanical Engineering Finite Element Analysis
Eric Florentin and Sylvain Pavot, LMT-Cachan, France; Laurent Champaney, Arts et Metiers PARISTECH, France
GD/SPM13 Abstracts

GEOMETRIC & PHYSICAL MODELING
(GD/SPM13)

November 11-14, 2013
the Curtis-a DoubleTree by Hilton Hotel
Denver, Colorado, USA

Abstracts are printed as submitted by the author.

Please Note:
PS Paper Presentation Session abstracts
are included under “CPO” abstracts.
IP1
Thinking Outside the CAD Box: Geometric Design in the Age of 3D Printing

For the last four decades, CAD tools have played an increasingly critical role in the product design process and in shaping our design thinking. But with the advent of 3D printing, traditional geometric modeling isn't keeping pace. While CAD systems have become faster, cheaper, and easier to use, they offer only limited access to the vast new space of geometric complexity now within our reach. This talk will outline new design and geometric representation paradigms that are emerging (and sometimes re-emerging): From generative geometry and evolutionary design, to multimaterial topological optimization and dynamical blueprints.

Hod Lipson
Cornell University, USA
hod.lipson@cornell.edu

IP2
Conformalizing Mean Curvature Flow - Computer Science or Mathematics?

In this talk we will revisit a well-studied problem from the mathematical community - the formations of singularities in the mean curvature flow of 2D surfaces. Exploring the flow from the perspective of computer science, we relate the formation of singularities to a division-by-zero in the implementation. We show that a simple algorithmic modification that removes the division-by-zero also results in a geometrically simpler flow that empirically has been shown to evolve genus zero surfaces to conformal parameterizations over the round sphere.

Michael Kazhdan
Johns Hopkins University, USA
misha@cs.jhu.edu

IP3
FMaps - Algebraic Tools for Reasoning about Shapes and their Collections

Can you compare apples to oranges? When considering two geometric data sets (say an apple and an orange), the first question one could ask is "how similar are they", and the answer can be quantified by a single number. A more interesting question is "where do they differ?", because while both a horse and a human are different from a centaur, they are so in different ways. In this talk we will present FMaps - a new computational tool for reasoning about shapes, their differences and differences of differences. We will show how a simple change of perspective allows us to use standard linear algebra tools for complex tasks such as computing maps between shapes, analyzing and visualizing them, computing shape analogies and intrinsically aligning shape collections.

Mirela Ben-Chen
Technion - Israel Institute of Technology, Israel
mirela@cs.technion.ac.il

IP4
Hierarchical Data Structures for Freeform Geometric Models

We present recent developments in the design of hierarchical data structures for freeform geometric models. The design of suitable data structures is essential in the acceleration of geometric algorithms for freeform curves and surfaces, in particular, when the freeform shapes are under continuous deformation. We demonstrate the performance improvement of various recent geometric algorithms over conventional results by orders of magnitude in computing time. We also show how the basic properties of spline functions can be used in the development of parametric data structures, their matching, and the Hausdorff distance bounding.

Mirela Ben-Chen
Technion - Israel Institute of Technology, Israel
mirela@cs.technion.ac.il

IP5
Topological Methods for Data Understanding and Exploration

Scientific visualization aims to provide insights into data by generating a visual representation of the data and by providing methods for the user to interactively explore and interact with this representation. Topological methods, based on ideas from algebraic topology and Morse theory, have been successfully employed in the past decade to provide succinct and abstract representations of features in the data. One such topological structure is the Reeb graph, which is an abstract representation of the topology of all isosurfaces of a scalar field. In this talk, I will describe the role of the Reeb graph in the development of visualization methods for data from various science and engineering domains. I will focus on challenges in terms of efficient representation of the Reeb graph, fast computation, controlled simplification, and effective visualization.

Vijay Natarajan
Indian Institute of Science, Bangalore
Vijayn@cs.iisc.ernet.in

IP6
Geometry in CAD Systems: Past, Present, and Future

The internal workings of commercial CAD/CAM/CAE systems are typically something of a mystery to people outside the industry. The talk describes the evolution of geometric representations in commercial/industrial systems, in the hope that a better understanding of how we do things (and especially why we do them) will be of value to the research community. We describe the chaos of the early days, the relative calm and uniformity of today, and some likely directions for the future.

George Allen
Siemens PLM Software
gorge.allen@siemens.com

CP0
Longest-Edge Algorithms for Size-Optimal Refinement of Triangulations

Longest-edge refinement algorithms were designed to iteratively refine the mesh for finite-element applications by maintaining the mesh quality (assuring a bound on the smallest angle). In this paper we improve geometrical results on longest-edge refinement algorithms and provide precise bounds on the refinement propagation. We prove that the iterative application of the algorithm gradually
reduces the average extent of the propagation per target
triangle, tending to affect only two triangles.

Carlos Bedregal, Maria-Cecilia Rivara
University of Chile
cbedrega@dcc.uchile.cl, mcrivara@dcc.uchile.cl

CP0

Extraction of Generative Processes from B-Rep Shapes and Application to Idealization Transformations

The construction tree produced during the design process of B-Rep objects does not bring all the desired properties in many configurations: dimension modifications, idealization processes. This paper proposes a primitive-based approach to extract generative processes from a given B-rep. The resulting construction graph generates a set of additive generative processes which, in the context of finite element analyses, can efficiently improve the idealizations of extracted primitives and ensure robust connections between them.

Flavien Boussuge
EADS IW, Dept. Structure Eng., Production & Aeromechanics
flavien.boussuge@eads.net

Jean-Claude Léon, Stefanie Hahmann
Grenoble University /INRIA, Grenoble
jean-claude.leon@grenoble-inp.fr, stefanie.hahmann@imag.fr

Lionel Fine
EADS IW, Dept. Structure Eng., Production & Aeromechanics
Suresnes, France
lionel.fine@eads.net

CP0

Implicit Matrix Representations of Rational Bzier Curves and Surfaces

We introduce and study a new implicit representation of rational Bzier curves and surfaces in the 3-dimensional space. This representation consists of a matrix whose entries depend on the space variables and whose rank drops exactly on this curve or surface. Then, we show that these implicit matrix-based representations adapt geometric problems, such as intersection problems, to the powerful tools of numerical linear algebra, as the singular value decomposition, with a good numerical stability.

Laurent Busé
INRIA Sophia Antipolis, France
Laurent.Busé@inria.fr

CP0

Modeling Piecewise Helix Curves from Sketches

We describe a method for reconstructing piecewise helix curve from 2D sketch. The system takes as input a polygonal curve and generates a piecewise helix curve such that its orthogonal projection matches the input curve. The first step is an algorithm to generate a set of helices such that their orthogonal projection approximates the input curve. This step is followed by a global optimization to minimize the tangent discontinuity of the junctions of the helices.

Nicolas Cherin, Frederic Cordier, Mahmoud Melkemi
University of Haute Alsace
Nicolas.Cherin@uha.fr, fredcord@gmail.com, mahmoud.melkemi@uha.fr

CP0

Geometry Seam Carving

We present a novel approach to feature-aware mesh deformation that combines elastic Laplacian editing with discrete plastic deformations by transferring the concept of seam carving from image retargeting to mesh deformation. During editing, a pre-computed set of triangle strips, or geometry seams, can be deleted or inserted in low saliency mesh regions, thereby distributing the deformation distortion non-homogeneously over the model which preserves salient features much better.

Ellen Dekkers
RWTH Aachen University
dekkers@cs.rwth-aachen.de

Leif Kobbelt
RWTH Aachen University, Aachen, Germany
kobbelt@informatik.rwth-aachen.de

CP0

Improving Spatial Coverage While Preserving Blue Noise of Point Sets

A well-spaced blue-noise distribution of points has a random Fourier spectrum and small Voronoi cell aspect ratios. Totally random distributions have no aspect ratio bounds, and perfect tilings have no randomness. Smoothing a random input to locally optimize aspect ratios improves well-spacedness while preserving randomness. We simultaneously get good, middling values for both; better than CVT, Farthest Neighbor, and DistMesh. We show meshing and filtering applications.

Mohamed S. Ebeida
Sandia National Laboratories
msebeid@sandia.gov

Muhammad Awad
Alexandria University
muhammad.a.awad91@student.alx.edu.eg

Xiaoyin Ge
Ohio State University
gex@cse.ohio-state.edu

Ahmed Mahmoud
Alexandria University
eng.a.hassen@gmail.com

Scott A. Mitchell, Patrick M. Knupp
Sandia National Laboratories
samitch@sandia.gov, pknupp@sandia.gov

Li-Yi Wei
Hong Kong University
Modeling by Composition

Functional composition can be computed efficiently, robustly, and precisely over polynomials and piecewise polynomials represented in the Bezier and B-spline forms. In this work, as a testimony to the value of functional composition, we recall applications to curve-curve and curve-surface composition, and more extensively explore the surface-surface composition (SSC) in geometric modeling. We demonstrate the great potential of functional composition using several examples of the SSC operator, in geometric modeling applications.

Gershon Elber
Technion, Haifa
Israel
gershon@cs.technion.ac.il

Myung-Soo Kim
Seoul National University
mskim.at.snu.ac.kr@gmail.com

Computation of Components’ Interfaces in Highly Complex Assemblies

This paper proposes a method to rapidly and fully automatically generate a precise geometric description of interfaces in generic B-Rep CAD models. The approach combines an efficient GPU ray-casting technique commonly used in computer graphics with a graph-based curve extraction algorithm. Not only is it able to detect a large number of interfaces efficiently, but it also provides an accurate Nurbs geometry of the interfaces, that can be stored in a plain STEP file.

François Jourdes
INRIA
francois.jourdes@gmail.com

Georges-Pierre Bonneau
Laboratoire Jean Kuntzmann / INRIA
georges-pierre.bonneau@inria.fr

Stefanie Hahmann
Grenoble University /INRIA, Grenoble
Stefanie.Hahmann@imag.fr

Jean-Claude Léon, François Faure
LJK
jean-claude.leon@inria.fr, francois.faure@inria.fr

Solving Multivariate Polynomial Systems Using Hyperplane Arithmetic and Linear Programming

We present a new method for solving systems of polynomial constraints, which scales nicely for systems with a large number of variables and relatively low degree. Such systems appear in many application domains. The method is based on the concept of bounding hyperplane arithmetic, which can be viewed as a generalization of interval arithmetic. We have implemented our method and present experimental results. The method is compared to previous methods and its advantages are discussed.

Iddo Hanniel
Technion, Israel Institute of Technology
tba@siam.org

Leading a Continuation Method by Geometry for Solving Geometric Constraints

Geometric constraint problems arise in domains such as CAD, Robotics, Molecular Chemistry, whenever one expects 2D or 3D configurations of some geometric primitives fulfilling some geometric constraints. Most well-constrained 3D problems are resistant to geometric methods. They are often solved by purely numerical methods that are efficient but provide only one solution. This paper focuses on using geometric knowledges to specialize a so-called coefficient parameter continuation to 3D geometric constraint systems.

Rémi Imbach, Pascal Schreck, Pascal Mathis
Université de Strasbourg
rimbach@unistra.fr, schreck@unistra.fr, mathis@unistra.fr

Isogeometric Analysis on Triangulations

We present a method for isogeometric analysis on triangulation of a domain bounded by NURBS curves. Both the geometry and the physical field are represented by bivariate splines in Bernstein Bezier form over the triangulation. We describe a set of procedures to construct a parametric domain and construct Cr-smooth basis functions. This method is applicable to complex topologies and allows highly localized refinement. Isogeometric analysis of problems from linear elasticity and advection-diffusion analysis is demonstrated.

Noah Jaxon, Xiaoping Qian
Illinois Institute of Technology
njaxon@iit.edu, qian@iit.edu

Modeling Flow Features with User-Guided Streamline Parameterization

We present a novel approach for designing streamline-based, free-form surface features in the context of product design. The user first designs a network of streamlines on the base shape, by performing a stroke-constrained mesh parameterization. Then, the user utilizes these streamlines as a curvilinear scaffold for creating 3D features that are bounded and parameterized by them. The user applies fine-grained control of the resulting 3D features by manipulating the streamlines.

Luoting Fu, Levent Burak Kara, Kenji Shimada
Carnegie Mellon University
luoting@cmu.edu, lkara@cmu.edu, shimada@cmu.edu

Precise Convex Hull Computation for Freeform Models Using a Hierarchical Gauss Map and Coons Bounding Volume Hierarchy

We present an interactive-speed algorithm for computing the precise convex hull of freeform geometric models. The
algorithm is based on two pre-built data structures: a Hierarchical Gauss map and a Coons bounding volume hierarchy. We recursively build approximate convex hulls using the data structures and eliminate the majority of redundant surface patches. In the final stage, we compute the precise trimmed surface patches on the convex hull boundary using numerical methods.

Yong-Joon Kim
Technion
kyj24182@gmail.com

Gershon Elber
Technion, Haifa
Israel
gershon@cs.technion.ac.il

Myung-Soo Kim
School of Computer Science and Engineering
Seoul National University, Korea
mskim@snu.ac.kr

CP0
Computing Voxelized 3D Minkowski Sums on the GPU

We present an algorithm for directly computing a voxelization of the Minkowski sum of two arbitrary closed watertight input polyhedra for applications such as path planning that do not require a boundary representation as output. We introduce a new decomposition formula for computing the Minkowski sum and prove its correctness. We describe an efficient Graphics Processing Unit (GPU) implementation of the algorithm using stencil shadow volumes to create a solid voxelization of the Minkowski sum.

Wei Li
UC Berkeley
liw@berkeley.edu

Sara McMains
U.C. Berkeley
Mechanical Engineering
mcmains@me.berkeley.edu

CP0
Robust Cascading of Operations on Polyhedra

We present an algorithm for robustly implementing sequences of operations on polyhedra. We modify the input to each operation by rounding the output of the previous operation to floating point, randomly perturbing, and ensuring that the result represents a polyhedron. We demonstrate our algorithm on a packing algorithm with ten cascaded Minkowski sums and set operations.

Elisha Sacks
Purdue University
eps@cs.purdue.edu

Victor Milenkovic
University of Miami
vjm@cs.miami.edu

CP0
Self-Overlapping Curves: Analysis and Applications

When a 2D disk is stretched arbitrarily with possible self-overlaps, without twisting, its boundary forms a complex curve known as a self-overlapping curve. The mapping between the disk and its deformed self, also called the disk immersion, is useful in many applications like shape morphing and curve interpretation. Given a self-overlapping curve, an algorithm for computing its immersion is presented, which has an average time complexity quadratic in the number of points on the curve.

Uddipan Mukherjee
University of California, Irvine
umukherj@ics.uci.edu

CP0
Electromagnetic Control of Charged Particulate Spray Systems - Models for Planning the Spray-Gun Operations

This work concerns the use of externally applied electromagnetic fields in charged particulate spray systems. We present a set of simple physical and geometric arguments for identifying the mapping between spray-gun trajectory and the target surface - along with the parametric dependence of the mapping on operation parameters and the applied fields - and illustrating their role in constructing physically based process simulations. Sensitivity to process parameters is also characterized for a given applied field.

Debanjan Mukherjee, Tarek Zohdi
University of California, Berkeley
debanj@berkeley.edu, zohdi@me.berkeley.edu

CP0
Automated Fixture Configuration for Rapid Manufacturing Planning

Practical fixture configuration largely remains an experience driven manual activity to enable customization for varying workpiece geometry, and most automated solutions do not scale well to accommodate such variation. In this paper, we address the problem of rapidly synthesizing a realistic fixture that will guarantee stability and immobility of a specified polyhedral work-part. The paper addresses both theoretical and practical issues in 3D fixturing and makes contributions to both. Many examples are shown.

Saigopal Nelaturi
Palo Alto Research Center, nelaturi@parc.com

Arvind Rangarajan, Christian Fritz, Tolga Kurtoglu
Palo Alto Research Center (PARC)
arangara@parc.com, cfritz@parc.com, tolga.kurtoglu@parc.com

CP0
A Unified Method for Hybrid Subdivision Surface Design Using Geometric Partial Differential Equations

This research presents a novel technique to evaluate the finite element basis functions and the first attempt for constructing GPDE subdivision surface with hybrid control meshes consisting of triangles and quadrilaterals. We choose the mean curvature flow and Willmore flow as our
driven GPDEs, and the finite element method coupled with a hybrid Loop and Catmull-Clark subdivision algorithm as the numerical simulation method.

Qing Pan
Key Laboratory of High Performance Computing and Stochastic Info Processing, Hunan Normal University, Changsha, China
panqing@lsec.cc.ac.cn

Guoliang Xu
Academia Sinica
Beijing, China
xuguo@lsec.cc.ac.cn

Yongjie Zhang
Department of Mechanical Engineering
Carnegie Mellon University
jessicaz@andrew.cmu.edu

CP0
Linear Algebraic Representation for Topological Structures

We advocate that a proper mathematical model for all topological structures is a (co)chain complex: a sequence of (co)chain spaces and (co)boundary mappings. This implies all topological structures may be represented by a collection of sparse matrices. We propose a Linear Algebraic Representation (LAR) scheme and show that it supports variety of topological computations using standard matrix algebra, without any overhead in space or running time. Full open source implementation of LAR is now available.

Antonio DiCarlo
Università Roma Tre
adicarlo@mac.com

Alberto Paoluzzi
Roma Tre University
paoluzzi@dia.uniroma3.it

Vadim Shapiro
University of Wisconsin - Madison
vshapiro@engr.wisc.edu

CP0
Geometric Interoperability with Queries

The problem of geometric (model and system) interoperability is conceptualized as a generalization of the problem of part interchangeability in mechanical assemblies. Interoperability subsumes the problems of geometric model quality, exchange, interchangeability, and system integration. Most interoperability proposals have been data-centric. Instead, we advocate a query-centric approach that can deliver interoperable solutions to many common geometric tasks in computer aided design and manufacturing, including model acquisition and exchange, metrology, and computer aided design/analysis integration.

Chris Hoffmann
Dep’t Computer Science, Purdue University
Lafayette, IN
cmh@cs.purdue.edu

Vadim Shapiro
University of Wisconsin - Madison
vshapiro@engr.wisc.edu

Vijay Srinivasan
NIST
vijay.srinivasan@nist.gov

CP0
Kinematic Skeleton Extraction from 3D Articulated Models

We propose a kinematic skeleton extraction method from an articulated 3D model. Our method is a hybrid approach combining the advantages of topology-based and geometry-based methods using the Morse theory and the shape descriptor. This method does not require manually-chosen feature points or markers, is independent of both postures and the number of branches in the model, and can efficiently extract kinematic skeletons that can be directly applied to the character rigging.

Jaehwan Ma, Sunghee Choi, Jeong-Ho Son
KAIST, Daejeon, Daejeon, South Korea
maepowl@gmail.com, sunghee@kaist.edu, n/a

CP0
GaFinC: Gaze and Finger Control Interface for 3D Model Manipulation in CAD Application

We propose an improved gesture control interface for 3D modeling manipulation tasks that possesses conventional interface level usability with low user fatigue while maintaining a high level of intuitiveness. By analyzing problems associated with previous hand gesture controls in translating, rotating and zooming, we developed a multi-modal control interface called GaFinC. GaFinC can track precise hand position and recognize several finger gestures and utilizes an independent gaze pointing interface for setting the point of interest.

Junbong Song
Seoul National University, Seoul
junbong.song@gmail.com

Sungmin Cho, Seung-Yeob Baek, Kunwoo Lee, Hyunwoo Bang
Seoul National University
sungmins@snu.ac.kr, bsy86@snu.ac.kr, Kunwoo@snu.ac.kr, savoy@snu.ac.kr

CP0
High-Quality Vertex Clustering for Surface Mesh Segmentation Using Student-t Mixture Model

In order to robustly perform segmentation for industrial objects measured by a 3-D scanning device, we propose a new method for high-quality vertex clustering on a noisy mesh. Using Student-t mixture model with the variational Bayes approximation, we develop a vertex clustering algorithm in the 9-D space composed of three kinds of principal curvature measures along with vertex position and normal component. We demonstrate effectiveness of our method by applying it to real-world scanned data.

Shoichi Tsuchie, Tikara Hosino
Nihon Unisys, Ltd.
shoichi.tsuchie@unisys.co.jp, chikara.hoshino@unisys.co.jp
An Optimization Approach for Constructing Trivariate B-Spline Solids

We present an approach that automatically constructs a trivariate tensor-product B-spline solid via a gradient-based optimization approach. Given six boundary B-spline surfaces for a solid, this approach finds the internal control points so that the resulting trivariate B-spline solid is valid in the sense the minimal Jacobian of the solid is positive. It further minimizes a volumetric functional to improve resulting parametrization quality. Our approach employs elastic deformation, constraint aggregation, divide-and-conquer and hierarchical optimization techniques.

Xilu Wang, Xiaoping Qian
Illinois Institute of Technology
xwang136@hawk.iit.edu, qian@iit.edu

How the Beast Really Moves: Cayley Analysis of Mechanism Realization Spaces Using CayMos

For a commonly occurring subclass of 1-dof tree-decomposable linkages in 2D, we give a canonical bijective representation and visualization of the connected components of the Euclidean realization space, as curves in a carefully chosen Cayley parameter space. This also allows us to find a shortest "distance" between connected components. By implementation of these results in our new software CayMos, we give new observations about the realization spaces of many well-studied 1-dof linkages including the Strandbeest.

Meera Sitharam
Computer and Information Science
University of Florida
sitharam@cise.ufl.edu

Menghan Wang
University of Florida
menghan@cise.ufl.edu

Geometric Computation and Optimization on Tolerance Dimensioning

An efficient geometric method of tolerance analysis is presented for optimizing dimensioning and providing an optimal processing plan for a discrete part. A topological graph is introduced to represent the geometric primitives and dependencies in dimensioning. The tolerance zone is obtained by translating parametric models into corresponding geometric computations. Geometric optimization is applied to the graph in order to find the optimal dimensioning scheme. Applications include tolerance analysis, dimension scheme optimization, and process planning.

Minqi Zhang, Ying He
Nanyang Technological University
yhe@ntu.edu.sg

A Parallel Algorithm for Improving the Maximal Property of Poisson Disk Sampling

This paper presents a simple yet effective algorithm to improve an arbitrary Poisson disk sampling to reach the maximal property. Our algorithm has a natural parallel structure and is memory efficient and flexible that can generate maximal Poisson disk sampling in an arbitrary 2D polygon or 3D polyhedron. Furthermore, it can be extended from Euclidean space to curved surfaces in an intrinsic manner, which distinguishes itself from other parallel Poisson disk sampling techniques.

Xiang Ying, Zhenhua Li, Ying He
Nanyang Technological University
ying0008@ntu.edu.sg, lizh0021@e.ntu.edu.sg, yhe@ntu.edu.sg
CP0

Continuous Penetration Depth

We present a new measure for computing continuous penetration depth between two intersecting rigid objects. Our algorithm guarantees that both the penetration depth magnitude and direction are continuous with respect to the motion parameters. We have applied our algorithm to complex rigid models composed of tens or hundreds of thousands of triangles and the runtime query takes only around 0.01 milliseconds.

Xinyu Zhang
Univ. of North Carolina at Chapel Hill
zhangxy@cs.unc.edu

Young J. Kim
Ewha Womans University, Korea
kimy@ewha.ac.kr

Dinesh Manocha
University of North Carolina, Chapel Hill
dm@cs.unc.edu

CP1

Geometric Characteristics of Quadric Bézier Triangular Patches

We derive expressions for implicit equations of quadric Bézier triangular patches in terms of their control nets and weights, and also for the tangent planes to the quadric. This allows us to use control nets and weights to classify quadrics and to derive expressions for their geometric characteristics (centers, vertices, axes...)

Alicia Cantón
Universidad Politécnica de Madrid
alicia.canton@upm.es

Leonardo Fernández-Jambrina
Universidad Politécnica de Madrid
leonardo.fernandez@upm.es

Eugenia Rosado María, María Jess Vázquez Gallo
Universidad Politécnica de Madrid
eugenia.rosaldo@upm.es, mariajesus.vazquez@upm.es

CP1

Aesthetic Spiral Design With Control Points

This paper elucidates the properties of Generalized Log-Aesthetic Curves (GLAC) for CAD practicalities. It is an extension of the emerging Log-Aesthetic (LA) curve with an extra DoF encompassing clothoid, circle involute, logarithmic spiral and etc. The first section analyzes the bounds of GLAC and identifies the occurrence of inflection points based on DoFs (ν, Λ and α). The second section describes the algorithm to generate GLAC interactively with three control points. The final section verifies the superiority of GLAC by depicting drawable regions of GLAC and comparing them to LA curves.

Rudrusamy Gobithaasan
Dept. of Mathematics, FST,
Universiti Malaysia Terengganu
gr@umt.edu.my

Ramamoorthy Karpagavalli
Dept. of Mathematics, FST,
University Malaysia Terengganu, Malaysia.
karpa85@hotmail.com

Kenjiro Miura
Graduate School of Science & Technology,
Shizuoka University, Japan.
tmkmiur@ipc.shizuoka.ac.jp

CP1

Fair Bi-4 Surfaces

The construction fills multi-sided neighborhoods in a bi-3 spline complex. Guide surfaces and a novel splitting of G^1 constraints consistently yield fair highlight distribution, even for input with extreme curvature variation.

Kestutis Karciauskas
Vilnius University
Kestutis.Karciauskas@mif.vu.lt

Jorg Peters
University of Florida
jorg@cise.ufl.edu

CP1

Volume-Oriented Tangential Redistribution of Points on Evolving Manifolds

We present a method that can be used for improving the mesh quality of evolving discretized manifolds. The method is based on a specifically designed tangential redistribution of points during the evolution process. We formulate the results in a general continuous setting and then we demonstrate the performance of our method on the special case of mean curvature flow of surfaces in \mathbb{R}^3. We show how we can obtain an asymptotically uniform mesh with respect to the area of mesh elements or how we can preserve relative volumes of mesh elements during the evolution.

Mariana Remesikova, Karol Mikula, Peter Sarkoci
Slovak University of Technology
remesikova@math.sk, mikula@math.sk, sarkoci@math.sk

Daniel Sevcovic
Comenius University, Bratislava
sevcovic@fmph.uniba.sk

CP1

Complete Log-Aesthetic Surfaces by Logarithmic Helical Sweep

We propose a new category of aesthetic surfaces, called complete log-aesthetic surfaces, all of whose isoparametric curves are log-aesthetic curves. Log-aesthetic curves are curves with linear logarithmic curvature graphs, and such linearity has been confirmed in many existing aesthetic curves. Complete log-aesthetic surfaces are generated by sweeping a log-aesthetic curve segment along a logarithmic helix, a special case of log-aesthetic space curves. Some features of the surfaces, such as Gaussian curvature, are presented.

Kenji Shikano, Takafumi Saito
Tokyo University of Agriculture and Technology
50012401214@st.tuat.ac.jp, txsaito@cc.tuat.ac.jp
Selecting Degree Elevation for Multi-Sided Bezier Patches

This work presents a method to select the degree of multi-sided Bezier patches of arbitrary dimension over any domain without self-intersections. Users selectively insert control points of higher degree while maintaining the polynomial reproduction order of the original patch. This elevates the degree of desired portions of the patch adding degrees of freedom and maintaining continuity with adjacent patches without elevating the degree of the entire patch, avoiding creation of unnecessary degrees of freedom.

On-Line Reconstruction of 3D Geometry

In reverse engineering and computer-aided design (CAD), point cloud data is usually manually acquired, reconstructed, and post-processed in separate steps. The operator of a hand-held laser scanner has no feedback from the reconstruction results. On-line reconstruction of 3D geometry allows for such an immediate feedback. Regions where the scanned data is insufficient for the reconstruction can be detected on the fly to allow an immediate correction. This enables the operator to focus on critical regions in the scanned data to improve the reconstruction quality. This talk focuses on on-line segmentation and reconstruction during the scanning process.

Earthquake Modeling with Lévy Processes

A new earthquake model using a Lévy driven stochastic processes will be discussed. Assuming variance of the process is an Ornstein-Uhlenbeck type process this will lead to the Barndorff-Nielsen and Shephard (BN-S) model for earthquake data. Improvement over the previous related results will be discussed. This model has potential geoscientific applications in estimating earthquakes in certain regions.

Uniformly Triangulated Minimal Surfaces in Architecture

We present a novel method for finding minimal surfaces with application in design of triangular shell structures in architecture. Our method is based on mean curvature flow of initial triangulated surface with boundary to a minimal surface. The flow of the surface in normal direction is accompanied by an originally designed tangential redistribution of points on evolving surface which causes uniform discretization of selected curves forming the surface triangulation.

Physical Models and Simulation in Procedural Modeling

Models of hydraulic erosion have to account for the dynamic conditions present in a variety of physical systems. However, synthesis of erosion features by simulation suggests a way of reducing the diversity of the underlying models by emphasizing principles of self-organization, such as emergent behavior and avalanching. For a concrete illustration, I will discuss the role of self-organization in the development of several models of erosion with applications in terrain generation.

Adaptive Vehicle Make Design Performance Verification through Physics-based Simulation

DARPA’s Adaptive Vehicle Make (AVM) program is developing extensive design, analysis, and production software and is building a production line to support the goal of greatly reducing vehicle development time (see VehicleForge.org). We describe how the conceptual through
detailed designs are analyzed to confirm performance to achieve correct by construction. This includes automatic meshing of CAD geometries for physics-based simulations. The first vehicle that rolls off the production line is intended to be fully operational.

James D. Walker, Sidney Chocron, Michael Moore, Greg Willden, Charles Anderson
Southwest Research Institute
james.walker@swri.org, sidney.chocron@swri.org, michael.moore@swri.org, greg.willden@swri.org, charles.anderson@swri.org

John Riegel
R3 Technologies, Inc.
jriegel@r3-technology.com

David Riha, John McFarland
Southwest Research Institute
david.riha@swri.org, john.mcfarland@swri.org

Ryan Alberson, David Stevens
Protection Engineering Consultants
ralberson@protection-consultants.com, dstevens@protection-consultants.com

CP3
Adaptive Meshes for Realistic Tokamaks Geometries Using IsoGeometric Analysis

Designing realistic and exact geometries for actual tokamaks is an important step for studying and understanding non-linear MHD and kinetic models. We are interested in adaptive meshes as part of an r-adaptive strategy for solving partial differential equations with evolving internal structure, such as those encountered in non-linear MHD and Kinetic models. In particular, flux aligned meshes are used for the equilibrium state, while equidistributed meshes are used for high anisotropic diffusion problems, ELMs simulations and strong turbulence.

Ahmed Ratnani
CEA
ahmed.ratnani@cea.fr

Virginie Grandgirard
C.E.A./DSM/IRFM
Cadarache
virginie.grandgirard@cea.fr

Eric Sonnendrucker
Max-Planck Institute of Plasmas Physics
Garching
eric.sonnendrucker@ipp.mpg.de

CP3
Shape Design and Isogeometric Analysis over An Arbitrary Parametrization Using Mapped Basis Functions

This talk presents a novel method for shape design and isogeometric analysis from a quadrilateral control mesh of arbitrary topology using mapped basis functions. Based on an arbitrary input quadrilateral control mesh, a global parametrization of the final surface is first defined through a Gravity Center Method (GCM). A re-parametrization method is then applied to map a given basis function to others tailored to each of the control vertices which can be either regular or extraordinary ones. The final surface is defined by all the input control vertices with their corresponding mapped basis functions patch by patch. Depending on the continuity of the original basis function used for mapping to others, the global continuity of the resulting surface, including at extraordinary positions, can be of an arbitrarily higher order. In this talk, a uniform cubic B-spline basis function is used to illustrate the method and the resulting surface is globally C^2 continuous. Several examples are provided to demonstrate the proposed method for both shape design and isogeometric analysis. Other basis functions can also be used for mapping purpose and the method can also be extended to non-quadrilateral control meshes.

Xiaoyun Yuan, Weiyin Ma
City University of Hong Kong
xyuan9@student.cityu.edu.hk, mewma@cityu.edu.hk

CP3
Hierarchies Generated by Nested Generating Systems

In order to provide the possibility of local refinement, several generalizations of tensor-product splines have been explored, such as hierarchical splines. We consider a generalized hierarchical spline space which is based on a nested sequence of (possibly linearly dependent) generating systems, such as box-splines. We analyze the properties of the space obtained by collecting functions with respect to a decreasing sequence of hierarchical domains and explore applications in geometric design and isogeometric analysis.

Urska Zore
Johannes Kepler University, Linz
Institute for Applied Geometry
urska.zore@jku.at

Bert Juettler
Johannes Kepler University of Linz
Institute of Applied Geometry
bert.juettler@jku.at

CP4
Parameterization-Aware Mip-Mapping

We present a method of generating mipmaps that takes into account the distortions due to the parameterization of a surface. Our method downsamples warped textures by assigning texels weights proportional to their area on a surface and filters textures for best reproduction by the postfilter used on the GPU. Our method improves texture filtering but only modifies mipmap generation, requires no modification of art assets or rasterization algorithms, and does not affect run-time performance.

Josiah M. Manson, Scott Schaefer
Texas A&M University
josiahmanson@gmail.com, schaefer@cs.tamu.edu

CP4
Topologically Informed, Geometrically Robust Molecular Visualization

Synchronous dynamic visualizations of bio-molecular simulations are crucial 0-th order analyses for the Big Data generated. Reliable visualization depends upon topologi-
cal guarantees so that domain scientists do not draw unwarranted inferences. Responsive numerical techniques on the underlying spline models, inclusive of rigorous error bounds, are presented for high performance computing environments.

Thomas J. Peters, Hugh Cassidy
University of Connecticut
tpeters@engr.uconn.edu, hugh.cassidy@uconn.edu

Kirk E. Jordan
IBM T.J. Watson Research
kjordan@us.ibm.com

CP 4
Using Adaptive Composite B-Spline Grid Generation to Enhance 3D Web Visualizations

We describe an adaptive grid generation technique based on the composition of tensor product B-spline mappings, T and Φ, where Φ maps the unit square onto itself and T maps the unit square onto the desired physical domain. Variational methods are used to adjust the T and Φ coefficients to move grid points without disturbing the accuracy of the boundary approximation. The effectiveness of the method on both convex and nonconvex domains is demonstrated. Applications to the development of computational grids for the rendering of complex mathematical function surfaces on the web are shown.

Bonita V. Saunders
National Institute of Standards and Technology (NIST)
bonita.saunders@nist.gov

CP 5
Mesh Denoising Via L0 Minimization

We present an algorithm for denoising triangulated models based on L0 minimization. Our method maximizes the flat regions of the model and gradually removes noise while preserving sharp features. As part of this process, we build a discrete differential operator for arbitrary triangle meshes that is robust with respect to degenerate triangulations. We compare our method versus other anisotropic denoising algorithms and demonstrate that our method is more robust and produces good results even in the presence of high noise.

Lei He, Scott Schaefer
Texas A&M University
leih@cs.tamu.edu, schaefer@cs.tamu.edu

CP 5
Laplace Inversion of Lr-Nmr Relaxometry Data Using Sparse Representation Methods

LR-NMR relaxometry is a powerful tool that can be harnessed for characterizing constituents in complex materials. Conversion of the relaxation signal into a continuous distribution of relaxation components is an ill-posed problem. We provide a numerical optimization method for analyzing LR-NMR data by including L1 regularization and applying a convex optimization solver PDCO. Our integrated approach includes validation of analyses by simulations, testing repeatability of experiments, and validation of the model and its statistical assumptions. The proposed method provides better resolved and more accurate solutions compared to those suggested by existing tools.

Ofer Levi
Ben-Gurion University of the Negev
Beer-Sheva, Israel
levio123@gmail.com

Paula Berman, Yisrael Parmet
Ben-Gurion University of the Negev
bermansh@gmail.com, iparmet@bgu.ac.il

Michael A. Saunders
Systems Optimization Laboratory (SOL)
Dept of Management Sci and Eng, Stanford
saunders@stanford.edu

Zeev Wiesman
Ben-Gurion University of the Negev
wiesman@bgu.ac.il

CP 5
Balloon Darts: Fast Approximate Union Volume in High Dimensions with Line Samples

We approximate the volume of the union of d-dimensional balls. Deterministic, exact approaches are too slow for high dimensions. We adapt these to sampling balls with randomly-oriented lines through their centers: pop balloons by spoke darts. We compare the efficiency to Monte Carlo and Bringmann and Friedrich’s point-sampling methods. A line sample works well because it gives more information than a point sample and is almost as fast.

Scott A. Mitchell, Mohamed S. Ebeida
Sandia National Laboratories
samitch@sandia.gov, msebeid@sandia.gov

CP 5
Adaptively Weighted Numerical Integration over
Arbitrary Domains

For a given set of quadrature points and order of integration, the weights are obtained by solving a system of suitable moment equations in least square sense. The computed weights adapt to the geometry of the domain allowing accurate integration over variety of non-traditional, imprecise, or non-conforming representations without excessive subdivision, which is useful in many applications including meshfree analysis. Experimental results indicate that adaptively weighted integration compares favorably with more traditional domain decomposition approaches.

Vaidyanathan Thiagarajan
Spatial Automation Laboratory
University of Wisconsin Madison
vthiagarajan@wisc.edu

Vadim Shapiro
University of Wisconsin - Madison
vshapiro@engr.wisc.edu

MS1
Trends in Geometric Representations

For the past 20 years or so, there has been little change in the set of techniques used to represent geometry in commercial CAD/CAM/CAE systems. However, some new approaches are being stimulated by hardware changes and by convergence with the game/entertainment industries. This talk examines some possible changes and their consequences.

George Allen
Siemens PLM Software
george.allen@siemens.com

MS1
New Challenges in Isogeometric Analysis

Numerous papers illustrate the superiority of Isogeometric Analysis (IgA) compared to traditional Finite Element Analysis for many problems. However, so far the use of IgA in industry is limited. We will address different causes for this slow uptake of IgA in industry, and address possible actions and activities needed for speeding up the uptake of IgA.

Tor Dokken
SINTEF ICT, Department of Applied Mathematics
Oslo, Norway
tor.dokken@sintef.no

MS1
Geometric Modeling with Convolutions

Modern engineering design with laminated, composite materials makes challenging demands of geometric modeling and processing systems, and complex products such as the Boeing 787 add to the difficulty. While a complete solution to these challenges is still many years away, progress has been made addressing some of the issues. One promising technique has been applying convolution operators to build high quality geometry models. Early experiments suggest that many interesting and powerful convolution-based geometric constructions are possible.

Thomas A. Grandine
Applied Mathematics
thomas.a.grandine@boeing.com

MS1 Challenges in Geospatial Applications

The talk will present challenges in handling and visualizing the information hidden in large heterogeneous geospatial data sets. It is based on the work in the on-going European project “IQmulus: a high-volume fusion and analysis platform for geospatial point clouds, coverages and volumetric data sets”. This four-year project addresses the definition, configuration and deployment of functional spatial processing services for test cases in marine spatial planning and land applications for rapid responses and territorial management.

Ewald Quak
Institute of Cybernetics
Tallinn, Estonia
Ewald.Quak@cs.ioc.ee

MS2
Challenges in Simulation based Engineering

Simulations have become an essential part in the engineering process. Currently many different simulation models are used to ensure the desired characteristics of an object (product or production site) on virtual prototypes. The increase in computing power and new technologies allows to advance the separated model islands towards a digital twin that accompanies the whole lifecycle of the object. In this talk the challenges and profits of the digital twin are discussed from an industry point of view.

Stefan Boschert
Siemens AG
stefan.boschert@siemens.com

MS2
Challenges for Geometric Design

Abstract not available at time of publication.

Elaine Cohen
University of Utah
cohen@cs.utah.edu

MS2
Challenges in the Building Industry

The construction of advanced architectural designs is presently a very labour intensive and costly process. It is therefore limited to a few prestige projects and it is a major challenge to the building industry to bring the cost down and thereby offer architects more variability in the economically feasible designs – allow them to think out of the box. To address this challenge “The Danish National Advanced Technology Foundation” has supported the “BladeRunner” project that involves several Danish companies and public institutions. It aims to reduce the amount of manual labor by applying robots to cut EPS-moulds for concrete using the Hot Wire or Hot Blade technology. The mathematical challenge is to rationalise the architects’ CAD drawings into surfaces that can be created by these technologies.

Jens Gravesen
Technical University of Denmark
MS2
Efficient Geometry: Compositions and a Good Parametrization

My crystal ball has me anxious for two advances in geometric modeling: effective use of compositions of functions and practical algorithms for “good” geometry parametrization. The intersection of a surface and a curve on a surface is a geometric object given by function composition—the curve is a function into the parameter space of the surface. Finding the intersection means solving a system of equations involving compositions, which has not been widely investigated. Geometry parametrizations, on the other hand, have been extensively studied (cf., e.g., FloaterHorrmann2005). This and similar capabilities have many uses in geometry for manufacturing. But it is still difficult to make effective use of the existing methods.

Thomas A. Hogan
The Boeing Math Group
thomas.a.hogan@boeing.com

MS3
LR B-splines

Starting from a tensor product B-spline basis collections of LR B-splines and a corresponding LR-mesh are generated in a sequence of successive local refinements. Such refinements must split the support of at least one B-spline. The approach applies equally well in higher dimensions. To check for linear independence the “peeling algorithm” can be used, or alternatively each refinement must be “hand-in-hand” and generating just the number of B-splines necessary to span the spline space.

Tor Dokken
SINTEF ICT, Department of Applied Mathematics
Oslo, Norway
tor.dokken@sintef.no

MS3
Hierarchical T-Splines

Hierarchical B-splines were originally introduced in the CAD community nearly thirty years ago. Currently, hierarchical spline techniques are restricted to tensor product B-splines and NURBS. This restriction, coupled with the difficulty of encoding geometric information in the hierarchy, has greatly hampered their adoption as a CAD tool. To overcome these limitations we have extended analysis-suitable T-splines to the hierarchical unstructured regime. In this way, the design advantages of T-splines can be leveraged while introducing the analysis advantages of easily controlled hierarchies of locally refined analysis-suitable T-spline spaces. We present a simple characterization and construction for hierarchical analysis-suitable T-splines and demonstrate their potential as a basis for adaptive isogeometric analysis.

Emily Evans
Maths Department
Brigham Young University
ejevans@math.byu.edu

Michael Scott
Civil and Environmental Engineering
michael.scott@byu.edu

Derek C. Thomas
Brigham Young University
Dept. of Physics and Astronomy
dthomas@byu.edu

MS4
Curve Topology Certification Problems Arising in Geodesy: Transforming 3D Cartesian Coordinates To Geodetic Coordinates

Closed form solutions for transforming 3D Cartesian to geodetic coordinates reduce the problem to finding the real solutions of the fourth degree latitude equation or variations of it. By using curve topology certification techniques for algebraic curves defined implicitly we characterize completely the region where Vermeille’s approach, the most popular analytical method dealing with this problem,
can not be applied. Moreover we introduce a new method for solving the latitude equation for those cases not covered by Vermeille’s approach.

Laureano Gonzalez-Vega
Universidad de Cantabria
Dpto. Matematicas, Estadistica y Computacion
laureano.gonzalez@unican.es

MS4
Algebraic and Analytic Results for Truncated Hierarchical B-Splines

The interest in hierarchical techniques for tensor-product splines has increased recently due to the need for adaptive refinement in numerical simulation via isogeometric analysis. The newly introduced truncated hierarchical B-spline (THB) basis of hierarchical splines possesses several advantageous properties, such as partition of unity, increased sparsity and improved stability. The talk will report recent results concerning completeness, stability, approximation power and implementation aspects of THB splines.

Bert Juettler
Johannes Kepler University of Linz
Institute of Applied Geometry
bert.juettler@jku.at

Carlotta Giannelli
Johannes Kepler University Linz
Austria
carlotta.giannelli@jku.at

MS5
From Design to Production: The TERRIFIC Demonstrator Part

The TERRIFIC project covers the whole process from early design over numerical simulation towards manufacturing. Using the TERRIFIC Demonstrator Part it will be shown how isogeometry contributes during these phases of the design and manufacturing process. This includes general methods and guidelines for the design of isogeometric friendly geometries and their segmentation into topological volumes as basis for the trivariate spline volume generation and isogeometric analysis. Having done the analysis, the machining of the part is supported, utilizing isogeometric techniques for better control and efficiency in the machining process.

Stefan Boschert
Siemens AG
stefan.boschert@siemens.com

MS5
Parametrization for Eigenvalue Problems in Isogeometric Analysis

In this talk, comprehensive schemes are described to construct rational trivariate solid T-splines from boundary triangulations. For arbitrary topology objects, we first compute a smooth harmonic scalar field defined over the mesh and saddle points are extracted to determine the topology. By dealing with the saddle points, a polycube whose topology is equivalent to the input geometry is built and it serves as the parametric domain for the trivariate T-spline. A polycube mapping is then used to build a one-to-one correspondence between the input triangulation and the polycube boundary. After that, we choose the deformed octree subdivision of the polycube as the initial T-mesh, and make it valid through pillowing, quality improvement and applying templates to handle extraordinary nodes and partial extraordinary nodes. The obtained T-spline is C2-continuous everywhere over the boundary surface except for the local region surrounding polycube corner nodes.

Jens Gravesen
Technical University of Denmark
jgra@dtu.dk

MS5
Advances of the Meccano Method for Isogeometric Analysis of Irregular Planar Domains

We present advances of the meccano method for T-spline modelling and analysis of complex geometries. We consider a planar domain composed by several irregular sub-domains. These sub-regions are defined by their boundaries and can represent holes or different materials. The bivariate T-spline representation of the whole physical domain is constructed from a square. In this procedure, a T-mesh optimization method is crucial. We show results of an elliptic problem by using a quadtree local T-mesh refinement technique.

José Iván López González, Marina Brovka, José María Escobar Sánchez
SIANI
University of Las Palmas de Gran Canaria
jilopez@siani.es, mbrovka@siani.es, jmescobar@siani.es
MS5

Volumetric Isogeometric Descriptions Or Isogeometric Modeling of Complex Geometries

In this talk, comprehensive schemes are described to construct rational trivariate solid T-splines from boundary triangulations. For arbitrary topology objects, we first compute a smooth harmonic scalar field defined over the mesh and saddle points are extracted to determine the topology. By dealing with the saddle points, a polycube whose topology is equivalent to the input geometry is built and it serves as the parametric domain for the trivariate T-spline. A polycube mapping is then used to build a one-to-one correspondence between the input triangulation and the polycube boundary. After that, we choose the deformed octree subdivision of the polycube as the initial T-mesh, and make it valid through pillowing, quality improvement and applying templates to handle extraordinary nodes and partial extraordinary nodes. The obtained T-spline is C^2-continuous everywhere over the boundary surface except for the local region surrounding polycube corner nodes.

Yongjie Zhang
Department of Mechanical Engineering
Carnegie Mellon University
jessicaz@andrew.cmu.edu

MS6

Planar Shape Interpolation with Bounded Distortion

Planar shape interpolation is widely used in computer graphics applications. Despite a wealth of interpolation methods, there is currently no approach that produces shapes with a bounded amount of distortion with respect to the input. As a result, existing interpolation methods may produce shapes that are significantly different than the input and can suffer from fold-overs and other visual artifacts, making them less useful in many practical scenarios.

We introduce a novel shape interpolation scheme designed specifically to produce results with a bounded amount of conformal (angular) distortion. Our method is based on an elegant continuous mathematical formulation and provides several appealing properties such as existence and uniqueness of the solution as well as smoothness in space and time domains. We further present a discretization and an efficient practical algorithm to compute the interpolant and demonstrate its usability and good convergence behavior on a wide variety of input shapes. The method is simple to implement and understand. We compare our method to state-of-the-art interpolation methods and demonstrate its superiority in various cases.

Renjie Chen
Technion - Israel Institute of Technology
Haifa
renjie.c@gmail.com

Ofer Weber, Danny Keren
University of Haifa
weber@cs.haifa.ac.il, dkeren@cs.haifa.ac.il

Mirela Ben-Chen
Technion - Israel Institute of Technology, Israel
mirela@cs.technion.ac.il

MS6

Locally Injective Mappings

Mappings and deformations are ubiquitous in geometry processing, shape modeling, and animation. Numerous deformation energies have been proposed to tackle problems like mesh parameterization and volumetric deformations. We present an algorithm that modifies any deformation energy to guarantee a locally injective mapping, i.e., without inverted elements. Our formulation can be used to compute continuous planar or volumetric piecewise-linear maps and it uses a barrier term to prevent inverted elements. Differently from previous methods, we carefully design both the barrier term and the associated numerical techniques to be able to provide immediate feedback to the user, enabling interactive manipulation of inversion-free mappings. Stress tests show that our method robustly handles extreme deformations where previous techniques converge very slowly or even fail. We demonstrate that enforcing local injectivity increases fidelity of the results in applications such as shape deformation and parameterization.

Christian Schüller
ETH Zurich, Switzerland
schue12@inf.ethz.ch

Ladislav Kavan
University of Pennsylvania, USA
ladislav.kavan@gmail.com

Daniele Panozzo
ETH Zurich
daniele.panozzo@gmail.com

Olga Sorkine-Hornung
ETH Zurich, Switzerland
sorkine@inf.ethz.ch

MS6

Hierarchical Deformation of Locally Rigid Meshes

We propose a method for calculating deformations of models by deforming a low-resolution mesh and adding details while ensuring that the details we add satisfy a set of constraints. Our method builds a low-resolution representation of a mesh by using edge collapses and performs an as-rigid-as-possible deformation on the simplified mesh. We then add back details by reversing edge-collapses so that the shape of the mesh is locally preserved. While adding details, we deform the mesh to match the predicted positions of constraints so that constraints on the full-resolution mesh are met. Our method operates on meshes with arbitrary triangulations, satisfies constraints over the full-resolution mesh, and converges quickly.

Josiah M. Manson, Scott Schaefer
Texas A&M University
MS6

Bijective Composite Mean Value Mapping

We introduce the novel concept of composite barycentric mappings and give theoretical conditions under which they are guaranteed to be bijective. We then focus on mean value mappings and derive a simple procedure for computing their Jacobians, leading to an efficient GPU-assisted implementation for interactively designing composite mean value mappings which are bijective up to pixel resolution. We provide a number of examples of 2D image deformation and an example of 3D shape deformation based on a natural extension of the concept to spatial mappings.

Teseo Schneider
Universita della Svizzera Italiana
teseo.schneider@usi.ch

Kai Hormann
University of Lugano
kai.hormann@usi.ch

Michael Floater
University of Oslo
michaelf@ifi.uio.no

MS7

Isogeometric Analysis with Discontinuous Galerkin Method

We discuss solving numerical PDEs with discontinuous Galerkin(DG) method. The domain is represented by NURBS patches, and Isogeometric Analysis approach is proposed to solve the PDEs. Stability and convergence analysis are performed. Examples are provided to illustrate the convergence of the method.

Falai Chen
Department of Mathematics
University of Science and Technology of China
chenfl@ustc.edu.cn

MS7

Conservation of Geometry and Physics in Numerical Modeling of Incompressible Flow

The incompressible Navier-Stokes equations are infused with important physical structure, evidenced by an array of balance laws for momentum, energy, enstrophy, and helicity. In this talk, I will discuss a class of spline-based discretizations that automatically replicate this structure and, through the isogeometric concept, extend to arbitrary NURBS and T-spline mapped geometries. Numerical examples illustrating the promise of this new technology will be presented.

John Evans, Thomas Hughes
Institute for Computational Engineering and Sciences
The University of Texas at Austin
john.a.evans@colorado.edu, hughes@ices.utexas.edu

MS8

Extended Graph Rotation Systems and Its Applications to Modeling 2-Manifolds, Woven Surfaces and 3-Manifolds

In this talk, I will start to demonstrate extended graph rotation systems using rectangular paper strips that correspond to 2D thickened edges of a 2-manifold mesh. I...
will show how insert edge operation change the topology of orientable surfaces. I will also how edge twist operation creates non-orientable surfaces. My next demonstration will be in forming knots in 3-space by finger-traversing the boundary of the faces of non-orientables. I will show some of the results we have achieved in recent years using this basic concept. I will then demonstrate that this approach has a potential to describe 3-manifolds that can help our understanding and modeling 3-manifold structures. I expect that such a generalized 3-manifold mesh representations can be used in modeling solids, architectural shapes, high-genus surfaces, knots and links. For 3-manifolds, I will start with prisms that represents 3D thickened edges of 3-manifold meshes and discuss what kind of models can be constructed using those prisms. I will introduce the concepts of chambers and blocks. Using boundary walk I will demonstrate the faces of 3-manifolds can be both one and two-sided. If we want duality, this suggests that 3D thickened edges should also be one or two-sided and 3D thickened vertex boundaries can be any 2-manifold.

Ergun Akleman
Texas A&M
ergun.akleman@gmail.com

MS8
Symmetric Surfaces and Tilings
Abstract not available at time of publication.

Konrad Polthier
Freie Universität Berlin
FB Mathematik & Informatik
konrad.polthier@fu-berlin.de

MS8
Shape Optimization for Human-Centric Products with Standardized Components

In this talk, we present an optimization framework for automating the customization of human-centric products, which can be mounted on or embedded in human body (such as exoskeletal devices and implants). Such products need to be customized to fit the body shapes of users. At present, the procedure of customization is taken in an interactive manner that is inefficient. We investigate a method to automate the procedure of customization. The major difficulty in solving this problem is that we cannot freely vary the shape of every component. Many of them should be selected from the serialized standard components. Different from the existing approaches that need to fabricate all components by customized production, we develop a new method to generate customized products by using as many-as-possible standardized components. Our work is based on a mixed-integer shape optimization framework for design automation with standardized components.

Charlie Wang
The Chinese University of Hong Kong, China
cwang@mae.cuhk.edu.hk

MS8
Modeling CMC Surfaces with CVT

Abstract not available at time of publication.

Wenping Wang
University of Hong Kong
Department of Computer Science
wenping@cs.hku.hk

MS9
Verification of Mechanical Engineering Finite Element Analysis

The objective is to obtain a posteriori estimate of the discretization error of a reference problem solved using the finite element analysis. Different techniques are presented. The proposed method is particularly suited to industrial common situations. It can be used in the case where some data may be missing and can be applied to very large problem within a accessible CPU time.

Eric Florentin
LMT-Cachan
France
eric.florentin@lmt.ens-cachan.fr

Sylvain Pavot
LMT-Cachan (France)
pavot@lmt.ens-cachan.fr

Laurent Champaney
Arts et Metiers PARISTECH
laurent.champaney@ensam.eu

MS9
Exploiting Components Interfaces and Functional Information to Generate FE Models of Assemblies

Using the geometric interfaces information (contacts, interferences, clearances) extracted from the relative 3D location of assembly components, this approach describes how functional information can be derived and tightly linked to an assembly model. This representation is then used to identify repetitive configurations and transform adequately an assembly for FE analysis. Idealization is one of the key transformations which is addressed through a new and robust modeling trees of volume objects specifically derived for this transformation.

Jean-Claude Leon
University of Grenoble / INRIA
Grenoble, France
jean-claude.leon@grenoble-inp.fr

MS9
From CAD to 3-Variate Spline Representation: The Terrific-Part

The creation of 3-variate spline models suited for IgA is a major game stopper when trying to introduce IgA in industry. This process is illustrated starting from a CAD-representation of the TERRIFIC demo part: IGA suitable models are created in a process including changing the surface patch structure, 3-variate block structuring, reparametrization and possibly approximation of block boundary surfaces, and the final creation of 3-variate watertight spline modes.

Vibeke Skytt
SINTEF ICT, Department of Applied Mathematics
Oslo, Norway
interface. Furthermore, the system's dynamic behavior, as a sequence of discrete events occurring at the land-ocean interface. Furthermore, the system's dynamic behavior, as

An abstract view of coastline erosion permits modeling it as a sequence of discrete events occurring at the land-ocean interface. Furthermore, the system's dynamic behavior, as proposed by Sapoval, can be described with a relationship between the coast's length and the erosion force. However, simulations of the conceptual model differ, particularly in how they calculate the coast's perimeter. After implementing several simulations, I describe a re-definition of the underlying model for procedural modeling applications.

Alex Pytel
Cheriton School of Computer Science
University of Waterloo
apytel@uwaterloo.ca

Stephen Mann
University of Waterloo
Cheriton School of Computer Science
smann@uwaterloo.ca

PP1
Bladerunner: Surface Rationalisation for HotWire and HotBlade Technology

On a small scale, Milling and 3D-printing are used in producing prototypes of geometric objects. For fast large-scale production, the HotWire and HotBlade technologies could instead produce building elements by cutting out moulds for concrete. The standard use of B-spline based CAD systems then entails the need for rationalization. Thus, a spline surface has to be segmented and each piece approximated by a surface that can be produced by the HotWire and HotBlade.

Toke B. Nørbjerg, Kasper Steenstrup, Jens Gravesen, David Brander, Andreas Brentzen
Technical University of Denmark
tono@dtu.dk, khor@dtu.dk, jgra@dtu.dk, dbra@dtu.dk, janba@dtu.dk

PP1
C² Quasi Arc-length Polynomial Approximation to Curves

Transcendental curves, or those resulting from offsetting, are not rational and must be hence approximated to incorporate them into commercial systems. We present a systematic polynomial approximation, based on piecewise Hermite interpolation with C^2 quasi arc-length parameterization, a desirable property for robotics or CNC. We consider two alternatives (piecewise Bzier quintics and cubic B-splines), whose control points turn out to display very simple geometry. Finally, we compare our results with those from existing methods.

Javier Sanchez-Reyes, Jesus Chacon
Universidad de Castilla-La Mancha, Spain
IMACI, ETS Ingenieros Industriales
Javier.SanchezReyes@uclm.es, jesus-miguel.chacon@uclm.es

PP1
Protrusion Recognition from Solid Models Using Orthogonal Bounding Factor

When a loop of concave edges is an inner loop on a single face, it is a strong hint of existence of protrusion feature and recognition of the protrusion face is straightforward. However, when a protrusion feature lies on multiple faces, it is bounded by a loop of concave edges that are not on a single face. In such cases, the rule of inner loop is no more

Andrei Irimia
UCLA
andrei.irinia@loni.ucla.edu

Sheng-Yang Goh, Carinna Torgerson, Micah Chambers, Nathan Stein, Jeffrey Alger, Paul Vespa
University of California, Los Angeles
n/a, n/a, n/a, n/a, n/a, n/a

Ron Kikinis
Harvard Medical School
n/a

John Van Horn
University of California, Los Angeles
n/a

PP1
Redevelopment of Coastline Model for Procedural Modeling

An abstract view of coastline erosion permits modeling it as a sequence of discrete events occurring at the land-ocean interface. Furthermore, the system's dynamic behavior, as proposed by Sapoval, can be described with a relationship between the coast's length and the erosion force. However, simulations of the conceptual model differ, particularly in how they calculate the coast's perimeter. After implementing several simulations, I describe a re-definition of the underlying model for procedural modeling applications.

Alex Pytel
Cheriton School of Computer Science
University of Waterloo
apytel@uwaterloo.ca

Stephen Mann
University of Waterloo
Cheriton School of Computer Science
smann@uwaterloo.ca

PP1
Bladerunner: Surface Rationalisation for HotWire and HotBlade Technology

On a small scale, Milling and 3D-printing are used in producing prototypes of geometric objects. For fast large-scale production, the HotWire and HotBlade technologies could instead produce building elements by cutting out moulds for concrete. The standard use of B-spline based CAD systems then entails the need for rationalization. Thus, a spline surface has to be segmented and each piece approximated by a surface that can be produced by the HotWire and HotBlade.

Toke B. Nørbjerg, Kasper Steenstrup, Jens Gravesen, David Brander, Andreas Brentzen
Technical University of Denmark
tono@dtu.dk, khor@dtu.dk, jgra@dtu.dk, dbra@dtu.dk, janba@dtu.dk

PP1
C² Quasi Arc-length Polynomial Approximation to Curves

Transcendental curves, or those resulting from offsetting, are not rational and must be hence approximated to incorporate them into commercial systems. We present a systematic polynomial approximation, based on piecewise Hermite interpolation with C^2 quasi arc-length parameterization, a desirable property for robotics or CNC. We consider two alternatives (piecewise Bzier quintics and cubic B-splines), whose control points turn out to display very simple geometry. Finally, we compare our results with those from existing methods.

Javier Sanchez-Reyes, Jesus Chacon
Universidad de Castilla-La Mancha, Spain
IMACI, ETS Ingenieros Industriales
Javier.SanchezReyes@uclm.es, jesus-miguel.chacon@uclm.es

PP1
Protrusion Recognition from Solid Models Using Orthogonal Bounding Factor

When a loop of concave edges is an inner loop on a single face, it is a strong hint of existence of protrusion feature and recognition of the protrusion face is straightforward. However, when a protrusion feature lies on multiple faces, it is bounded by a loop of concave edges that are not on a single face. In such cases, the rule of inner loop is no more
available and recognition of protrusion faces becomes unclear. In order to address this problem, a new quantitative measure, named Orthogonal Bounding Factor (OBF), is introduced in this paper. Mathematically, OBF is defined as the sum of cross products of two consecutive vectors normal to a set of faces, and it physically represents the possibility of being a protrusion in a solid model. The formal definition of orthogonal bounding factor is established and a method to recognize protrusion features using OBF is presented.

Yoonhwan Woo
Hansung University
yhwoo@hansung.ac.kr
GD/SPM13 Speaker and Organizer Index

GEOMETRIC & PHYSICAL MODELING
(GD/SPM13)

November 11-14, 2013
the Curtis-a DoubleTree by Hilton Hotel
Denver, Colorado, USA

Italicized names indicate session organizers.
A
Akleman, Ergun, MS8, 9:30 Tue
Allen, George, IP6, 8:00 Thu
Allen, George, MS1, 4:15 Mon
Allen, George, PD1, 6:30 Tue
Altshuller, Dmitry A., CP2, 3:45 Wed

B
Bedregal, Carlos, PS3, 4:25 Mon
Ben-Chen, Mirela, IP3, 2:00 Tue
Ben-Chen, Mirela, MS6, 3:45 Wed
Boschert, Stefan, MS2, 8:30 Tue
Boschert, Stefan, PD1, 6:30 Tue
Boschert, Stefan, MS5, 4:15 Wed
Boussuge, Flavien, PS6, 9:50 Wed
Busé, Laurent, PS2, 11:10 Mon

C
Casesnoves, Francisco, PP1, 6:00 Mon
Chen, Renjie, MS6, 4:45 Wed
Cohen, Nicolas, PS4, 8:20 Tue
Cohen, Elaine, MS2, 9:30 Tue
Cohen, Elaine, PD1, 6:30 Tue
Cunderlik, Robert, CP5, 10:30 Thu

D
Dekkers, Ellen, PS6, 10:15 Wed
Denker, Klaus, CP2, 4:05 Wed
Dokken, Tor, MS1, 4:45 Mon
Dokken, Tor, MS3, 10:30 Tue
Dokken, Tor, MS3, 10:30 Tue
Dokken, Tor, PD1, 6:30 Tue
Dokken, Tor, MS5, 3:45 Wed
Dokken, Tor, MS7, 10:30 Thu
Dokken, Tor, MS9, 2:00 Thu

E
Ebeida, Mohamed S., PS6, 9:25 Wed
Elber, Gershon, PS4, 8:40 Tue
Evans, Emily, MS3, 11:00 Tue
Evans, John, MS7, 11:30 Thu

F
Fernández-Jambrina, Leonardo, CP1, 10:30 Tue
Florentin, Eric, MS9, 3:00 Thu

G
Gallego, Andre, MS7, 11:30 Thu
Gobithaasan, Rudrusamy, CP1, 10:50 Tue
Gonzalez-Vega, Laureano, MS4, 10:30 Tue
Gonzalez-Vega, Laureano, MS4, 12:00 Tue
Grandine, Thomas A., MS1, 3:45 Mon
Grandine, Thomas A., PD1, 6:30 Tue
Gravesen, Jens, MS2, 8:00 Tue
Gravesen, Jens, PD1, 6:30 Tue
Gravesen, Jens, MS5, 5:15 Wed

H
Hahmann, Stefanie, PS1, 10:15 Mon
Hanniel, Iddo, PS5, 4:20 Tue
He, Lei, CP5, 10:50 Thu
Hogan, Thomas A., MS2, 9:00 Tue
Hogan, Thomas A., PD1, 6:30 Tue

I
Imbach, Rémi, PS5, 3:55 Tue
Irimia, Andrei, PP1, 6:00 Mon

J
Jaxon, Noah, PS2, 11:35 Mon
Juettler, Bert, MS4, 10:30 Tue

K
Kara, Levent Burak, PS4, 9:20 Tue
Karciauskas, Kestutis, CP1, 11:10 Tue
Kim, Myung-Soo, MS4, 11:30 Tue
Kim, Myung-Soo, IP4, 8:00 Wed
Kim, Yong-Joon, PS3, 5:05 Mon

L
Leon, Jean-Claude, MS9, 2:00 Thu
Levi, Ofer, CP5, 11:10 Thu
Lipson, Hod, IP1, 8:00 Mon

M
Mann, Stephen, PP1, 6:00 Mon
Manson, Josiah M., CP4, 9:05 Thu
McMains, Sara, PS7, 12:00 Wed
Mikula, Karol, CP2, 4:45 Wed
Milenkovic, Victor, PS3, 3:45 Mon
Mitchell, Scott A., CP5, 11:30 Thu
Montenegro Armas, Rafael, MS5, 4:45 Wed
Mukherjee, Debanjan, PS4, 9:40 Tue
Mukherjee, Uddipan, PS3, 4:05 Mon

N
Natarajan, Vijay, IP5, 2:15 Wed
Nelaturi, Saigopal, PS1 9:50 Mon
Nørbjerg, Toke B., PP1, 6:00 Mon
Nørtsof, Peter, MS3, 11:00 Tue

P
Pan, Qing, PS2, 12:00 Mon
Panozso, Daniele, MS6, 3:45 Wed
Paoluzzi, Alberto, PS3, 5:25 Mon
Peters, Thomas J., CP4, 9:25 Thu
Polthier, Konrad, MS8, 8:00 Tue
Polthier, Konrad, MS8, 8:00 Tue
Pytel, Alex, CP2, 4:25 Wed

Q
Quak, Ewald, MS1, 3:45 Mon
Quak, Ewald, MS1, 5:15 Mon
Quak, Ewald, MS2, 8:00 Tue

R
Ratnani, Ahmed, CP3, 9:05 Thu
Remesikova, Mariana, CP1, 11:30 Tue

S
Sanchez-Reyes, Javier, PP1, 6:00 Mon
Saunders, Bonita V., CP4, 9:45 Thu
Schaefer, Scott, MS6, 5:15 Wed
Schneider, Teseo, MS6, 4:15 Wed
Scott, Michael, MS3, 12:00 Tue
Scott, Mike, MS5, 3:45 Wed

continued on next page
Scott, Mike, MS7, 10:30 Thu
Scott, Mike, MS9, 2:00 Thu
Sengupta, Indranil, CP2, 5:05 Wed
Shapiro, Vadim, PS1, 9:25 Mon
Shikano, Kenji, CP1, 11:50 Tue
Skytt, Vibeke, MS9, 2:30 Thu
Smith, Jason, CP1, 12:10 Tue
Son, Jeong-Ho, PS4, 8:00 Tue
Song, Junbong, PS4, 9:00 Tue

T
Thiagarajan, Vaidyanathan, CP5, 11:50 Thu
Thomas, Derek C., MS7, 10:30 Thu
Tsuchie, Shoichi, PS7, 11:35 Wed

U
U N, Niranjan, PS3, 4:45 Mon

W
Walker, James D., CP2, 5:25 Wed
Wang, Charlie, MS8, 9:00 Tue
Wang, Menghan, PS5, 4:45 Tue
Wang, Wenping, MS4, 8:30 Tue
Wang, Wenping, MS8, 8:00 Tue
Wang, Wenping, MS8, 11:00 Thu
Wang, Xilu, PS2, 12:25 Mon
Woo, Yoonhwan, PP1, 6:00 Mon

X
Xu, Songgang, PS1, 9:00 Mon

Y
Ying, Xiang, PS7, 11:10 Wed
Yu, Wuyi, PS6, 9:00 Wed
Yuan, Xiaoyun, CP3, 9:25 Thu

Z
Zhang, Minqi, PS7, 12:25 Wed
Zhang, Xinyu, PS5, 3:30 Tue
Zhang, Yongjie, MS5, 3:45 Wed
Zore, Urska, CP3, 9:45 Thu
Notes
Conference Budget
SIAM Conference on Geometric and Physical Modeling
November 11-14, 2013
Denver, CO

Expected Paid Attendance 150

Revenue
Registration Income $55,310
Total $55,310

Expenses
Printing $800
Organizing Committee $1,900
Invited Speakers $13,000
Food and Beverage $8,600
AV Equipment and Telecommunication $7,900
Advertising $8,000
Conference Labor (including benefits) $31,153
Other (supplies, staff travel, freight, misc.) $7,100
Administrative $8,042
Accounting/Distribution & Shipping $5,643
Information Systems $7,687
Customer Service $2,895
Marketing $4,705
Office Space (Building) $3,157
Other SIAM Services $3,521
Total $114,103

Net Conference Expense ($58,793)

Support Provided by SIAM $58,793
$0

Estimated Support for Travel Awards not included above:

Post Docs and Students 4 $2,900