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1. Energy minimization methods

In many imaging problems the sought-after image û : Ω → Rk is defined by

û = argmin
u

E(u) for E(u) := Ψ(u, f) + λΦ(u) + ıS(u) λ > 0

f given image, Ψ data fidelity, Φ regularization, S set of constraints, ı indicator function

(iS(u) = 0 if u ∈ S and iS(u) = +∞ otherwise)

• Often u 7→ E(u) is nonconvex

Algorithms easily get trapped in local minima

How to find a global minimizer? Many algorithms, usually suboptimal.
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Some famous nonconvex problems for labeling and segmentation

Potts model [Potts 52] (ℓ0 semi-norm applied to differences):

E(u) = Ψ(u, f) + λ
∑
i,j

ϕ(u[i] − u[j]) ϕ(t) :=

 0 if t = 0

1 if t ̸= 0

Line process in Markov random field priors [Geman, Geman 84]: (û, ℓ̂) = argmin
u,ℓ

F(u, ℓ)

F(u, ℓ) = ∥A(u) − f∥2
2 + λ

∑
i

( ∑
j∈Ni

φ(u[i] − u[j])(1 − ℓi,j) +
∑

(k,n)∈Ni,j

V(ℓi,j, ℓk,n)
)

[
ℓi,j = 0 ⇔ no edge

]
,

[
ℓi,j = 1 ⇔ edge between i and j

]
i
Nisic c ccc

c sic c cc c cc c c
M.-S. functional [Mumford, Shah 89]:

F(u, L) =

∫
Ω

(u − v)2dx + λ

(∫
Ω \L

∥∇u∥2dx+α | L |
)

| L |= length(L)
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Image credits: S. Geman and D. Geman 1984. Restoration with 5 labels using Gibbs sampler

“We make an analogy between images and statistical mechanics systems. Pixel gray levels and the presence and

orientation of edges are viewed as states of atoms or molecules in a lattice-like physical system. The assignment of an

energy function in the physical system determines its Gibbs distribution. Because of the Gibbs distribution, Markov

random field (MRF) equivalence, this assignment also determines an MRF image model.” [S. Geman, D. Geman 84]
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A perfect bypass: Find another functional F : Ω → R, easy to minimize, such that

argmin
u

F(u) ⊆ argmin
u

E(u)

e.g., F is convex and coercive.

• Subtle and case-dependent.

• We are in the inception phase...
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Finding a globally optimal solution to a hard problem by conceiving another problem having
the same set of optimal solutions and easy to solve has haunted researchers for a long time.

• The Weiszfeld algorithm: E. Weiszfeld, Sur le point pour lequel la somme des distances de n points

données est minimum,” Tôhoku Mathematical Journal, vol. 43, pp. 355–386, 1937.

The word algorithm was unknown to most mathematicians by 1937.

The Weiszfeld algorithm has extensively been used (e.g., in economics) when computers were available.

• G. Dantzig, R. Fulkerson and S. Johnson, “Solution of a large-scale traveling-salesman problem”,

Operations Research, vol. 2, pp. 393–410, 1954

• R. E. Gomory, “Outline of an algorithm for integer solutions to linear programs” Bull. Amer. Math.

Soc., 64(5), pp. 217–301, 1958.

(Tight) convex relaxation is only one somehow “secured” way to tackle hard minimization
problems. This talk focuses on convex relaxations for imaging applications.

− Discrete setting – MRF – geometry of images may be difficult to handle.

− Continuous setting – in general more accurate approximations can be derived.

Experimental comparison of discrete and continuous shape optimization – [Klodt et al, 2008]

Applications in imaging: image restoration, image segmentation, disparity estimation of stereo images,

depth map estimation, optical flow estimation, (multi) labeling problems, among many others.
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Loose convex relaxation Often in practice

No way to get û How to get û?

• In practice

argmin
u

E(u) ⊆ argmin
u

F(u)

• Convex relaxation is tight in each of the cases

– argmin
u

E(u) ⊇ argmin
u

F(u)

– we know how to reach û ∈ argmin
u

E(u) from ũ ∈ argmin
u

F(u)

We will explain how several successful convex relaxations have been obtained.

We will exhibit some limits of the approach.
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Notation

• Image domain and derivatives

◦ Ω ⊂ R2 continuous setting, Du is the (distributional) derivative of u;

◦ Ω = h{1, · · · ,M} × h{1, · · · , N} grid with step h, Du is a set difference operators

x = (x1, x2) ∈ Ω

• {u > t} := {x ∈ Ω : u(x) > t} the super-levels of u

• Σ ⊂ Ω (in general non connected) ∂Σ is its boundary in Ω and Per(Σ) its perimeter

• 1lΣ(x) =

 1 if x ∈ Σ

0 otherwise
the characteristic function of Σ

• ıΣ(x) =

 0 if x ∈ Σ

+∞ otherwise
the indicator function of Σ

• supp (u) := {x ∈ Ω : u(x) ̸= 0
}

• BV (Ω) – the set of all functions of bounded variation defined on Ω
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Useful formulas

⋄ u ∈ BV (Ω)

• Coarea formula TV(u) =

∫
∥Du∥ dx =

∫ +∞

−∞
Per({x : u(x) > t}) dt (coa)

Per(Σ) = TV(1lΣ) (per)

• Layer-cake formulas

◦ u(x) =

∫ +∞

−∞
1l{x : u(x)>t}(x) dt (cake)

◦ ∥u− f∥1 =

∫ +∞

−∞

∣∣{x : u(x) > t} △ {x : f(x) > t}
∣∣ dt (cake1)

△ symmetric difference [T.Chan, Esedoglu 05], [T. Chan, Esedoglu, Nikolova 06]

⋄ V is a normed vector space, V ∗ its dual and F : V → R is proper

• The convex conjugate of F is F ∗(v) := sup
u∈V

{
⟨u, v⟩ − F (u)

}
v ∈ V ∗ (cc)
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2. Simple Convex Binary Labeling / Restoration [T. Chan, Esedoglu, Nikolova 06]

Given a binary input image f = 1lΣ, we are looking for a binary û(x) = 1lΣ̂(x)

Constraint : u(x) = 1lΣ(x) [Vese, Osher 02]

E(u) = ∥u− 1lΣ∥22 + λTV(u)+ıS(u)

S := {u = 1lE : E ⊂ R2, E bounded} (the binary images)

E is nonconvex because of the constraint S ⇒ Nonconvex (intuitive) minimization:

• Level set method [Osher, Sethian 88] E = {x ∈ R2 : ϕ(x) > 0} ⇒ ∂E = {x ∈ R2 : ϕ(x) = 0}
Then E is equivalent to

E1(ϕ) = ∥H(ϕ)− 1lΣ∥22 + λ

∫
R2

|∇H(ϕ(x))| dx

H : R → R the Heaviside function H(t) =

 1 if t ≥ 0

0 if t < 0

Computation gets stuck in local minima
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L1 − TV energy: F(u) = ∥u − f∥1 + λTV(u) f(x)=1lΣ(x), Σ ⊂ R2 bounded

F is coercive and non-strictly convex ⇒ argminF is nonempty, closed and convex

By (coa) and (cake1)

F(u) =

∫ +∞

−∞

∣∣{u > t} △ {f > t}
∣∣+ λPer

(
{u > t}

)
dt =

∫ +∞

−∞

∣∣{u > t} △ Σ
∣∣+ λPer

(
{u > t}

)
dt

E ⊂ R2 bounded ⇒ ∥1lE − 1lΣ∥22 = ∥1lE − 1lΣ∥1 ⇒ E(1lE) = F(1lE)

Geometrical nonconvex problem: E1(E) = |E △ Σ|+ λPer(E) ≡ E(1lE) (geo)

There exists Σ̂ ∈ arg min
E⊂R2

E1(E)

For ũ ∈ arg min
u∈R2

F(u) set Σ̃(γ) = {ũ > γ} for a.e. γ ∈ [0, 1]

F(1lΣ̃(γ)) ≥ E(1lΣ̂) = F(ũ) ⇒ û := 1lΣ̂ ∈ argmin
u

F(u)

Further, F(1lΣ̃(γ)) = F(ũ) for a.e. γ ∈ [0, 1]. Therefore

(i) û = 1lΣ̂ is a global minimizer of E ⇒ û ∈ arg min
u∈R2

F(u);

(ii) ũ ∈ arg min
u∈R2

F(u) ⇒ û := 1lΣ̂ ∈ argmin
u∈S

E(u), Σ̂ := {ũ > γ} for a.e. γ ∈ [0, 1].

For a.e. λ > 0, F has a unique minimizer û which is binary by (i) [T. Chan, Esedoglu 05]
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• In practice one finds a binary minimizer of F

• If f = 1lΣ is noisy, the noise is in the shape ∂Σ

Restoring û = denoising = 0-1 segmentation = shape optimization

• The crux: L1 data fidelity [Alliney 92], [Nikolova 02], [T. Chan, Esedoglu 05] ⇒ (cake1)

Data Restored
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3. MS for two phase segmentation: The Chan-Vese (CV) model

[T. Chan, Vese 2001]

MS(Σ, c1, c2) =

∫
Σ

(c1 − f)2 dx+

∫
Ω \Σ

(c2 − f)2 dx+ λPer(Σ;Ω) for Ω ⊂ R2 bounded

One should solve min
c1,c2∈R,Σ⊂Ω

MS(Σ, c1, c2) for f : Ω → R2.

For c1 = 1, c2 = 0 and f = 1lΣ this amounts to E1(E) in (geo)

For the optimal Σ̂ one has ĉ1 = 1

|Σ̂|

∫
Σ̂
fdx and ĉ2 = 1

|Ω \ Σ̂|

∫
Ω \ Σ̂

fdx

Two-step iterative algorithms to approximate the solution [T. Chan, Vese 2001]

(a) Solve minϕ
∫
Ω H(ϕ)(c1 − f)2 + (1−H(ϕ))(c2 − f)2 + λ∥DH(ϕ)∥

(b) Update c1 and c2

Step (a) solves for c1 and c2 fixed the nonconvex problem

E(Σ) =
∫
Σ

(c1 − f)2 dx+

∫
Ω \Σ

(c2 − f)2 dx+ λPer(Σ;Ω)

Alternative for step (a): Variational approximation + Γ convergence [Modica, Mortola 77]

Eε(u) =
∫
R2 u2(c1 − f)2 + (1− u)2(c2 − f)2 + λ

(
ε∥Du∥2 + 1

ε
W (u)

)
dx

W double-well potential, W (0) = W (1) = 0, W (u) > 0 else. E.g., W (u) = u2(1− u2)

W forces û to be a characteristic function when ε ↘ 0.
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Finding a global minimizer of E using a convex F [T. Chan, Esedoglu, Nikolova 06]

For 0 ≤ u ≤ 1 one shows that for a constant K independent of u∫
Σ

(c1 − f)2 dx+

∫
Ω \Σ

(c2 − f)2 dx =

∫
Ω

(
(c1 − f)2 − (c2 − f)2

)
u dx+K

and using (coa) one has E(Σ) = F(1lΣ) +K where

F(u) :=

∫
Ω

(
(c1−f)2−(c2−f)2

)
u dx+λ∥Du∥+ıS(u) dx for S := {u ∈ Ω : u(x) ∈ [0, 1]}

F – nonstrictly convex and constrained ⇒ argmin
u

F(u) ̸= ∅ – convex and compact

To summarize:

(i) Σ̂ is a global minimizer of E ⇒ û = 1lΣ̂ ∈ argmin
u∈S

F ;

(ii) ũ ∈ argmin
u∈S

F(u) ⇒ Σ̂ := {ũ > γ} ∈ arg min
Σ⊂R2

E(Σ) for a.e. γ ∈ [0, 1].

F provides a tight relaxation of E

Convex non tight relaxation for the full CV model: [Brown, T. Chan, Bresson 12]
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4. Nonconvex data fidelity with convex regularization

[Pock, Cremers, Bischof, Chambolle SIIMS 10], [Pock et al, 08]

u : Ω → Γ (bounded), Ω ⊂ R2. Continuous energy E :

E(u) :=
∫
Ω

g(x, u(x)) + λh(∥Du∥) dx

Data term based on Cartesian currents: depends on the whole graph (x, u(x)). Nonconvex

in general. The regularization is convex, one-homogeneous w.r.t. ∥Du∥.

Approach: embed the minimization of E in a higher dimensional space [Chambolle 01]

Similar approach in discrete setting: [Ishikawa, Geiger 03] with numerical intricacies.

Using (cake) and the fact that |∂t1l{u>t}(x)| = δ(u(x)− t) = +∞ if u(x) = t and = 0

otherwise, one can find a global minimizer of E by minimizing

E1(1l{u>t}) =

∫
Ω×Γ

g(x, t)|∂t1l{u>t}(x)|+ λh(∥Dx1l{u>t}∥) dx dt

E1 is convex w. r. t. 1l{u>t} but 1l{u>t} : [Ω× Γ] → {0, 1} is discontinuous.
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Relaxation: replace 1l{·} by ϕ ∈ S where

S :=

{
ϕ ∈ BV (Ω× R; [0, 1]) : lim

t→−∞
ϕ(x, t) = 1, lim

t→+∞
ϕ(x, t) = 0

}
F below is convex and constrained:

F(ϕ) =

∫
Ω×R

g(x, t)|∂tϕ(x, t)|+ λh(∥Dxϕ(x, t)∥) + ıS(ϕ) dx dt

Facts:

• F obeys the generalized coarea formula F(ϕ) =

∫ +∞

−∞
F(1l{ϕ>t})dt

• ϕ̂ ∈ argmin
ϕ

F(ϕ) ⇒ F(ϕ̂) =

∫ 1

0

F(1l{ϕ̂>t})dt

• for a.e. γ ∈ [0, 1), 1l{ϕ̂>γ} ∈ argmin
ϕ

F(ϕ)

Therefore

(i) ϕ̂ ∈ argmin
ϕ

F(ϕ) ⇒ 1l{ϕ̂>γ} for a.e. γ ∈ [0, 1] is a global minimizer of E1;

(ii) From 1l{ϕ̂>γ} a global minimizer û of E is found.
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Disparity estimation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Left input image (b) Right input image (c) True disparity

Figure 7. Rectified stereo image pair and the ground truth disparity. Light gray pixels indicate structures

near to the camera, and black pixels correspond to unknown disparity values.

−2 0 2 −2 0 2 −2 0 2 −2 0 2

quadratic TV Huber Lipscitz

Image credits to the authors: Pock, Cremers, Bischof, Chambolle 2010
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5. Minimal Partitions [Chambolle, Cremers, Pock, SIIMS 12]

u : Ω → R, Ω ⊂ R2 (open) Extension to R3 is also considered

Goal: partition Ω into (at most) k regions whose total perimeter is minimal using external data.

This amounts to partition Ω into ideal soap films [Brakke 95].

E({Σi}ki=1) =
k∑

i=1

(∫
Σi

gi(x) +
1

2
Per(Σi; Ω) + ıSΣ(x) dx

)
SΣ =

{
{Ei}ki=1 ⊂ R2 : Ei ∩ Ej = ∅ if i ̸= j and ∪k

i=1 Ei = Ω
}

gi : Ω → R+, 1 ≤ i ≤ k are given external potentials (e.g., extracted from input data). Set

χi(x) := 1lΣi(x) i ∈ {1, . . . , k} χ := (χ1, . . . , χk) ∈ Rd×k and g := (g1, . . . , gk)

By (coa) and (per), the interfacial energy reads as

Φ(χ) :=
1

2

k∑
i=1

∫
Ω

∥Dχi∥+ ıS0(χ) for S0 =

{
χ ∈ BV (Ω; {0, 1}k) :

k∑
i=1

χi = 1 a.e. in Ω

}

Minimizing E is equivalent to minimize: E1(χ) =

∫
Ω

χ(x) · g(x) + Φ(χ)(x) dx

E1 is convex but S0 is discrete. It is known that E1 has global minimizers.
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A straightforward convex relaxation is to replace χ ∈ S0 by v ∈ S

S :=

{
v ∈ BV (Ω; [0, 1]k) :

k∑
i=1

vi(x) = 1 a.e. in Ω

}
and to minimize the convex F1(v) =

∫
Ω
v(x) · g(x) + 1

2

∑k
i=1

∫
Ω
∥Dvi∥+ ıS(v) dx

e.g. [Zach et al, 08], [Bae, Yuan, Tai 11]

This relaxation is not tight except for k = 2

The goal is to conceive a convex relaxation of E1 as tight as possible.

Construction of a “local” convex envelope Φ̃ of Φ

Let E∗
1 be the convex conjugate of E1, see (cc). Then E∗∗

1 is the convex envelope of E1, so

argmin
v

E1 ⊂ argmin
v

E∗∗
1 . Its domain is dom E∗∗

1 = S, but E∗∗
1 is seldom computable.

One looks for the largest non-negative, even, convex envelope of Φ of the form

Φ̃(v) =
∫
Ω
h(v,Dv) for h : Ω× Rk×d → R+ satisfying

Φ̃(v) ≤ Φ(v) ∀ v ∈ L2(Ω;Rk) and Φ̃(v) = Φ(v) ∀ v ∈ S0

Result: Φ̃(v) =

∫
Ω

h(Dv) + ıS(v) dx where

h(p) = sup
q∈K

q · p for K =
{
q = (q1, . . . , qk)

T ∈ Rk×d : ∥qi − qj∥ ≤ 1 ∀ i < j
}
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This estimate Φ̃ of Φ is nearly optimal.

The convex partition problem

F(v) =

∫
Ω

v(x) · g(x) + Φ̃(v) dx

Let v̂ ∈ argminF(v). Cases:

1. v̂ = (v̂1, · · · , v̂k) ∈ S0 ⇒
{
Σ̂i := supp (v̂i)

}k

i=1
is a global minimizer of E ;

2. v̂ ∈ S \S0 and v̂ is a convex combination of several ŵi ∈ argmin E1(v) then for each i,

ŵi ∈ argminF(v) and F(v̂) = minv E1(v). For k ≥ 3 a binarization may be used (see,

e.g. [Lellmann Schnörr 11]) or a slight perturbation of g.

3. v̂ ∈ S \S0 and v̂ is not a convex combination of some global minimizers of E1. Then
F(v̂) ≤ minv E1(v).

Case 1 occurs much more often than cases 2 and 3.

Minimization of F by primal-dual ArrowHurwicz-type algorithm.

For less tight relaxations such as F1 case 1 is less frequent.
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The 3 cases
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Completion of four regions.

Figure 8. Completion of four regions: in case of nonuniqueness, the method may find a combination of the

solutions.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input Output

Figure 6. Example of a nonbinary solution.

Cases 1 and 2 Case 3

g1 = (1, 0, 0), g2 = (0, 1, 0), g3 = (0, 0, 1), g4 = (1, 1, 1) (g1, g2, g3)

Image credits to the authors: Chambolle, Cremers, Pock, SIIMS 12
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Comparison with other methods

 
 
 
 
 
 
 
 
 
 
 
 

[Chambolle, Cremers, Pock 12] [Zach,Gallup,Frahm,Niethammer 08] [Lellmann,Kappes,Yuan,Becker,Schnörr 09]

Image credits to the authors: Chambolle, Cremers, Pock, SIIMS 12
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