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Lanczos
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Method for Computing
Smallest Singular Triplets

E. Kokiopoulou∗, C. Bekas†, and E. Gallopoulos‡

1 Introduction
We describe the development of a method for the efficient computation of the small-
est singular values and corresponding vectors for large sparse matrices [4]. The
method combines state-of-the-art techniques that make it a useful computational
tool appropriate for large scale computations. The method relies upon Lanczos
bidiagonalization (LBD) with partial reorthogonalization [6], enhanced with im-
plicit restarts and harmonic Ritz values. We note that although LBD has been
successfully used for the approximation of largest singular values [5], our target
in this paper is the computation of the smallest singular values. Thus, in order
to design a matrix free method by avoiding shift-and-invert techniques we rely on
harmonic Ritz values.

Using LBD for the approximation of the smallest singular values often causes
the lengths of the Lanczos bases to become quite large in order to obtain accurate
approximations. For that reason, we embed an implicit restarting mechanism in
LBD [12], which maintains memory requirements constant at each restart. In order
to avoid the explicit inversion of A, we employ a harmonic Ritz value shift strategy
[10, 9]. Harmonic Ritz values and vectors have been reported (see e.g. [8]) to be
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particularly useful for restarting purposes where a certain amount of important in-
formation must be included in the subspace for the next restart. Implicit restarting
addresses elegantly this problem.

We address the problem of detecting clustered singular values by adopting
the ODT deflation scheme [1] [7], which is adapted accordingly so that it can be
applied directly on the LBD factorization. Convergence is detected by monitoring
the refined residual [3].

2 Description of the method
We next proceed with a brief description of our method.

2.1 Lanczos bidiagonalization

Consider the matrix A ∈ Cm×n. Then LBD computes the factorizations

AVk = Uk+1Bk, or
A∗Uk+1 = VkB∗

k + αk+1vk+1e
∗
k+1

where the bases Uk+1 ∈ Cm×(k+1) and Vk ∈ Cn×k have orthonormal columns and
the matrix Bk ∈ R(k+1)×k is lower bidiagonal. Our implementation relies upon the
lanbpro routine of PROPACK [5], which makes use of a partial reorthogonalization
scheme that maintains an acceptable level of orthogonality among Lanczos vectors
at low cost.

2.2 Implicitly restarted LBD

We employ the implicit restarting mechanism on LBD via two approaches. Denote
l = k + p the maximum dimension of the LBD factorization. The first approach
is accomplished by applying the implicitly shifted QR algorithm on matrix BlB

∗
l .

However, this is unwise from numerical standpoint since the condition number of Bl

is squared. Furthermore, we have to recover matrix Bk from BkB∗
k in every restart,

before extending the factorization to size l.
The second approach suggests using Golub-Kahan SVD steps directly on Bl

which is widely known as the “bulgechasing process” [2]. This process updates
the LBD factorization to AU+

k+1 = V +
k B+

k , which is what we would have obtained
after k steps of LBD with the special starting vector u+

1 = (AA∗ − µ2I)u1 using
shift µ. Repeating the above process for p shifts we obtain a bidiagonalization that
corresponds to a starting vector which is a polynomial of AA∗ on u1 with zeros at
shifts µi, i = 1, . . . , p. This technique of implicit application of polynomial filtering
on the starting vector of the method is particularly efficient for approximating a
few of the eigenvalues of the matrix at hand.

2.3 Harmonic Ritz values

Harmonic Ritz values of A are equal to the reciprocal of the Ritz values of A−1 and
have been proposed for the approximation of the smallest in magnitude eigenvalues
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of A [11], [9]. Since we have applied the implicit restarting mechanism on AA∗ we
compute the harmonic Ritz values produced by the oblique projection scheme,

AA∗ũl+1 − θ̃l+1ũl+1 ⊥ AA∗Ul+1,

where θ̃j and ũ ∈ Cm×1 is the corresponding harmonic Ritz value and vector re-
spectively. It can be proven, after some algebraic manipulation, that the harmonic
Ritz values are derived by the singular values of the (l + 2)× (l + 1) lower bidiago-
nal matrix Bl+1. We use the largest harmonic Ritz values as shifts in the implicit
restarted LBD.

2.4 Refined residual

It has been observed that when a Ritz value has converged, the corresponding
Ritz vector may have not converged [13, Sec. 4.3]. This pitfall can be addressed
by substituting Ritz vector for refined Ritz vectors [3]. The refined Ritz vectors
are designed to minimize the 2-norm of the residual with respect to the subspace
involved. Concerning the LBD, the computation of the refined residual and singular
vectors ũ = Uk+1c, c ∈ C(k+1)×1 and ṽ = Vkd, d ∈ Ck×1 results to the solution of
the joint minimization problem

min
ũ,ṽ

‖
[(

0 A
A∗ 0

)
− σ̃Im+n

](
ũ
ṽ

)
‖2

2.5 Deflation

When the smallest approximate singular triplet has converged we should deflate it
in order to proceed to the computation of the next singular triplet. R. Lehoucq
and D. Sorensen have proposed an efficient deflation scheme in [7], that is called
orthogonal deflating transformation (ODT for short). It can be proven that this
scheme can be applied directly on the LBD factorization in order to deflate the
converged singular triplet.
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