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1 Introduction

In this paper we consider the nonlinear eigenvalue problem
TNz =0 (1)

where T'(\) € R"*" is a family of symmetric matrices depending on a parameter
A€ J,and J C R is an open interval which may be unbounded. As in the linear
case T(\) = AI — A a parameter X is called an eigenvalue of T'(-) if problem (1) has
a nontrivial solution x # 0 which is called a corresponding eigenvector. We assume
that the matrices T'(\) are large and sparse.

For sparse linear eigenvalue problems most efficient methods are iterative pro-
jection methods, where approximations to the wanted eigenvalues and correspond-
ing eigenvectors are obtained from projections of the eigenproblem to subspaces
which are expanded in the course of the algorithm. Methods of this type are the
Lanczos algorithm for symmetric problems, and Arnoldi’s method and the Jacobi-
Davidson method, e.g., for more general problems. Taking advantage of shift-and-
invert techniques in Arnoldi’s method one gets approximate eigenvalues closest to
the shift. Ruhe [5] generalized this approach. He suggested the rational Krylov
method using several shifts in one run, thus getting good approximations to all
eigenvalues in a union of regions around the shifts chosen.

In some sense, Ruhe [6] and Hager and Wiberg [3], [2] generalized this ap-
proach to sparse nonlinear eigenvalue problems by nesting the linearization of prob-
lem (1) by Regula falsi and the solution of the resulting linear eigenproblem by
Arnoldi’s method, where the Regula falsi iteration and the Arnoldi recursion are
knit together. Similarly as in the rational Krylov process they construct a sequence
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Vi of subspaces of R, and at the same time they update Hessenberg matrices Hy,
which approximate the projection of T'(c)“'T(\) to Vi. Here o denotes a shift
and A\ an approximation to the wanted eigenvalue of (1). Then a Ritz vector of Hy,
corresponding to an eigenvalue of small modulus approximates an eigenvector of the
nonlinear problem from which a (hopefully) improved eigenvalue approximation of
problem (1) is obtained. Hence, in this approach the two numerical subtasks reduc-
ing the large dimension to a much smaller one and solving a nonlinear eigenproblem
are attacked simultaneously.

A different approach where the two subtasks mentioned in the last paragraph
are handled separately was suggested in [1] and [7]. If V} is a subspace of R™ of
small dimension from which we obtained approximations to an eigenvalue \; and
corresponding eigenvector x € Vi then we expand Vj by a direction vg11 obtained
by a Jacobi-Davidson step in [1] and an Arnoldi step in [7]. Thereafter we set V41 =
[V, vg+1] and solve the nonlinear projected eigenvalue problem Vk:CHT (AMVk412=0
to obtain new approximations Agy; and zpy1 = Viy12. This approach seems to
have the disadvantage that solving a sequence of projected nonlinear eigenproblems
is more expensive than solving the linear approximately projected eigenproblems
for Hy, in Ruhe’s approach. However, it turned out in numerical examples that for
large dimensions this subtask requires only a small share of the total CPU time.

In this paper we discuss a further benefit of our approach. If the underlying
large problem is symmetric then the projected problems inherit the symmetry and
thus can be solved more efficiently. Section 2 summarizes some useful properties of
nonlinear symmetric eigenproblems and methods for solving dense nonlinear eigen-
problems. Section 3 discusses the Arnoldi method from [7] with particular emphasis
on symmetry, and in Section 3 we report on our numerical experience for a rational
eigenvalue problem from fluid—structure interaction.

2 Solving symmetric nonlinear eigenproblems

We counsider the nonlinear eigenvalue problem T'(A)x = 0 where T'(\) € R"*" is a
family of real symmetric matrices for every A in an open real interval J which may
be unbounded.

For a linear symmetric problem Az = Az all eigenvalues are real, and if they
are ordered by magnitude \; < Ay < ... < A, then it is well known that they can
be characterized by the minmax principle of Poincaré.

Similar results hold for certain nonlinear eigenvalue problems, too. We assume
that the function f(\,z) := 27T (\)z is continuously differentiable on J x R™, and
that for every fixed x € R™ \ {0} the real equation

fx2) =0 (2)

has at most one solution in J. Then equation (2) implicitly defines a functional p
on some subset D of R™ \ {0} which replaces the Rayleigh quotient in the varia-
tional characterization of eigenvalues of problem (1), and which we call the Rayleigh
functional.

For nonlinear eigenvalue problems variational properties using the Rayleigh
functional were proved by Duffin, Rogers, Hadeler, and Werner for overdamped
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problems, i.e. if the Rayleigh functional p is defined in the entire space R™ \ {0},
for nonoverdamped problems by Werner and the author (c.f. [8] and the literature
given therein).

In the general case the natural enumeration for which the smallest eigenvalue
is the first one, the second smallest is the second one, etc. is not appropriate, but
the number of an eigenvalue A of the nonlinear problem (1) is inherited from the
number of the eigenvalue 0 of the matrix T'(\).

If A € J is an eigenvalue of problem (1) then p = 0 is an eigenvalue of the
linear problem T'(A\)y = uy, and therefore there exists k£ € N such that

0= max min v/ T(\)v
VeS, vevt
where Sy denotes the set of all k-dimensional subspaces of R™ and V! :={v eV :
|[v]] = 1} is the unit sphere in V. In this case we call A a k-th eigenvalue of (1).
With this enumeration the following minmax characterization of the eigenval-
ues of the nonlinear eigenproblem (1) was proved in [8]:

Theorem 1. Under the conditions given above the following assertions hold:

(i) For every k € N there is at most one k-th eigenvalue of problem (1) which can
be characterized by

M= gl B, PO ®
VND#0

The set of eigenvalues of (1) in J is at most countable.

(is) If A € J and k € N such that (1) has a k-th eigenvalue A\, € J. Then it holds

A = (A= max vnelgll v T\

>
AV
AV

o

The correspondence between a k-th eigenvalue A of T'(-) and the k largest
eigenvalue of T'(\x) suggests the safeguarded iteration to determine the k-th eigen-
value of a nonlinear problem given in Algorithm 1 the convergence properties of
which were proved in [9] and are collected in Theorem 2.

Algorithm 1 Safeguarded iteration

1: Start with an approximation p; to the k-th eigenvalue of (1)

2: for / =1,2,... until convergence do

3:  determine eigenvector u corresponding to the k-largest eigenvalue of T'(uy)
4:  evaluate pgpy1 = p(u)

5: end for
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Theorem 2.

(i) If Ay :=infuep p(u) € J is a simple eigenvalue then the safequarded iteration
converges globally and quadratically to A1.

(ii) If Ay € J is a k-th eigenvalue of (1) which is simple then the safeguarded
iteration converges locally and quadratically to \g.

(#ii) If T()N) is positive definite for A € J and u in step 3. of Algorithm 1 is chosen
to be an eigenvector corresponding to the k largest eigenvalue of the generalized
eigenproblem T(pe)u = KT'(pe)u then the convergence is even cubic.

The safeguarded iteration is definitely not capable to solve large nonlinear
eigenvalue problems. However, as an inner iteration in a projection method it is
well suited since its convergence properties and for small dimension its complexity
are similar to those of inverse iteration. As an advantage upon inverse iteration it
alms at an eigenvalue with a specific number, and therefore it is less likely to miss
an eigenvalue if one is interest in all eigenvalues in an interval.

Since we want to determine all eigenvalues in an interval and since we ap-
proximate them one after another it is reasonable to expand the approximating
space V by a direction which has high approximation potential for the next wanted
eigenvector. Such direction is given by inverse iteration v = T(\)1T"(\)z were
A and x is the current approximation to the wanted eigenvalue and eigenvector,
respectively. However, solving a large linear system in each iteration step is much
to expensive. Replacing v by a simplified version v = T'(¢) "'7"(\)z with a fixed
shift o leads to wrong convergence, namely to a solution of the linear eigenproblem
T(o)x = pT’(N)z where A denotes the limit of the sequence Ay.

Algorithm 2 Residual inverse iteration

1: Start with an approximation z; € D to an eigenvector of (1)
2: for £ =1,2,... until convergence do

3:  evaluate ppy1 = p(xr)

4:  compute the residual ry = T (pey1)xe

5. solve T(o)dy =1y

6:  set xpy1 = 20 — dp, Tepr = Topa /|| Tes]

7: end for

The variant of inverse iteration in Algorithm 2 called residual inverse iteration
and introduced by Neumaier [4] does not have these unpleasant properties. Theorem
3 proved in [4] describes the convergence of this method.

Theorem 3. Let T(\) be twice continuously differentiable. Assume that \is a
simple eigenvalue of problem (1), and let & be a corresponding eigenvector normal-
ized by ||Z|| = 1. Then the residual inverse iteration converges for all o sufficiently
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close to 5\, and it holds

[zers — ]|

- :(’)U—S\, and |\ “ =0z, — 2.
e =0l = ) Aers = Al = O(llze - #1)

3 Arnoldi’'s method

The convergence properties of the residual inverse iteration method suggests to ex-
pand the ansatz space V in a projection method in the following way. If A is an
eigenvalue of the projected problem VIT(A\)Vz = 0 and & = V% is a correspond-
ing Ritz vector, then we choose as new direction v = & — T(0) ' T(\)Z. With
this expansion we may expect that the projection method has similar convergence
properties as the residual inverse iteration given in Theorem 3.

In projection methods the new direction is orthonormalized against the previ-
ous ansatz vectors. Since the Ritz vector Z is contained in span V' we may choose the
new direction v = T'(¢)"'T(A)&. For the linear problem T'(\) = AI — A this is ex-
actly the shifted-and-inverted Arnoldi method. If the linear system T'(c)v = T'(\)Z
is too expensive to solve for v we may choose as new direction v = MT'(\)Z with
M =~ T(o)~!, and for the linear problem we obtain the preconditioned Arnoldi
method. We therefore call the resulting iterative projection method given in Algo-
rithm 3 nonlinear Arnoldi method.

Since we are interested in all eigenvalues in an interval J and the speed of
convergence is expected to depend crucially on |0 — A| it will be advisable to change
the shift or more generally the preconditioner M in the course of the algorithm if
the convergence to the current eigenvalue becomes too slow. So actually we obtain a
method which generalizes the rational Krylov method in [5], and the name nonlinear
rational Krylov method would be more appropriate.

As mentioned in Section 1 Ruhe [6] designed a rational Krylov method for
nonlinear eigenvalue problems which differs in some respects from our approach.
Motivated by a linearization with Regula falsi the ansatz space is also expanded by
v = T(0)~'T(\)Z. However, in [6] (a linear approximation of) the projection of
T(o)~'T(N)z = 0 to V is solved whereas we consider the projection of T(\)z = 0.
Hence, in our approach symmetry properties of T'(\) are conserved which can be
used to solve the projected problem more efficiently, and which are destroyed in
Ruhe’s approach. Moreover, motivating the choice of the expansion v by the residual
inverse iteration it is obvious that T'(¢)~! can be replaced by a preconditioner
M = T(o)~! which is not clear in the derivation of Ruhe. Finally, the convergence
result of Neumaier for the residual inverse iteration suggests a strategy when to
change the shift o.

A template for the complete preconditioned Arnoldi method for nonlinear
symmetric eigenvalue problems with restarts and varying preconditioner is given in
Algorithm 3. In the following we comment on some of its steps:

1. If inf e p p(x) is contained in J then the safeguarded iteration converges glob-
ally, and the algorithm can be started with any random vector. However, with
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Algorithm 3 Arnoldi Method for Nonlinear Symmetric Eigenproblems

1: Start with number m of first wanted eigenvalue and initial basis V, VIV = I;
2: determine preconditioner M ~ T'(c)~!, o close to first wanted eigenvalue

3: k=1

4: while m < number of wanted eigenvalues do

5:
6
T
8.
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:

compute m-th eigenvalue p and corresponding eigenvector y of VIT(u)Vy =
0 with guarded iteration.
determine u = Vy, r, = T(p)u
if ||rg|l/|lu|| < € then
PRINT A\, = p, 2, = u,
if m == number of wanted eigenvalues then
STOP
end if
m=m-+1
if (k> 1) & (|lrell/llrk—=1]] > tol) then
choose new pole o, and determine new preconditioner M ~ T'(¢) !
end if
restart if necessary
choose approximations p and u to next eigenvalue and eigenvector
determine r = T'(u)u
k=0
end if
v=Mr
v=v—-VVTv 5 =v/|v|, V =[V,9
reorthogonalize if necessary
k=k+1

25: end while

v an approximation to an eigenvector corresponding to the maximal eigenvec-
tor of T'(u) and p an approximation to the smallest eigenvalue of T'(-) one gets
much faster convergence. On the other hand starting with a random vector
the methods collects information on the higher eigenvectors while iterating for
the first one, which speeds up the convergence of the method for higher eigen-
values. In our numerical experiments we did not observe essential differences
in the overall convergence behaviour.

If m > 1 the algorithm can be started with an orthonormal basis of the
invariant subspace of T'(11) corresponding to the m largest eigenvalues of T'(y)
with p an approximation to the first wanted eigenvalue of T'().

One can profit from previous knowledge on wanted eigenvectors introduc-
ing approximations to these eigenvectors in the initial basis V' as additional
columns.

. In the case study in the next section we chose M by the complete or an

incomplete LU factorization of T'(o).
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13.

16.

17.

k counts the number of iterations for fixed m. This is only needed to measure
the speed of convergence and to decide in statement 13. whether a new
preconditioner is recommended.

Any other method for determining the m-th eigenvalue of the nonlinear pro-
jected problem is suitable. However then one has to take care (for instance by
Theorem 1, (ii) and Sylvester’s inertia rule) that one got an approximation to
the m-th eigenvalue.

Corresponding to Theorem 3 the residual inverse iteration with fixed pole o
converges linearly, and the contraction rate satisfies O(|o — A, |). We therefore
update the preconditioner if the convergence has become too slow. The new
pole is chosen close to the eigenvalue wanted next.

As the subspaces expand in the course of the algorithm the increasing storage
or the computational cost for solving the projected eigenvalue problems may
make it necessary to restart the algorithm and purge some of the basis vectors.
Since a restart destroys information on the eigenvectors and particularly on
the one the method is just aiming at we restart only if an eigenvector has
converged.

By the proof of the minmax characterization (3) in [8] the minimum is at-
tained by the invariant subspace V of T(Ak) corresponding to the k largest
eigenvalues of T'(Ax). We therefore restart with V = VZ where Z denotes a
basis of the invariant subspace of VI'T(u)V corresponding to the m largest
eigenvalues of VI T(u)T, or to retain more valuable information the invariant
subspace corresponding to the m largest eigenvalues where m is slightly bigger
than m.

If T'(\) is positive definite then following the proof of the minmax character-
ization it can be shown that V in the last paragraph can be replaced by the
subspace spanned by the eigenvectors of T(Ag)u = uT’(A;)u corresponding
to the k largest eigenvalues. In this case we therefore restart with V' Z where
Z is spanned by eigenvectors of VIT(u)Vz = uVIT'(1)V z corresponding to
the m or m largest eigenvalues of the generalized eigenproblem.

If we solve the projected eigenproblem by safeguarded iteration, then for fixed
v we solve the eigenproblem for the full matrix VI T(v)V by some standard
eigensolver, and for the eigenvector y corresponding to the m largest eigen-
value we evaluate the Rayleigh functional at y, i.e. we solve yT VIT(\)Vy =0
to obtain a new approximation 7. After convergence we have at hand the
eigenvector §j corresponding to the (m + 1)-th eigenvalue of VI T(v)V, and
we can easily obtain the root of g7 VTT(A\)V§ = 0 as an approximation p to
the next eigenvalue and the Ritz vector u = Vy as an approximation to the
corresponding eigenvector. If 77()\) is positive definite then of course we may
use the generalized eigenproblem VI T(v)Vy = pVIT'(v)Vy instead, and get
faster convergence.

If no information on the next eigenvalue and eigenvector can be gained cheaply
we continue with the current approximations.
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Fig. 1: Approximation history for [0, 1)

4 Numerical experiments

To test the Arnoldi method we consider a rational eigenvalue problem governing
free vibrations of a tube bundle immersed in a slightly compressible fluid which
is described in detail in [1]. A finite element model results in a rational matrix
eigenproblem

TNz :=—-Kx+ Mz + %szo (4)

where K, M and C' are symmetric matrices, K and C are positive semidefinite, and
M is positive definite.

In our experiments we considered a discretization of dimensions 36040. Prob-
lem (4) has 28 eigenvalues 0 = A1 < Ao < ... < Agg < 1 in [0,1) and a large
number of eigenvalues 1 < 5\11 < 5\12 < ...1in (1,00), 20 of which are contained
in in the interval (1,3). Notice that the linear eigenvalue problem Kz = AMax
contains only 12 eigenvalues in (0,1). Thus, the rational eigenvalue problem (4) is
not just a small perturbation of the linear problem which is obtained by neglecting
the rational term.

The experiments were run under MATLAB 6.5 on a Pentium 4 processor with
2 GHz and 1 MB RAM. We preconditioned by the LU factorization of T'(¢), and
terminated the iteration if the norm of the residual was less than 10~8. By the
approximation properties of the Rayleigh functional (as in the linear case the eigen-
vectors of T'(+) are the stationary points of p) then the eigenvalues were determined
with full accuracy.

Starting with the initial shift ¢ = 0.1 and a random vector the algorithm
without restarts needed 90 iteration steps and a CPU time of 87.7 seconds to ap-
proximate all 28 eigenvalues in the interval [0, 1), and with the tolerance tol = 107!
only 3 updates of the preconditioner were necessary. Fig.1 contains the approxima-
tion history and the shift o which was used in the LU factorization. Crosses mark
the iterations when the method has found an eigenvalue.
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Fig. 2: Convergence history for [0, 1)

Fig.2 shows the convergence history. We marked by circles the 3 updates of the
LU factorizations Since we did not use preinformation on eigenvectors but started
with a random vector 9 iterations were required to evaluate the smallest eigenvalue,
however for the remaining 27 eigenvalue the method needed only 81 iterations, i.e.
an average of 3 iterations.

Starting with the known eigenvector (1,1,...,1) of problem (4) correspond-
ing to the first eigenvalue A; = 0 only 2 updates of the LU factorization were
necessary, but the method needed 102 iterations and 101.1 seconds to approximate
all 28 eigenvalues. Finally, starting with an initial space spanned by the eigenvec-
tors corresponding to the 5 minimal eigenvalues of the linear problem Kz = AMx
the algorithm needed 90 iterations, 91.9 seconds and 2 LU updates, and for 10
eigenvectors it needed 86 iterations, 86.5 seconds and 1 LU update. Hence, intro-
ducing approximate eigenvectors as preinformation into the algorithm (at least in
this example) does not pay.

Restarting the method if the dimension of the ansatz exceeds 50 and adding
3 additional basis vectors the method behaved similarly. It needed 2 restarts (after
convergence to the 12th and the 22nd eigenvalue had appeared), 116 iterations, 97.7
seconds and 4 updates of the LU factorization, two of them just after the restarts.

For the interval (1,3] the method acted in a similar manner. Because the
smallest eigenvalue in this interval is an 11th one we had to start with an ansatz
space of dimension 11 (otherwise the nonlinear eigensolver could not be successful).
Motivated by the proof of the minmax characterization in Theorem 1 we chose a
basis of the invariant subspace of the linear eigenproblem

T(o)r=(—K+oM + %C’)x =u(M + C)x = uT'(0)x (5)

1
(1-0)?
corresponding to the 11 largest eigenvalues. For 0 = 1.1 in (5) and as initial pole the
algorithm needed 99 iteration steps and 101 seconds to approximate all 30 eigenval-
ues in the interval (1,3). 2 updates of the LU factorization were necessary. Fig. 3
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Fig. 3: Convergence history for (1, 3)

Table 1. Share of solver for nonlinear eigenproblem on total CPU time

without restarts with restarts
dimension | total CPU | nonlin. evp. | total CPU | nonlin. evp
2350 10.8 4.8 6.4 1.6
9144 28.4 2.9 25.3 1.5
36040 87.7 2.5 97.7 1.2

shows the convergence history for the interval (1,3). Again the updates of LU fac-
torizations are marked by circles. Restarts or introducing further initial information
into the start space did not change the convergence behaviour essentially.

We stressed the fact that solving the projected nonlinear eigenproblems re-
quires only a small portion of the total CPU time for large dimensions. Table 1
shows the total CPU time for computing all 28 eigenvalues in [0,1) for 3 FEM
models of different dimensions without and with restarts if the dimension of the
projected problems exceeded 50.

Our final experiment demonstrates, that the method works if it is precondi-
tioned by less accurate preconditioners than exact LU factorization, although the
convergence is much slower. Preconditioning by incomplete LU factorization with
drop tolerance 0.01 and restarting and updating the preconditioner whenever an
eigenvalue has converged the algorithm finds all 28 eigenvalues in the [0, 1) requir-
ing 1722 iterations and 1112 seconds, 4% of which are required to solve the projected
nonlinear eigenproblems and 2.5% to update the preconditioner.

The problem was also solved by the Jacobi-Davidson method [1] and the
rational Krylov method [6]. Jacobi-Davidson found all eigenvalue in [0,1) and
(1,3) requiring 1006.6 and 758.9 seconds, respectively. The rational Krylov method
needed 847.0 seconds to find all eigenvalues in [0,1). Due to sensitive dependence
on the initial approximation p and the shift ¢ it was only able to locate 2 or 3
eigenvalues in (1, 3) before it diverged in several tests with different p and o.
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